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Abstract—With the rapid development of integrated circuit 
design technology and the processed tasks and data volumes 
growing, MPSoC is becoming increasingly popular in a 
variety of applications. In MPSoC design, parallelism is a 
very important issue, for example, how to realize task 
parallelism and data parallelism. Focusing on this issue, this 
paper analyzes the role of DMA and presents an ILP-Based 
DMA data transmission optimization algorithm to reduce 
the pipeline time when employing multi-stage pipeline 
scheduling method to solve task parallelism and data 
parallelism. The proposed ILP model integrates task 
allocation/schedule and data transmission and thus realizes 
the optimal parallelism of data transmission and data 
processing. In addition, we divide data transmission of ILP 
model into four cases: (1) DMA0, do not use DMA to 
optimize data transmission; (2) DMA1, use DMA to 
transmit data between SPM and off-chip memory; (3) 
DMA2, use DMA to transmit data between SPM and SPM, 
SPM and off-chip memory; (4) DMA3, use DMA to transmit 
and prefetch all data. Simulation results show that the ILP 
model with DMA3 can reduce the pipeline time 17.8% 
compared with that of the ILP model with DMA0. 
 
Index Terms—MPSoC, ILP, DMA, Data Processing and 
Transmission, Parallelism 
 

I.  INTRODUCTION 

With the rapid development of integrated circuit design 
technology and the processed tasks and data volumes 
growing, MPSoC (Multi-Processor System on Chip) [1] 
is becoming increasingly popular in a variety of 
applications. In MPSoC design, parallelism is a very 
important issue, for example, how to realize task 
parallelism and data parallelism [2, 12]. 

The task parallelism is mainly to solve the task 
allocation and schedule problem in MPSoC [19]. To this 
problem, scholars have carried out extensive researches 
in the past several decades, and their algorithms can be 
divided into two classes: heuristics and deterministic 
analysis algorithm. Heuristic algorithm can gradually find 
near-optimal solution according to heuristic information 
dynamically adjusting the allocation and schedule plan, 
which is suitable for the large-scale task schedule 
problem [3, 4]. For example, the genetic algorithm is the 

typical representative of heuristics algorithm [5]. In 
contrast, deterministic analysis algorithm can find the 
optimal solution according to the problem model at the 
cost of complexity, which is suitable for small tasks 
scheduling problem. The ILP-based (Integer Linear 
Programming) algorithm is the typical representative of 
deterministic analysis algorithm [6, 8]. 

For data parallelism, due to its data transmission 
without CPU resources, DMA (Direct Memory Access) is 
widely used in various kinds of data parallel problem [7]. 
DMA can realize the concurrent execution of data 
transmission and data processing and is becoming more 
and more important for performance optimization in 
MPSoC [8, 9]. In [10], the DMA is used for the data 
transmission between SPM (Scratch pad Memory) and 
off-chip memory. In [11], a DMA-based SPDP (Scratch 
Pad Data Pipelining) technique is proposed and DMA is 
also used only for the data transmission between SPM 
and off-chip memory. 

In order to further improve system performance, 
MPSoC designers begins to consider task parallelism and 
data parallelism at the same time. In [6], an ILP-based 
data parallelism and multi-task mapping/scheduling 
technique are proposed for heterogeneous MPSoC with 
the known task graph input. Yi Wang, et al, propose a 
technique for removing inter-core communication 
overhead of streaming applications in MPSoC [13, 14]. 
Task parallelism and data parallelism are considered at 
the same time during multi-task assignment and schedule 
in [15]. Software pipelining parallelization method is 
proposed for media data processing on MPSoC in [16]. 

In this paper, focusing on the parallelism problem of 
data transmission, data processing and task allocation/ 
schedule in MPSoC design for multimedia applications, 
we propose an ILP-Based DMA data transmission 
optimization algorithm to reduce the cycle time when 
employing multi-stage pipeline schedule method to solve 
task parallelism and data parallelism. The proposed ILP 
model integrates task allocation/schedule and data 
transmission and thus realizes the optimal parallelism of 
data transmission and data processing. In addition, we 
divide data transmission of ILP model into four cases: (1) 
DMA0, do not use DMA to optimize data transmission; 
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(2) DMA1, use DMA to transmit data between SPM and 
off-chip memory; (3) DMA2, use DMA to transmit data 
between SPM and SPM, SPM and off-chip memory; (4) 
DMA3, use DMA to transmit and prefetch all data. 
Simulation results show that the ILP model with DMA3 
can reduce the pipeline time 17.8% compared with that of 
the ILP model with DMA0. 

