Multilevel Thresholding Approach Using Modified Bacterial Foraging Optimization

Kezong Tanga, Zuoyong Lib, Jun Wua, Tong Zhangb \\
aInformation Engineering Institute, Jingdezhen Ceramic Institute, Jingdezhen 333000, China bDepartment of Computer Science, Minjiang University, Fujian 350108, China \\
Email: tangkezong@126.com, wj1608@sina.com, youkezong@126.com

Abstract—In this work, a multilevel thresholding approach that uses modified bacterial foraging optimization (MBFO) is presented for enhancing the applicability and practicality of optimal thresholding techniques. First, the diversity of solutions is considered during the reproduction step. Each weak bacterium randomly selects a strong bacterium from the healthiest bacteria, attempts to reach a location near the chosen strong bacterium, and maintains the same direction. Particle swarm optimization is subsequently incorporated into each chemotactic step to strengthen the global searching capability and quicken the convergence rate of the bacterial foraging algorithm. Finally, the optimal thresholds are obtained by maximizing the Tsallis thresholding functions using the proposed MBFO algorithm. The performance of the proposed algorithm in solving complex stochastic optimization problems is compared with other popular approaches such as a bacterial foraging algorithm, particle swarm optimization algorithm, and genetic algorithm. Experimental results show that the optimal thresholds produced using MBFO require less computation time. In addition, MBFO method can achieve significantly better segmentation results; the devised algorithm generates more stable results, and the proposed method performs better than the other algorithms in terms of multilevel thresholding.

Index Terms—image segmentation, thresholding, tsallis entropy, bacterial foraging, particle swarm optimization

I. INTRODUCTION

Image segmentation is usually considered one of the mandatory preprocessing procedures in quantitative image analysis. However, image segmentation remains a considerable challenge in digital image processing owing to its complexity and diversity. During this stage, the task is to divide an image into several disjoint regions, each of which is homogeneous with respect to certain specific properties such as the gray value, edge information, and texture structure. More importantly, through accurately segmenting these objects or regions, this basic preprocess helps in analyzing and interpreting a certain region in an image of interest. Many segmentation methods have been demonstrated over the past years for specific classes of segmentation problems[1-8], including region-and threshold- based methods; however, no general scheme is applicable for every image type. Region-based methods employ either region growing, or region splitting and merging algorithms to segment an image. These region-based methods have several advantages over gradient- based techniques for segmentation, including better robustness to noise. Further, a threshold-based method is one of simplest approaches to image segmentation, where an image is segmented by comparing the image features with a particular threshold. When an image histogram has two obviously separated peaks, a threshold-based method is preferred because it consumes fewer calculations and has higher efficiency.

In general, threshold-based methods can be divided into two categories. The first category contains approaches for determining the optimal thresholds by analyzing the profile characteristics of an image histogram. The second category of thresholding techniques determines the optimal thresholds by optimizing certain objective functions. The main subject of a thresholding technique is to obtain an optimal thresholding in order to achieve certain desirable characteristics. On the other hand, many such methods attempt to achieve optimization of an objective function by maximizing or minimizing certain criteria, such as maximizing the posterior entropy indicating the homogeneity of the segmented classes [9,10], minimizing the Shannon entropy[11], maximizing the measure of separability on the basis of between-class variance[12], or minimizing Bayesian errors[13]. Among these approaches, Tsallis entropy, a generalization of the standard Boltzmann-Gibbs entropy, has attracted significant attention from the scientific community[14]. For discrete optimization problems, the recent application of Tsallis’ theory shows a tendency to provide a picture of many kinds of situations where the new formalism is useful. However, this method has an obvious drawback in that the computational complexity increases exponentially with an increase in the number of required thresholds. To a certain extent, this limits its application in multilevel thresholding.

Numerous approaches and corresponding improvements have been proposed to eliminate the abovementioned drawbacks. Among these approaches,
intelligent approaches such as neural networks (NN) [15], genetic algorithms (GA) [16], ant colony optimization [17], and particle swarm optimization (PSO) [18] have been successfully developed and applied to solve numerous optimization problems present in various fields such as image processing [19], pattern recognition [20], and biomedical Science [21]. These biologically inspired heuristics have shown better performances than classical optimization approaches for complex optimization problems owing to their domain-independent nature and capability of finding an optimal or approximately optimal solution within a large search space. Inspired by these successful applications, we further investigate the use of image segmentation using a modified bacterial foraging optimization (MBFO) algorithm.

Based on the foraging behavior of bacteria, a new optimization algorithm known as bacterial foraging optimization algorithm (BFOA) was introduced by Passino [22]; this is a relatively new addition to the family of nature-inspired optimization algorithms. Till date, BFOA has been successfully applied for solving numerous optimization problems [23-28].

