

An ILP-based DMA Data Transmission
Optimization Algorithm for MPSoC

Yingbiao Yao

Hangzhou Dianzi University/School of Communication Engineering, Hangzhou, China
Email: yaoyb@hdu.edu.cn

Guangpei Zhao, Xuan Wang

Hangzhou Dianzi University/School of Communication Engineering, Hangzhou, China
Email: {664395483, 738915687}@qq.com

Abstract—With the rapid development of integrated circuit
design technology and the processed tasks and data volumes
growing, MPSoC is becoming increasingly popular in a
variety of applications. In MPSoC design, parallelism is a
very important issue, for example, how to realize task
parallelism and data parallelism. Focusing on this issue, this
paper analyzes the role of DMA and presents an ILP-Based
DMA data transmission optimization algorithm to reduce
the pipeline time when employing multi-stage pipeline
scheduling method to solve task parallelism and data
parallelism. The proposed ILP model integrates task
allocation/schedule and data transmission and thus realizes
the optimal parallelism of data transmission and data
processing. In addition, we divide data transmission of ILP
model into four cases: (1) DMA0, do not use DMA to
optimize data transmission; (2) DMA1, use DMA to
transmit data between SPM and off-chip memory; (3)
DMA2, use DMA to transmit data between SPM and SPM,
SPM and off-chip memory; (4) DMA3, use DMA to transmit
and prefetch all data. Simulation results show that the ILP
model with DMA3 can reduce the pipeline time 17.8%
compared with that of the ILP model with DMA0.

Index Terms—MPSoC, ILP, DMA, Data Processing and
Transmission, Parallelism

I. INTRODUCTION

With the rapid development of integrated circuit design
technology and the processed tasks and data volumes
growing, MPSoC (Multi-Processor System on Chip) [1]
is becoming increasingly popular in a variety of
applications. In MPSoC design, parallelism is a very
important issue, for example, how to realize task
parallelism and data parallelism [2, 12].

The task parallelism is mainly to solve the task
allocation and schedule problem in MPSoC [19]. To this
problem, scholars have carried out extensive researches
in the past several decades, and their algorithms can be
divided into two classes: heuristics and deterministic
analysis algorithm. Heuristic algorithm can gradually find
near-optimal solution according to heuristic information
dynamically adjusting the allocation and schedule plan,
which is suitable for the large-scale task schedule
problem [3, 4]. For example, the genetic algorithm is the

typical representative of heuristics algorithm [5]. In
contrast, deterministic analysis algorithm can find the
optimal solution according to the problem model at the
cost of complexity, which is suitable for small tasks
scheduling problem. The ILP-based (Integer Linear
Programming) algorithm is the typical representative of
deterministic analysis algorithm [6, 8].

For data parallelism, due to its data transmission
without CPU resources, DMA (Direct Memory Access) is
widely used in various kinds of data parallel problem [7].
DMA can realize the concurrent execution of data
transmission and data processing and is becoming more
and more important for performance optimization in
MPSoC [8, 9]. In [10], the DMA is used for the data
transmission between SPM (Scratch pad Memory) and
off-chip memory. In [11], a DMA-based SPDP (Scratch
Pad Data Pipelining) technique is proposed and DMA is
also used only for the data transmission between SPM
and off-chip memory.

In order to further improve system performance,
MPSoC designers begins to consider task parallelism and
data parallelism at the same time. In [6], an ILP-based
data parallelism and multi-task mapping/scheduling
technique are proposed for heterogeneous MPSoC with
the known task graph input. Yi Wang, et al, propose a
technique for removing inter-core communication
overhead of streaming applications in MPSoC [13, 14].
Task parallelism and data parallelism are considered at
the same time during multi-task assignment and schedule
in [15]. Software pipelining parallelization method is
proposed for media data processing on MPSoC in [16].

In this paper, focusing on the parallelism problem of
data transmission, data processing and task allocation/
schedule in MPSoC design for multimedia applications,
we propose an ILP-Based DMA data transmission
optimization algorithm to reduce the cycle time when
employing multi-stage pipeline schedule method to solve
task parallelism and data parallelism. The proposed ILP
model integrates task allocation/schedule and data
transmission and thus realizes the optimal parallelism of
data transmission and data processing. In addition, we
divide data transmission of ILP model into four cases: (1)
DMA0, do not use DMA to optimize data transmission;

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2461

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.10.2461-2466

(2) DMA1, use DMA to transmit data between SPM and
off-chip memory; (3) DMA2, use DMA to transmit data
between SPM and SPM, SPM and off-chip memory; (4)
DMA3, use DMA to transmit and prefetch all data.
Simulation results show that the ILP model with DMA3
can reduce the pipeline time 17.8% compared with that of
the ILP model with DMA0.