The remainder of this paper is organized as follows. In 
Section II, we present our system models, including the 
MPSoC structure and task flow graph. In Section III, we 
firstly introduce the ideas of our method by an example 
and then give the ILP models for DMA data transmission 
optimization in MPSoC design. The experiment results 
are shown in Section IV and we conclude the paper in 
Section V. 

II.  SYSTEM MODEL 

A.  The Structure of MPSoC 
In this paper, the structure of embedded MPSoC is 

shown in fig.1. It includes processor cores, local memory 
and DMA&EMI modules. Local memory module is 
composed of SPM, which is a kind of high-speed on-chip 
memory with SRAM structure [17]. The core module is 
consisted of multiple homogeneous RISC processor cores 
and each core has a private SPM. Each core can access 
SPM of other cores through DMA. DMA&EMI module 
is responsible for the communication between the cores 
and off-chip memory. 
 

 
For MPSoC shown in fig.1, the DMA can optimize the 

system performance from three aspects: 1) using DMA to 
move data between on-chip SPM and off-chip memory; 2) 
using DMA to move data from SPM of one core to SPM 
of another core; 3) according to the characteristic of 
streaming data processing in media application, using 
DMA to prefetch data to SPM which requires these data 
further processing. The first aspect is studied more in 
existing literature and the second and third aspects are 
few studied. Therefore, we carried on detailed and 
comprehensive study on DMA role and proposed an ILP-
based DMA transmission optimization algorithm for 

MPSoC design, which integrates the above three DMA 
optimization methods and task allocation & schedule. 

B.  The Model of Task Flow Graph 
We assume that the coarse-grained TFG (Task Flow 

Graph) of media applications is known and shown as 
fig.2. Fig.2 is a directed acyclic TFG and can be 
expressed as TFG=<T, TE>. T is the node sets and 
represents the task, for example, T1 to T5 in fig.2; TE is 
the edge sets and represents the data flow relationship 
between tasks, for example, d13, d23, and etc in fig.2. We 
use the compiler and simulator to collect its specific 
information, which mainly include: ① execution time of 
each task; ② the data transmission time between tasks. 
In this paper, we only consider the on-chip data memory, 
and assume that all instructions are assigned into on-chip 
memory. 
 

 
 

III.  ILP-BASED DMA DATATRANSMISSION OPTIMIZATION 
ALGORITHM 

Because the core number of embedded MPSoC is not 
too much in current actual embedded application, we do 
not need to divide coarse-grained TFG into fine-grained 
TFG. Therefore, we use ILP-based deterministic analysis 
method to solve task allocation & schedule and DMA 
data transmission optimization. 

A.  An Example 
We use task flow graph shown in fig.2 and MPSoC 

with 4 homogeneous cores as an example to introduce the 
ideas of our method.  For coarse-grained task flow graph 
in fig.2, using ILP modeling method whose objective 
function is to minimize initiation internal time and 
constraint conditions are control and data dependencies 
between tasks, we can get a task allocation and schedule 
results as shown in fig.3 under the condition of without 
DMA transfer optimization. In fig.3, Ti is executing time 
of task i, Cij is data transmission time between task i and j, 

k
ijC means that data transmission between task i and j is 

performed by the core Pk, and the initiation internal time 
is 35k. 

In fig.3, the total time for data transmission of inter-
core is 3+2+4+6+4=19k and the longest time for data 
processing is 30k. However, the initiation internal time of 
pipeline is 35k. The reason is that the data transmission 
time of core P2 and P3 (or C34) is 6k and P3 starts its data 
processing until finishing C34. But in the actual media 
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Figure 2. Directed acyclic TFG. 
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Figure 1. Embedded MPSoC structure. 
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processing, the data is flow processing. We can start 
DMA after partial data are calculated. By this way, we 
can realize data processing and data transmission of inter-
core in parallel. For example, C34 in fig.3 can be divided 
into two transmissions C34-1 and C34-2 as shown in fig.4. 
After this optimization, all data transmission of inter-core 
is hidden by DMA, thus the initiation internal time of 
pipeline is 30k which is the longest time for data 
processing. Therefore, the performance of fig.4 is 
upgraded 16.7% than that of fig.3. 

 

 
 

 

 
 

B.  The Objective Function 
Assuming that the media application is made up of N 

tasks (T1, T2, …, TN) and is executed on MPSoC with M 
processor cores (P1, P2, …, PM). We employ multi-stage 
pipeline scheduling method to solve task parallelism and 
data parallelism. The cycle time of pipeline, which also is 

called as initiation internal (II) time, is decided by the 
maximum running time in each pipeline. In addition, we 
assume that the pipeline length is equal to the number of 
processors. The objective function of our ILP model is as 
follows: 

MkPTMaxMinIIMin K ,,2,1}){(}{ ==    (1) 

In (1), PTk represents the time produced by processor 
Pk to finish the tasks and data transmission, and it can be 
expressed by the following expression: 

NjMki

CommTimeTimePT
ki

ki
PT

jk
kj

,...,2,1;,...,2,1,

,

==

+= ∑∑
≠∈              (2) 

Timej is the processing time of task Tj which is assigned 
into Pk and CommTimei,k is the data communication time 
between Pi and Pk. 
 