In this paper, an MBFO-based multilevel thresholding technique that can enhance the feasibility and practicality of optimal thresholding techniques is proposed. Our proposed method utilizes the following steps. First, image segmentation is treated as a discrete optimization problem. Second, considering the diversity of solutions during the reproduction step, each weak bacterium randomly selects a strong bacterium beginning with the healthiest bacterium, attempts to move to a location near the selected strong bacterium, and maintains the same direction. Third, to improve the convergence rate and enhance the quality of the final solution, a PSO operator (velocity-displacement) is incorporated into each chemotactic step. Finally, maximizing the Tsallis thresholding function, the optimal thresholds are obtained using the MBFO algorithm. The proposed algorithm was tested on several benchmark images and was compared with the conventional BF, PSO, and GA and HCOCOLPSO methods. The experimental results show that the application of our method on real images is efficient and feasible.

The remainder of this paper is organized as follows. In section 2, a mathematical model describing the concept of Tsallis entropy is introduced. In section 3, an overview of the BF algorithm is provided. The MBFO algorithm is described in section 4. In section 5, the MBFO algorithm is applied to the image thresholding problem. Finally, in the last section, we briefly present our conclusions.

II. THRESHOLDING METHOD USING TSALLIS ENTROPY

Tsallis entropy is a new entropy measure generalizing the traditional Boltzmann/Gibbs entropy for non-extensive physical systems [27]. Tsallis entropy uses a thresholding approach to tackle the presence of non-additive information in an image. It is similar to the maximum entropy method of Kapur et al. 9 Tsallis entropy is the preferable method for a variety of image processing applications such as biomedical analysis and automatic target recognition. An image thresholding method using Tsallis entropy (i.e., non-extensive entropy) was first presented by Albuquerque [14]. It was developed into bi-level thresholding and later generalized into multiple levels. Let \(L \) be the gray levels in a given image, and \(p_i = p_1, p_2, \ldots, p_L \) be their probability distribution; \(p_i \) can then be defined as \(p_i = h(i) / N \) (1 ≤ \(i \) ≤ \(L \)), where \(h(i) \) denotes the number of pixels with gray-level \(i \), and \(N \) denotes the total number of pixels in an image. The optimal thresholding problem can then be investigated as an \(n \)-dimensional optimization problem. The formulation of \(n \) optimal thresholds can be described as follows.

A. Bi-level Thresholding

In the case of bi-level thresholding, the pixels are divided into two classes, one for the object region (class A), and the other for the background region (class B). The gray level probability distributions for the object and background regions (A and B) can then be given by

\[
p_A = \frac{1}{p_A^q}, \quad p_B = \frac{1}{p_B^q}
\]

(1)

where \(p_A^q = \sum_{i=1}^{L-1} p_i \), \(p_B^q = \sum_{i=L}^{L-1} p_i \), and \(p_A^q + p_B^q = 1 \).

According to the definition of Tsallis entropy [33], the a priori Tsallis entropy for each distribution (A and B) can be defined as

\[
S_q^A(t) = \frac{1 - \sum_{i=1}^{L-1} \left(\frac{p_i}{p_A^q} \right)^q}{q-1}
\]

(3)

\[
S_q^B(t) = \frac{1 - \sum_{i=L}^{L} \left(\frac{p_i}{p_B^q} \right)^q}{q-1}
\]

(4)

where \(q \) is an entropic index associated with the nonextensivity of the system, and is system dependent. Using the pseudo-additivity rule, the corresponding Tsallis entropy \(S_q(t) \) can be formulated as

\[
S_q(t) = S_q^A(t) + S_q^B(t) + (1-q)S_q^A(t)S_q^B(t)
\]

(5)

when \(S_q(t) \) is maximized, the luminance level \(t \) is considered the optimum threshold value. The optimal thresholds can then be obtained by maximizing \(S_q(t) \), i.e.,

\[
t_{opt} = \arg \max \{ S_q^A(t) + S_q^B(t) + (1-q)S_q^A(t)S_q^B(t) \}
\]

(6)

B. Multilevel Thresholding

The thresholding method using Tsallis entropy has been extended to multilevel thresholding, and it can be described as follows:

\[
p_{11} : \frac{p_1}{p_{11}}, \frac{p_2}{p_{12}}, \ldots, \frac{p_L}{p_{1L}}
\]

(7)

\[
p_{21} : \frac{p_{1+1}}{p_{21}}, \frac{p_{1+2}}{p_{22}}, \ldots, \frac{p_L}{p_{2L}}
\]

