Volume 12 Number 5 (Sep. 2017)
Home > Archive > 2017 > Volume 12 Number 5 (Sep. 2017) >
JCP 2017 Vol.12(5): 396-407 ISSN: 1796-203X
doi: 10.17706/jcp.12.5.396-407

Hybrid Approach to Optimize the Centers of Radial Basis Function Neural Network Using Particle Swarm Optimization

Monir Foqaha, Mohammed Awad
Department of Computer Science, Faculty Engineering and Information Technology, Arab American University Jenin, 240, Palestine.
Abstract—Function approximation is an important type of supervised machine learning techniques, which aims to create a model for an unknown function to find a relationship between input and output data. The aim of the proposed approach is to develop and evaluate a function approximation models using Radial Basis Function Neural Networks (RBFN) and Particles Swarm Optimization (PSO) algorithm. We proposed Hybrid RBFN with PSO (HRBFN-PSO) approach, the proposed approach use PSO algorithm to optimize the RBFN parameters, depending to the evolutionary heuristic search process of PSO, here PSO use to optimize the best position of the RBFNN centers c, the weights w optimize using Singular Value Decomposition (SVD) algorithm and the Radii r optimize using K-Nearest Neighbors (Knn) algorithm, within the PSO iterative process, which means in each iterative process of PSO, the weights and Radii are updated depending the fitness (error) function. The experiments are conducted on three nonlinear benchmark mathematical functions. The results obtained on the training data clarify that HRBFN-PSO approach improved the approximation accuracy than other traditional approaches. Also, this result shows that HRBFN-PSO reduces the root mean square error and sum square error dramatically compared with other approaches.

Index Terms—Radial basis function neural networks, particles swarm optimization, function approximation.

[PDF]

Cite: Monir Foqaha, Mohammed Awad, "Hybrid Approach to Optimize the Centers of Radial Basis Function Neural Network Using Particle Swarm Optimization," Journal of Computers vol. 12, no. 5, pp. 396-407, 2017.

General Information

ISSN: 1796-203X
Frequency: Monthly (2006-2014); Bimonthly (Since 2015)
Editor-in-Chief: Prof. Liansheng Tan
Executive Editor: Ms. Cherry L. Chen
Abstracting/ Indexing: DBLP, EBSCO, DOAJ, ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat, CNKI,etc
E-mail: jcp@iap.org
  • Aug 14, 2017 News!

    Vol 13, No 5 has been published with online version   [Click]

  • Jun 21, 2017 News!

    Vol 13, No 4 has been published with online version   [Click]

  • Jun 14, 2017 News!

    Vol 13, No 3 has been published with online version   [Click]

  • May 24, 2017 News!

    Vol 13, No 2 has been published with online version   [Click]

  • May 24, 2017 News!

    Vol 13, No 1 has been published with online version   [Click]

  • Read more>>