C.  Modeling Data Communication of Inter-Cores 
CommTimei,k in (2) can be expressed as the sum of data 

communication time of tasks: 

NnmMki

CTimeCommTime
knim PTPT

nmki

,...,2,1,;,...,2,1,

,
,,

==

= ∑
∈∈       (3)  

In (3), CTimem,n is data communication time between 
task Tm and Tn. If task Tm and Tn have no data dependency, 
or they are assigned into the same processor, CTimem,n is 
0. In this paper, CTimem,n  can be expressed as following 
four models: 

(1) Do not use DMA to optimize data transmission 
(Briefly as DMA0) 
In this case, we assume that MPSoC has no DMA and 

each core cannot directly access the private SPM of other 
cores. CTimem,n can be expressed as following: 

( ){ }∑
→∈

×+×=
nmTDS

OMOMSpmnm DelayDSDSCTime 20 ,   (4)   

In (4), DealyOM is access delay time of off-chip 
memory and DS represents the communication data of 
task Tm and Tn which includes DSSPM and DSOM. DSSPM 
represents the data in SPM, DSOM represents the data in 
off-chip memory and DS = DSSPM + DSOM. Since each 
core cannot directly access the private SPM of other cores, 
DSSPM must firstly be saved to off-memory in Tm and then 
be loaded into the private SPM in Tn. Therefore, DSSPM  
need to access twice off-chip memory and DSOM need to 
access once off-chip memory. Here, we assume that 
DealyOM =50. 

(2) Using DMA to transmit data between SPM and off-
chip memory (Briefly as DMA1) 
In this case, we assume that MPSoC has DMA and 

DMA is only used for data transmission between SPM 
and off-chip memory. CTimem,n can be expressed as 
following: 
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Figure 4. Task allocation and scheduling after DMA optimization. 
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Figure 3. Task allocation and scheduling before DMA optimization. 
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nmTDS
dmaOMspminit
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DelayDSDSDMA
CTime

22
1 ,   (5) 

DMAinit represents the time of initializing DMA and 
Delaydma represents the time of transmitting a word by 
DMA. Since DMA is only used to transmit data between 
SPM and off-chip memory, we need initialize DMA 
twice: one is to transmit DSSPM to off-chip memory, and 
the other is to transmit all data, DS, to private SPM of 
another core. Here, we assume that DMAinit =100 and 
Delaydma=10. 

(3) Using DMA to transmit all data (Briefly as DMA2) 
In this case, DMA is used for all data transmission 

including on-chip & on-chip data transmission and on-
chip & off-chip data transmission. Therefore, DSSPM can 
be directly transmitted to another SPM by DMA and 
CTimem,n can be expressed as following: 

{ }∑
→∈

×+×=
nmTDS

dmainitnm DelayDSDMACTime 22 ,
    (6) 

(4) Using DMA to transmit and prefetch data (Briefly as 
DMA3) 
In this case, DMA is not only used for all data 

transmission but also used for data prefetching. Data 
prefetching technique is a very useful technique for 
shortening the data communication time between cores, 
for example, C34-1 and C34-2 in fig.4 are data prefetching. 
In order to model the situation of data prefetching, we 
introduce a variable P to represent the ratio of DS whose 
transmission time can be hidden by DMA prefetching. 
Because data prefetching can realize the perfect 
parallelism between data transfer and data processing, the 
remaining data, which may affect pipeline time, are (1-
P)*DS. CTimem,n can be expressed as following: 

( ){ }∑
→∈

××−+×=
nmTDS

dmainitnm DelayDSPDMACTime 123 ,   (7) 

Obviously, P=0 means that there has no data 
prefetching, and P=1 means that all data can be 
prefetched. In practical applications, P values should be 
in [0, 1]. 

 

D.  Constraints 
In order to correctly perform a task and transmit data, 

we also must ensure the dependency of tasks. 
Firstly, for any pairs of task Tm and Tn, which have 

data dependency, we must ensure the following constraint 
condition:  

mm,n EndTaskStartComm ≥                              (8) 

nmnmm,nm,n CTimeXStartCommEndComm ,, *+≥   (9) 

nmn EndCommStartTask ,≥                           (10) 

StartCommm,n and EndCommm,n is the start time and 
end time of data transmission between task Tm and Tn; 

StartTaskn is the start time of task Tn and EndTaskm is the 
end time of task Tm; Xm,n is an indicative variable which 
equals 1 when task Tm and Tn are assigned into different 
processors and equals 0 when task Tm and Tn are assigned 
into the same processor. 