(8)
\[
P_{t(t+1)} = \frac{p_{i+1}}{p_{i(t+1)}} \cdot \frac{p_{i+2}}{p_{i+1(t+1)}} \cdot \ldots \cdot \frac{p_{i}}{p_{i(t+1)}}
\]
(9)

where \(p^i = \sum_{t} p_t \), \(p^n = \sum_{t} p_t \), \(p^{(t+1)} = \sum_{t} p_t \), and \(p^i + \ldots + p^n + p^{(t+1)} = 1 \). Similar to the bi-level thresholding problem, the relevant Tsallis entropy \(S_q(t) \) can be formulated as

\[
S_q(t) = S_q^1(t) + S_q^2(t) + \ldots + S_q^m(t) + S_q^{(n+1)}(t) + \sum_{i=1}^{n}(1-q)S_q^i(t)\times S_q^2(t)\times \ldots \times S_q^m(t)\times S_q^{(n+1)}(t)
\]
(10)

Thus, \(n \) optimal thresholds can be obtained by maximizing \(S_q(t), \) i.e.,

\[
t_q^{\text{opt}} = \arg \max[S_q^1(t) + S_q^2(t) + \ldots + S_q^m(t) + S_q^{(n+1)}(t) + \sum_{i=1}^{n}(1-q)S_q^i(t)\times S_q^2(t)\times \ldots \times S_q^m(t)\times S_q^{(n+1)}(t)]
\]
(11)

III. BACTERIA FORAGING ALGORITHM

As prokaryotic unicellular organisms, *Escherichia coli* (*E.coli*) bacteria exhibit excellent organization and construction capabilities through their colony behaviors.[23] One such important and fascinating behavior is their food-searching behavior. In particular, the process through which they find nutrients, avoid noxious substances, while simultaneously moving towards other cells without being extremely close to them. Inspired by this food-searching behavior of *E.coli* bacteria, and based on their foraging behavior, a new optimization algorithm, known as the bacterial foraging (BF) algorithm, was introduced by Passino[22]. This new algorithm considers not only chemotactic strategy but also other stages of bacterial foraging behavior, such as swelling, reproduction, and elimination and dispersal. In the following, we briefly describe these four important components.

A. Chemotaxis

Chemotaxis is cell movement in response to gradients of chemical concentrations in the environment. As a survival strategy, this movement is achieved by swimming and tumbling using flagella, where each flagellum is driven as a biological motor. An *E.coli* bacterium moves by alternately swimming and tumbling. In this movement, *E.coli* can thus be described as

\[
\theta(j+1, k, l) = \theta(j, k, l) + C(i)\phi(j)
\]
(12)

where \(\theta(j, k, l) \) represents the \(i \)th bacterium at the \(j \)th chemotaxis, the \(k \)th reproduction, and the \(l \)th elimination-dispersal step, and \(C(i) \) is the specified step value for a tumble.

B. Swarming

While a bacterium moves to the optimal area for food, it is always eager for the bacterium to find the best position as well as to produce strong signals of attraction to other bacteria. It will allow them to gather to reach their desired zone. During this process, *E.coli* cells release an attractant *aspartate* to help them cluster together. Then, they move as concentrated mode of population with high density. The internal signal mechanism in an *E.coli* swarm can be expressed as

\[
J_{\text{swarm}}(\theta, P(j, k, l)) = \sum_{i=1}^{n} J_{\text{c}}(\theta, \theta(j, k, l)) + \sum_{i=1}^{n} \left[-d_{\text{attract}} \exp(-w_{\text{attract}}\sum_{m=1}^{n}(\theta_m - \theta_{m,\text{opt}})^2)\right] + \sum_{i=1}^{n} \left[h_{\text{repellant}} \exp(-w_{\text{repellant}}\sum_{m=1}^{n}(\theta_m - \theta_{m,\text{opt}})^2)\right]
\]
(13)

where \(J_{\text{c}}(\theta, P(j, k, l)) \) is the objective function value to be added to the original objective function that is optimized to present a time-varying objective function, \(s \) is the total number of bacteria, \(n \) is the number of variables present in each bacterium to be optimized, and \(\theta=[\theta_1, \theta_2, \ldots, \theta_L]^T \) is a point in an \(n \)-dimensional search space. In addition, \(d_{\text{attract}} \) and \(w_{\text{attract}} \) are the depth of an attractant released by a cell, and the width of the attractant signal, respectively. On the contrary, \(h_{\text{repellant}} \) is the height of the repellent effect magnitude, and \(w_{\text{repellant}} \) is the width of the repellant. The values for these parameters should be properly selected during the swarming process.