The remainder of this paper is organized as follows. In
Section II, we present our system models, including the
MPSoC structure and task flow graph. In Section III, we
firstly introduce the ideas of our method by an example
and then give the ILP models for DMA data transmission
optimization in MPSoC design. The experiment results
are shown in Section IV and we conclude the paper in
Section V.

II. SYSTEM MODEL

A. The Structure of MPSoC
In this paper, the structure of embedded MPSoC is

shown in fig.1. It includes processor cores, local memory
and DMA&EMI modules. Local memory module is
composed of SPM, which is a kind of high-speed on-chip
memory with SRAM structure [17]. The core module is
consisted of multiple homogeneous RISC processor cores
and each core has a private SPM. Each core can access
SPM of other cores through DMA. DMA&EMI module
is responsible for the communication between the cores
and off-chip memory.

For MPSoC shown in fig.1, the DMA can optimize the

system performance from three aspects: 1) using DMA to
move data between on-chip SPM and off-chip memory; 2)
using DMA to move data from SPM of one core to SPM
of another core; 3) according to the characteristic of
streaming data processing in media application, using
DMA to prefetch data to SPM which requires these data
further processing. The first aspect is studied more in
existing literature and the second and third aspects are
few studied. Therefore, we carried on detailed and
comprehensive study on DMA role and proposed an ILP-
based DMA transmission optimization algorithm for

MPSoC design, which integrates the above three DMA
optimization methods and task allocation & schedule.

B. The Model of Task Flow Graph
We assume that the coarse-grained TFG (Task Flow

Graph) of media applications is known and shown as
fig.2. Fig.2 is a directed acyclic TFG and can be
expressed as TFG=<T, TE>. T is the node sets and
represents the task, for example, T1 to T5 in fig.2; TE is
the edge sets and represents the data flow relationship
between tasks, for example, d13, d23, and etc in fig.2. We
use the compiler and simulator to collect its specific
information, which mainly include: ① execution time of
each task; ② the data transmission time between tasks.
In this paper, we only consider the on-chip data memory,
and assume that all instructions are assigned into on-chip
memory.

III. ILP-BASED DMA DATATRANSMISSION OPTIMIZATION
ALGORITHM

Because the core number of embedded MPSoC is not
too much in current actual embedded application, we do
not need to divide coarse-grained TFG into fine-grained
TFG. Therefore, we use ILP-based deterministic analysis
method to solve task allocation & schedule and DMA
data transmission optimization.

A. An Example
We use task flow graph shown in fig.2 and MPSoC

with 4 homogeneous cores as an example to introduce the
ideas of our method. For coarse-grained task flow graph
in fig.2, using ILP modeling method whose objective
function is to minimize initiation internal time and
constraint conditions are control and data dependencies
between tasks, we can get a task allocation and schedule
results as shown in fig.3 under the condition of without
DMA transfer optimization. In fig.3, Ti is executing time
of task i, Cij is data transmission time between task i and j,

k
ijC means that data transmission between task i and j is

performed by the core Pk, and the initiation internal time
is 35k.

In fig.3, the total time for data transmission of inter-
core is 3+2+4+6+4=19k and the longest time for data
processing is 30k. However, the initiation internal time of
pipeline is 35k. The reason is that the data transmission
time of core P2 and P3 (or C34) is 6k and P3 starts its data
processing until finishing C34. But in the actual media

)7(1 KT

1d

)14(2 KT

2d

)30(4 KT)24(5 KT

)29(3 KT

3d

4d
5d

)3(14 Kd

)4(45 Kd)2(13 Kd

)6(34 Kd
)4(23 Kd

Figure 2. Directed acyclic TFG.

Off-Chip Memory

DMA&EMI(External Memory Interface)

MPSoC Architecture

Core 1 Core 2 Core n

Local Memory Local Memory Local Memory

1SPM nSPM2SPM

Figure 1. Embedded MPSoC structure.