Secondly, we need to ensure that any pairs of tasks 
which are assigned to the same processor cannot overlap. 
We can use the following constraint condition: 

( )
( ) 0≤−×

−
nm

mn

EndTaskStartTask
EndTaskStartTask

               (11) 

Thirdly, we need to ensure that any pairs of data 
transmission cannot overlap. We can use the following 
constraint condition: 

( )
( ) 0,','

',',

≤−×
−

nmnm

nmnm

EndCommStartComm
EndCommStartComm        (12) 

At last, for any task Tm, its end time and its start time 
must satisfy the following constraint condition (13) and 
all variables must be non-negative. 

mmm TimeStartTaskEndTask +≥             (13) 

0, ≥mm EndTaskStartTask                 (14) 

0, ≥m,nm,n StartCommEndComm           (15) 

IV.  EXPERIMENTAL RESULTS 

A.  Test Programs 
We have chose three test programs, which are lame 

(Version 3.70), cjpeg (Version 6a), mpeg2enc (Version 
1.2), to evaluate our algorithm. Program lame is chose 
from an embedded benchmark set called MiBench [18] 
and it is a MP3 encoding program. Program cjpeg and 
mpeg2enc are chose from multimedia benchmark set 
called MediaBench [19]. Cjpeg is JPEG encoding 
program and mpeg2enc is MPEG-2 video coding 
program. These three test programs are practical 
multimedia applications and their characteristic 
information are shown in table 1. In addition, we have 
modified SimpleScalar3.0 simulator to support a 
homogeneous dual-core MPSoC which is our objective 
MPSoC.  

 
B.  Experimental Results 

The initiation internals of pipeline with different DMA 
modes are shown in fig.5. In fig.5, DMA0 indicates that 
DMA is not used in MPSoC, DMA1 represents that 
DMA is only used for data transmission between on-chip 

TABLE 
THE CHARACTERISTIC INFORMATION OF MULTIMEDIA APPLICATIONS 

Multimedia applications lame cjpeg mpeg2enc
Coarse-grained task 

number 5 4 6 

Original input data size 
(Bytes) 26504 101970 380160 
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and off-chip memory, DMA2 adds inter-core DMA data 
transmission (on-chip and on-chip memory) on the basis 
of  DMA1, DMA3 adds DMA data prefetching  on the 
basis of DMA2 and  we assume that P = 0.8. 

From fig.5 we can conclude that, after using the DMA 
optimization technique, the initiation internals of lame, 
cjpeg and mpeg2enc can be decreased for all SPM size. 
In fig.5, SPM size is the total SPM capacity of MPSoC 
and the private SPM of each core has the same size. 
DMA1 has an average 9% performance improvement 
compared with DMA0, DMA2 has an average 2% 
performance improvement compared with DMA1, 
DMA3 has an average 6% performance improvement 
compared with DMA2, and the total performance 
improvement of DMA3 is about 17.8% compared with 
DMA0. Therefore, it is very suitable for multimedia 
applications to employ DMA to optimize inter-core data 
transmission in MPSoC. 
 

 
In addition, we use cjpeg program as an example to 

test the performance of our algorithm under different 

input data size. After using DMA to optimize inter-core 
data transmission, the performance improvement ratio of 
cjpeg benchmark under different input data size is shown 
in fig.6 compared with DMA0 which does not use DMA. 
From fig.6, we can find the performance of all DMA 
optimization modes for cjpeg benchmark can improve 
with the increase of input data size, and with the increase 
of input data, the performance improvement ratio is slow 
down. Therefore, in a fixed application, by optimizing 
data transmission to optimize the performance of the 
system, there will be an upper limit values. Similarly, for 
the lame and mpeg2enc test bench, the results are similar 
to cjpeg. 

 

 
 

V.  CONCLUSION 

For the parallelism problem of data processing and 
data transmission in MPSoC, we propose an ILP-based 
optimization algorithm, which integrates task assignment 
& schedule and DMA data transmission optimization. 
The experimental results show that DMA1 has an average 
9% performance improvement compared with DMA0, 
DMA2 has an average 2% performance improvement 
compared with DMA1, DMA3 has an average 6% 
performance improvement compared with DMA2, and 
the total performance improvement of DMA3 is about 
17.8% compared with DMA0. Therefore, the algorithm is 
very suitable for MPSoC with multimedia application. 
The future work is combination of DMA data prefetching 
technique and on-chip and off-chip data allocation 
algorithm, to further optimize the performance of our 
proposed algorithm. 
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