C. Reproduction

Let \(N_c \) be the lifetime of a bacterium, as measured by the number of chemotactic steps that they execute during their life. When all the \(N_c \) chemotactic steps have been completed, a reproduction will appear in the bacteria. The health value of bacterium \(i \) can be represented by

\[
J_{\text{c,health}} = \sum_{i=1}^{N_c} J_{\text{m}}(i, j, k, l)
\]
(14)

Further, all bacteria will be sorted according to the corresponding health value in the descending order. This means that the least healthy bacteria eventually die whereas each of the healthier bacteria (those located in a search domain with a high nutrient concentration) split asexually into two bacteria, which are then placed in the same location, thereby maintaining a constant swarm size.

D. Elimination and Dispersal

In the local environment of the bacteria, some gradual or unexpected changes (such as a suddenly rise of local temperature) might lead to a mass mortality of a group of bacteria located at a high nutrient concentration area, or may disperse these bacteria into a new location within the environment. These changes will have an impact on the possibility of destroying or assisting in the chemotaxis progress to a certain extent since a dispersal action likely places the bacteria near a good food source.

IV. THE PROPOSED ALGORITHM

Dasgupta et al. investigated the potential of implementing bacterial chemotaxis as a distributed optimization process, and concluded that a mechanism of
individual iteration and collective communication in the bacterial colonies exists\cite{23}. This mechanism imparts the BFOA procedure certain advantages in the discrete optimization problem. When utilizing the BFOA in image segmentation, the image segmentation can be seen as a discrete optimization process. Thus, in our research, we improve the convergence rate and the global searching ability further to enhance the quality of the final solution. The implementation details are described in the following section.

A. Modification during the Reproduction Process

In the original BF algorithm, the weakest S bacteria die, and among the S, healthiest bacteria, each bacterium splits into two bacteria that are placed in the same location. Although this ensures that the population of bacteria remains constant, it causes a loss of solution diversity. In an actual bacterial colony, some weak bacteria know that if they move towards a stronger bacterium, they will find a better nutrient area, where we assume that each weak bacterium randomly choose a strong bacterium from the S healthiest bacteria and moves to a position near the strong bacterium selected, and maintain the same direction with the bacterium selected. Therefore,

\[
F_{C}(j,k,l)=(CS_{\text{max}})j/CS_{\text{max}}
\]

\[
\theta_{\text{weak}}(j,k,l)=\theta_{\text{weak}}(j,k,l)+\left(\theta_{\text{strong}}(j,k,l) \times F_{C}(j,k,l)\right)
\]

(15)

where \(CS_{\text{max}}\) is the maximum number of chemotactic steps, \(j\) is the index for each chemotactic step, \(\theta_{\text{strong}}(j,k,l)\) denotes the location of a strong bacterium from \(S_{r}\) healthiest bacteria, and \(\theta_{\text{weak}}(j,k,l)\) denotes the current location of the weak bacterium.

B. PSO Operator in the Chemotactic Step

To quicken the convergence rate and improve the quality of the final solution, a PSO operator (velocity-displacement) is incorporated into each chemotactic step. During this process, the \(i\)th bacterium is stochastically attracted to both the locally and globally best position. The former is the best previously visited position of the \(i\)th bacterium, and the latter is the best global position of the swarm located thus far. At each dimension \(d\), the \(i\)th bacterium’s velocity \(V_{\text{id}}^{\text{new}}\) and new position \(\theta_{\text{id}}^{\text{new}}\) can be updated as follows:

\[
V_{\text{id}}^{\text{new}} = \frac{w_d \cdot V_{\text{id}}^{\text{old}} + c_1 \cdot r_1 \cdot (\theta_{\text{id}}^{\text{best}} - \theta_{\text{id}}^{\text{old}} (j+1,k,l)) + c_2 \cdot r_2 \cdot (\theta_{\text{p}}^{\text{best}} - \theta_{\text{id}}^{\text{old}} (j+1,k,l))}{1 + c_1}
\]

(16)

\[
\theta_{\text{id}}^{\text{new}} (j+1,k,l) = \theta_{\text{id}}^{\text{old}} (j+1,k,l) + V_{\text{id}}^{\text{new}}
\]

(17)

where \(w_d\) is the environment-dependent inertia weight that controls the impact of the previous velocity of the bacterium on its current iteration, \(\theta_{\text{p}}^{\text{best}} = (\theta_{\text{p}}^{1}, \theta_{\text{p}}^{2}, ..., \theta_{\text{p}}^{S_{r}})\) is the best previous position discovered by the \(i\)th bacterium, and \(\theta_{\text{id}}^{\text{best}} = (\theta_{\text{id}}^{1}, \theta_{\text{id}}^{2}, ..., \theta_{\text{id}}^{S_{r}})\) indicates the global best position discovered by the entire swarm. In addition, \(c_1\) and \(c_2\) are two constants known as cognitive and social coefficients that determine the weight of \(\theta_{\text{p}}\) and \(\theta_{\text{id}}^{\text{best}}\), respectively. In addition, \(r_1\) and \(r_2\) are independently and uniformly distributed random variables with the range \((0, 1)\). The velocity of each bacterium for each dimension is clamped to a maximum magnitude \(V_{\text{max},d}\) specified by the user. If \(|V_{\text{id}}^d|\) exceeds a positive constant value, \(V_{\text{max},d}\), the velocity of the dimension is then assigned to \(\text{sign}[V_{\text{id}}^d]V_{\text{max},d}\).