2462 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

processing, the data is flow processing. We can start
DMA after partial data are calculated. By this way, we
can realize data processing and data transmission of inter-
core in parallel. For example, C34 in fig.3 can be divided
into two transmissions C34-1 and C34-2 as shown in fig.4.
After this optimization, all data transmission of inter-core
is hidden by DMA, thus the initiation internal time of
pipeline is 30k which is the longest time for data
processing. Therefore, the performance of fig.4 is
upgraded 16.7% than that of fig.3.

B. The Objective Function
Assuming that the media application is made up of N

tasks (T1, T2, …, TN) and is executed on MPSoC with M
processor cores (P1, P2, …, PM). We employ multi-stage
pipeline scheduling method to solve task parallelism and
data parallelism. The cycle time of pipeline, which also is

called as initiation internal (II) time, is decided by the
maximum running time in each pipeline. In addition, we
assume that the pipeline length is equal to the number of
processors. The objective function of our ILP model is as
follows:

MkPTMaxMinIIMin K ,,2,1}){(}{ == (1)

In (1), PTk represents the time produced by processor
Pk to finish the tasks and data transmission, and it can be
expressed by the following expression:

NjMki

CommTimeTimePT
ki

ki
PT

jk
kj

,...,2,1;,...,2,1,

,

==

+= ∑∑
≠∈ (2)

Timej is the processing time of task Tj which is assigned
into Pk and CommTimei,k is the data communication time
between Pi and Pk.

C. Modeling Data Communication of Inter-Cores
CommTimei,k in (2) can be expressed as the sum of data

communication time of tasks:

NnmMki

CTimeCommTime
knim PTPT

nmki

,...,2,1,;,...,2,1,

,
,,

==

= ∑
∈∈ (3)

In (3), CTimem,n is data communication time between
task Tm and Tn. If task Tm and Tn have no data dependency,
or they are assigned into the same processor, CTimem,n is
0. In this paper, CTimem,n can be expressed as following
four models:

(1) Do not use DMA to optimize data transmission
(Briefly as DMA0)
In this case, we assume that MPSoC has no DMA and

each core cannot directly access the private SPM of other
cores. CTimem,n can be expressed as following:

(){ }∑
→∈

×+×=
nmTDS

OMOMSpmnm DelayDSDSCTime 20 , (4)

In (4), DealyOM is access delay time of off-chip
memory and DS represents the communication data of
task Tm and Tn which includes DSSPM and DSOM. DSSPM
represents the data in SPM, DSOM represents the data in
off-chip memory and DS = DSSPM + DSOM. Since each
core cannot directly access the private SPM of other cores,
DSSPM must firstly be saved to off-memory in Tm and then
be loaded into the private SPM in Tn. Therefore, DSSPM
need to access twice off-chip memory and DSOM need to
access once off-chip memory. Here, we assume that
DealyOM =50.

(2) Using DMA to transmit data between SPM and off-
chip memory (Briefly as DMA1)
In this case, we assume that MPSoC has DMA and

DMA is only used for data transmission between SPM
and off-chip memory. CTimem,n can be expressed as
following:

1T

3T

4T

5T

13C 14C 23C

134−C

45C

1P

2P

4P

3P

2T

234−C

4
45C 1

13C 1
14C

1
23C 2

234−C2
134−C

Figure 4. Task allocation and scheduling after DMA optimization.

4
45C 1

13C 1
14C 1

23C 2
34C

1T

3T

4T

5T

13C 14C 23C

34C

45C

1P

2P

4P

3P

2T

Figure 3. Task allocation and scheduling before DMA optimization.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2463

© 2014 ACADEMY PUBLISHER

(){ }∑
→∈

×+×+×
=

nmTDS
dmaOMspminit

nm

DelayDSDSDMA
CTime

22
1 , (5)

DMAinit represents the time of initializing DMA and
Delaydma represents the time of transmitting a word by
DMA. Since DMA is only used to transmit data between
SPM and off-chip memory, we need initialize DMA
twice: one is to transmit DSSPM to off-chip memory, and
the other is to transmit all data, DS, to private SPM of
another core. Here, we assume that DMAinit =100 and
Delaydma=10.