C. Description of the MBFO Algorithm

The pseudo code of the MBFO algorithm can be described as follows:

1) \(J(j, k, l)\): The cost or value of the objective function for the \(i\)th bacterium in the \(j\)th chemotaxis, the \(k\)th reproduction, and the \(l\)th elimination-dispersal loop.

2) \(\theta_{\text{p}}^{\text{best}}\): The best previously visited position of the \(i\)th bacterium.

3) \(\theta_{\text{g}}^{\text{best}}\): The global best position of the swarm discovered thus far.

4) Reproduction loop: \(k = k + 1\).

5) Chemotaxis loop: \(j = j + 1\).

5.1) For \(i = 1, 2, ..., s\), execute a chemotactic step for bacterium \(i\) as follows:

5.2) Compute the value of objective function \(J_{i}(j, k, l)\) using Eq. (10).

5.3) \(J_{\text{new}} = J_{i}(j, k, l)\) is saved for a comparison with other \(J\) values because we may arrive at a better cost through a run.

5.4) Tumble: Generate a random vector \(\Delta(i)\) with each element \(\Delta_{m}(i)\), \(m = 1, 2, ..., n\), which is a random number within \([-1, 1]\).

5.5) Move: Let

\[
\Delta_{m}(i) = \theta_{i}^{j+1, k, l} = \theta_{i}^{j, k, l} + C(i) \frac{\Delta(i)}{\sqrt{\Delta^2(i)\Delta(i)}}.
\]
This results in a step of size of \(C(i) \) in the direction of the tumble for bacterium \(i \).

5.6) Compute \(J(j + 1, k, l) \).

5.7) Swim:

5.7.1) Let \(t = 0 \) (counter for the swim length).

5.7.2) While \(t < N_{c} \) (if the bacteria have not climbed down for considerably long).

5.7.2.1) Let \(t = t + 1 \).

5.7.2.2) If \(J(j + 1, k, l) > J_{best} \), then \(J_{best} = J(j + 1, k, l) \), and let

\[
\theta_{i}(j + 1,k,l) = \theta_{i}(j,k,l) + \frac{C(i)}{\sqrt{\Delta(i)\Delta(i)}}
\]

and use \(\theta_{i}(j + 1,k,l) \) to compute the new \(J(j + 1, k, l) \), similar to step 5.6.

5.7.2.3) Else, let \(t = N_{c} \).

5.7.3) Go to the next bacterium \((i + 1)\) if \(i \neq s \) (i.e., go to 5.2) to process the next bacterium.

5.8) End For

5.9) Adjust the position of the bacteria using a PSO operator.

For \(i = 1 \) To \(s \) \((i = 1, 2, ..., s)\)

5.9.1) Update \(\theta_{i} \), \(\theta_{g} \), and \(J_{now}(j,k,l) \).

5.9.2) Update the position and velocity of the \(d \)th coordinate of the \(i \)th bacterium according to Eqs. (16) and (17).

6) If \(j < N_{c} \), go to 5). In this case, continue the chemotaxis because the life of the bacteria has not yet terminated.

7) Reproduction:

7.1) For the given \(k \) and \(l \), for each \(i = 1, 2, ..., s \), compute the \(J_{i,health} \) value using Eq. (14).

7.2) Sort the bacteria in order of descending \(J_{i,health} \) values. A lower value generally means that the health of the bacterium is worse.

7.3) For the \(S \) bacteria with the lowest health values, each bacterium moves its location approaching a strong bacterium and maintains the same direction, using Eq. (15).

8) If \(k < N_{c} \), go to step 4 to start the next generation in the chemotactic loop; else, go to step 9.

9) Elimination-dispersal: For \(i = 1, 2, ..., s \) with probability \(p_{ed} \) and corresponding random number \(r_{n} \), eliminate and disperse each bacterium \(i \); this results in the number of bacteria in the population remaining constant. To do so, if \(r_{n} \leq p_{ed} \), then bacterium \(i \) is dispersed to a random location within the optimization domain; else, bacterium \(i \) remains at its original location.

10) If \(l < N_{ed} \), then go to step 3; otherwise, output the results and terminate.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Parameters} & \text{MBFO} & \text{BF} & \text{PSO} & \text{GA} & \text{HCOCLPSO} \\
\hline
\text{Number of bacteria} (s) & 20 & 20 & - & - & - \\
\text{Number of chemotactic steps} (N_{c}) & 10 & 5 & - & - & - \\
\text{Swimming length} (N_{c}) & 10 & 5 & - & - & - \\
\text{Number of reproduction steps} (N_{ed}) & 4 & 4 & - & - & - \\
\text{Number of eliminations of dispersal events} (N_{ed}) & 2 & 2 & - & - & - \\
\text{Depth of attractant} (d_{attract}) & 0.1 & 0.1 & - & - & - \\
\text{Width of attractant} (w_{attract}) & 0.2 & 0.2 & - & - & - \\
\text{Height of repellent} (h_{repellent}) & 0.15 & 0.2 & - & - & - \\
\text{Width of repellent} (w_{repellent}) & 0.1 & 0.1 & - & - & - \\
\text{Probability of elimination and dispersal} (P_{ed}) & 0.03 & - & - & - & - \\
\text{The inertia weight} (w_{inertia}) & [0.09, 0.3] & - & [0.01, 0.9] & - & [0.6, 1] \\
\text{The acceleration constant} (c_{1}, c_{2}) & 2.2 & - & 2.2 & - & - \\
\text{Particle velocity} (V) & [0, 10] & - & [0, 10] & - & - \\
\text{Number of particles} (N_{p}) & - & - & 20 & - & - \\
\text{Number of generations} (NG) & - & - & 100 & - & - \\
\text{Number of chromosomes} (N_{c}) & - & - & 50 & - & - \\
\text{Number of generations} (NG) & - & - & 200 & - & - \\
\text{Crossover probability} (P_{c}) & - & - & - & 0.6 & - \\
\text{Mutation probability} (P_{m}) & - & - & - & 0.1 & - \\
\text{Number of particles for each one-dimensional swarm} (N_{c}) & - & - & - & 20 & - \\
\text{Initialization range for the positions of the particles} (P_{i}) & - & - & - & [0, 20] & - \\
\text{Slope of inertia weight} (m_{w}) & - & - & - & 2.5 \times 10^{-5} & - \\
\text{Selection probability} (P_{s}) & - & - & - & - & 0.2 \\
\hline
\end{array}
\]

V. EXPERIMENTAL RESULTS AND PERFORMANCE COMPARISON

The performance of the proposed algorithm was evaluated by comparing its results with other popular algorithms, such as BF, PSO, GA, and HCOCLPSO\(^{[22]}\). These algorithms were implemented using Matlab 7.0 on an Intel Pentium CPU at 2.8 GHz, running Windows XP.

Four benchmark images, namely Lena, Cameraman, Peppers, and Living room, with image sizes of 512 × 512, 512 × 512, 256 × 256, and 512 × 512 pixels, respectively, were used to conduct the experiments.

The actual implementation performance during our experiments was dependent upon many free parameters. It is well known that determining the best set of such parameters is considerably difficult and nearly impossible.
Therefore, the parameters of the proposed and other comparison algorithms were selected after the test. Many different alternative values were tested, and we selected those values that provided the best computational results in terms of the optimal thresholds and corresponding computational times. The selected parameters are listed in Table I.

To evaluate our method quantitatively, we simulated different histograms describing the object and background based on different peaks. The original images and their corresponding histograms are shown in Figure 1. We compared all results of MBFO with the four heuristic algorithms (BF, PSO, GA, and HCOCLPSO) in terms of their optimal threshold values, optimal objective values, CPU time, number of evaluations, and number of iterations. Tables II and III show the optimal thresholds obtained (with \(c = 2, 3, \) and 4) and their corresponding optimal objective values, respectively. It is worth mentioning that the segmentation results for multilevel thresholding depend on the objective function to be optimized; higher values of the objective function ensures better segmentation results. From the visual values in Table III, we can see that the optimal objective values of our method in the four test images vary from 0.8918 to 1.66718 with a mean of 1.29231, which is higher than the objective values of the other four methods. This means that the optimal thresholds produced by MBFO are better than those of the other algorithms. Moreover, to compare the different algorithms, a fair time measure must be selected. Number of iterations cannot be used as a time measure because these algorithms conduct different amounts of work in their inner loops. Therefore, while the optimal objective values are found, or the maximum computation time and number of evaluations of MBFO and the other four algorithms increases significantly with the number of thresholds \((c)\) and their corresponding values that provided the best computational results were obtained and are shown in Table III. It can be seen that the computational time and number of evaluations of MBFO and the other four algorithms increases significantly with the number of thresholds \((c)\). However, it is worth noting that our method has a shorter computation time and has fewer evaluations, suggesting a faster convergence rate to the optimal objective value owing to the incorporation of a PSO operator (velocity-displacement) into each chemotactic step. The results shown in Table III indicate that MBFO significantly outperforms BF, PSO, and GA, and HCOCLPSO in terms of optimal objective values, CPU time, and number of evaluations.

Table II

<table>
<thead>
<tr>
<th>Images</th>
<th>Optimal threshold values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MBFO</td>
</tr>
<tr>
<td>Lena</td>
<td>120, 165</td>
</tr>
<tr>
<td>Cameraman</td>
<td>78, 127</td>
</tr>
<tr>
<td>Peppers</td>
<td>83, 154</td>
</tr>
<tr>
<td>Living room</td>
<td>83, 117</td>
</tr>
</tbody>
</table>

Figure 1. Test images and their corresponding histograms: (a) Lena, (b) Cameraman, (c) Peppers, and (d) Living room.
The segmentation results for MBFO, BF, PSO, GA, and HCOCLPSO are shown in Figures 2 and 3 (with $c = 3, 4$). From a visualization perspective, it is obvious that the results of MBFO are more accurate than those of the other four methods. For example, *Cameraman* is a gray-scale image, and Figure 2 (a2-e2) and Figure 3 (a2-e2) show thresholded images of three and four levels, respectively. The results show that using the proposed algorithm the cameraman and background buildings are divided into dark parts, whereas a majority of the smooth grassland and the sky is divided into gray parts. The main features of the image, such as the cameraman, the smooth grass, and the nearby buildings are well preserved. Figures 2(b2) and 3(b2), and Figures 2(c2) and 3(c2), show the results from the BF and PSO methods, respectively. Meanwhile, Figures 2(d2) and 3(d2) and Figures 2(e2) and 3(e2) are the segmentation results of GA and HCOCLPSO, respectively. These figures show that the quality of the segmented image results from applying the MBFO method is superior to that obtained through the other methods. Moreover, for all of the test images, increasing the number of thresholds increases the quality of the segmented images, i.e., the quality of segmentation improves on applying $c = 3$ from $c = 4$; it must be noted that the MBFO method demonstrates the most superior improvements in segmentation among all methods compared. In Figures 2 and 3, we can observe a better intensity contrast between the objective and background on using the MBFO and other methods. However, the MBFO method is able to expose the contours of the different objectives. Thus, it is clear that the proposed MBFO method can achieve significantly better segmentation results, as demonstrated by the higher optimal objective values in each case, when compared to the other methods.

![Figure 2](image-url)
Figure 2. Three-level threshold images obtained using (a) MBFO, (b) BF, (c) PSO, (d) GA, and (e) HCOCLPSO.

![Figure 3](image-url)
Figure 3. Four-level threshold images obtained using (a) MBFO, (b) BF, (c) PSO, (d) GA, and (e) HCOCLPSO.

<table>
<thead>
<tr>
<th>Images</th>
<th>MBFO</th>
<th>BF</th>
<th>PSO</th>
<th>GA</th>
<th>HCOCLPSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Len_a</td>
<td>0.9199</td>
<td>0.9198</td>
<td>0.9199</td>
<td>0.9199</td>
<td>0.9199</td>
</tr>
<tr>
<td>Lena</td>
<td>3.0500</td>
<td>3.0903</td>
<td>3.1305</td>
<td>2.9504</td>
<td>3.0102</td>
</tr>
<tr>
<td></td>
<td>127.44</td>
<td>139.18</td>
<td>139.18</td>
<td>139.18</td>
<td>139.18</td>
</tr>
<tr>
<td></td>
<td>1.6542</td>
<td>1.6542</td>
<td>1.6542</td>
<td>1.6542</td>
<td>1.6542</td>
</tr>
<tr>
<td></td>
<td>0.8981</td>
<td>0.8981</td>
<td>0.8981</td>
<td>0.8981</td>
<td>0.8981</td>
</tr>
<tr>
<td>Cameraman_a</td>
<td>0.9016</td>
<td>0.9016</td>
<td>0.9016</td>
<td>0.9016</td>
<td>0.9016</td>
</tr>
<tr>
<td>Cameraman</td>
<td>0.9164</td>
<td>0.9164</td>
<td>0.9164</td>
<td>0.9164</td>
<td>0.9164</td>
</tr>
<tr>
<td></td>
<td>1.0983</td>
<td>1.0983</td>
<td>1.0983</td>
<td>1.0983</td>
<td>1.0983</td>
</tr>
<tr>
<td></td>
<td>0.8918</td>
<td>0.8918</td>
<td>0.8918</td>
<td>0.8918</td>
<td>0.8918</td>
</tr>
<tr>
<td>Pepper_a</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
</tr>
<tr>
<td>Pepper</td>
<td>3.0124</td>
<td>3.0124</td>
<td>3.0124</td>
<td>3.0124</td>
<td>3.0124</td>
</tr>
<tr>
<td></td>
<td>2.7954</td>
<td>2.7954</td>
<td>2.7954</td>
<td>2.7954</td>
<td>2.7954</td>
</tr>
<tr>
<td></td>
<td>0.9017</td>
<td>0.9017</td>
<td>0.9017</td>
<td>0.9017</td>
<td>0.9017</td>
</tr>
<tr>
<td>Living room</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
</tr>
<tr>
<td></td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
</tr>
<tr>
<td></td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
</tr>
<tr>
<td></td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
<td>0.9011</td>
</tr>
</tbody>
</table>

The quality of the segmented images, i.e., the quality of applying the MBFO method is superior to that obtained. These figures show that the quality of the segmented images from applying the MBFO method is superior to that obtained through the other methods. Moreover, for all of the test images, increasing the number of thresholds increases the quality of the segmented images, i.e., the quality of segmentation improves on applying $c = 3$ from $c = 4$; it must be noted that the MBFO method demonstrates the most superior improvements in segmentation among all methods compared. In Figures 2 and 3, we can observe a better intensity contrast between the objective and background on using the MBFO and other methods. However, the MBFO method is able to expose the contours of the different objectives. Thus, it is clear that the proposed MBFO method can achieve significantly better segmentation results, as demonstrated by the higher optimal objective values in each case, when compared to the other methods.
To analyze quantitatively the differences among the different methods used, we can evaluate the stability of the evolutionary algorithms; this approach has been broadly utilized in several researches. \(^{[30,31]}\) This stability measure can be given as:

\[
std = \sqrt{\frac{\sum_{i=1}^{k} (\sigma_i - \mu)^2}{k}}
\]

(18)

Where \(std\) represents the standard deviation, \(k\) is the number of runs of each algorithm (\(k = 100\)), \(\sigma_i\) is the best objective value obtained by the \(i\)th run of the algorithm, and \(\mu\) is equal to the mean value of \(\sigma\). Note that the standard deviation of the solutions indicates the stability of the algorithms. A lower value of \(std\) indicates a better stability in the neighborhood of the optimal objective value, depicting a better quality of the corresponding thresholds, and thus a lower value for the standard deviation indicates a better stability of the method used. Conversely, a higher value of \(std\) means a worse quality of the thresholding procedure. Table IV shows a comparative study of the stability measures obtained using the five methods for the different images. It can be easily seen that the proposed MBFO obtains lower \(std\) values than other methods for each case. The results of \(std\) using MBFO vary from 0 to 3.5231e-6, while other methods fail to reach even an \(std\) value of 7.8345e-004. This implies that the results obtained using MBFO are more stable than the other methods for all test images.

VI. CONCLUSIONS

In this paper, an improved bacterial foraging (MBFO) algorithm based on multilevel thresholding was presented. To solve the image segmentation problem, we used a hybrid approach involving PSO and the BF algorithm to improve the global searching ability and convergence rate of the original BF algorithm, and achieved a significant improvement in the process of bacteria reproduction. The results for various types of images show that the proposed algorithm is considerably efficient and feasible for use in the segmentation process.

Our future work will focus on comparing the proposed algorithm with other segmentation methods. To improve the quality of the segmented images further, we will add other meta-heuristics to the proposed algorithm for testing its feasibility for use in other types of image processing applications.

ACKNOWLEDGMENT

This study was supported by the National Natural Science Foundation of China (Grant No. 61202313, 61202318), the Natural Science Foundation of Jiangxi Province of China (GJJ13637, 2013BAB211020), and the Natural Science Foundation of Fujian Province (2012D109).

REFERENCES

Kenzon Tang Kezong Tang was born in 1978. He received his M.S. degree in pattern recognition and intelligent systems from Jiangsu University of Science and Technology in 2007. Currently, he is a lecturer in School of Information Engineering, Jingdezhen Ceramic Institute. His research interests include image processing and artificial intelligence.

Zuoyong Li received the B.S. and M.S. degrees of Computer Science and Technology from Fuzhou University, Fuzhou, PR China, in 2002 and 2006. He received the Ph.D. degree from the School of Computer Science and Technology at Nanjing University of Science and Technology, Nanjing, PR China, in 2010. He is currently an associate professor in Department of Computer Science of Minjiang University, Fuzhou, China. He has published several papers in inter-national/national journals. His current research interest is image processing.

Jun Wu received the Ph.D. degree from the Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2005. He is currently an associate professor in Jingdezhen Ceramic Institute, China. He has published a number of papers in inter-national/national journals. His current research interest is image processing and analysis of ancient elements.

Tong Zhang is an undergraduate student in Jingdezhen Ceramic Institute, China. His research interest is image processing.