(3) Using DMA to transmit all data (Briefly as DMA2)
In this case, DMA is used for all data transmission

including on-chip & on-chip data transmission and on-
chip & off-chip data transmission. Therefore, DSSPM can
be directly transmitted to another SPM by DMA and
CTimem,n can be expressed as following:

{ }∑
→∈

×+×=
nmTDS

dmainitnm DelayDSDMACTime 22 ,
 (6)

(4) Using DMA to transmit and prefetch data (Briefly as
DMA3)
In this case, DMA is not only used for all data

transmission but also used for data prefetching. Data
prefetching technique is a very useful technique for
shortening the data communication time between cores,
for example, C34-1 and C34-2 in fig.4 are data prefetching.
In order to model the situation of data prefetching, we
introduce a variable P to represent the ratio of DS whose
transmission time can be hidden by DMA prefetching.
Because data prefetching can realize the perfect
parallelism between data transfer and data processing, the
remaining data, which may affect pipeline time, are (1-
P)*DS. CTimem,n can be expressed as following:

(){ }∑
→∈

××−+×=
nmTDS

dmainitnm DelayDSPDMACTime 123 , (7)

Obviously, P=0 means that there has no data
prefetching, and P=1 means that all data can be
prefetched. In practical applications, P values should be
in [0, 1].

D. Constraints
In order to correctly perform a task and transmit data,

we also must ensure the dependency of tasks.
Firstly, for any pairs of task Tm and Tn, which have

data dependency, we must ensure the following constraint
condition:

mm,n EndTaskStartComm ≥ (8)

nmnmm,nm,n CTimeXStartCommEndComm ,, *+≥ (9)

nmn EndCommStartTask ,≥ (10)

StartCommm,n and EndCommm,n is the start time and
end time of data transmission between task Tm and Tn;

StartTaskn is the start time of task Tn and EndTaskm is the
end time of task Tm; Xm,n is an indicative variable which
equals 1 when task Tm and Tn are assigned into different
processors and equals 0 when task Tm and Tn are assigned
into the same processor.

Secondly, we need to ensure that any pairs of tasks
which are assigned to the same processor cannot overlap.
We can use the following constraint condition:

()
() 0≤−×

−
nm

mn

EndTaskStartTask
EndTaskStartTask

 (11)

Thirdly, we need to ensure that any pairs of data
transmission cannot overlap. We can use the following
constraint condition:

()
() 0,','

',',

≤−×
−

nmnm

nmnm

EndCommStartComm
EndCommStartComm (12)

At last, for any task Tm, its end time and its start time
must satisfy the following constraint condition (13) and
all variables must be non-negative.

mmm TimeStartTaskEndTask +≥ (13)

0, ≥mm EndTaskStartTask (14)

0, ≥m,nm,n StartCommEndComm (15)

IV. EXPERIMENTAL RESULTS

A. Test Programs
We have chose three test programs, which are lame

(Version 3.70), cjpeg (Version 6a), mpeg2enc (Version
1.2), to evaluate our algorithm. Program lame is chose
from an embedded benchmark set called MiBench [18]
and it is a MP3 encoding program. Program cjpeg and
mpeg2enc are chose from multimedia benchmark set
called MediaBench [19]. Cjpeg is JPEG encoding
program and mpeg2enc is MPEG-2 video coding
program. These three test programs are practical
multimedia applications and their characteristic
information are shown in table 1. In addition, we have
modified SimpleScalar3.0 simulator to support a
homogeneous dual-core MPSoC which is our objective
MPSoC.

B. Experimental Results

The initiation internals of pipeline with different DMA
modes are shown in fig.5. In fig.5, DMA0 indicates that
DMA is not used in MPSoC, DMA1 represents that
DMA is only used for data transmission between on-chip

TABLE
THE CHARACTERISTIC INFORMATION OF MULTIMEDIA APPLICATIONS

Multimedia applications lame cjpeg mpeg2enc
Coarse-grained task

number 5 4 6

Original input data size
(Bytes) 26504 101970 380160

2464 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

and off-chip memory, DMA2 adds inter-core DMA data
transmission (on-chip and on-chip memory) on the basis
of DMA1, DMA3 adds DMA data prefetching on the
basis of DMA2 and we assume that P = 0.8.

From fig.5 we can conclude that, after using the DMA
optimization technique, the initiation internals of lame,
cjpeg and mpeg2enc can be decreased for all SPM size.
In fig.5, SPM size is the total SPM capacity of MPSoC
and the private SPM of each core has the same size.
DMA1 has an average 9% performance improvement
compared with DMA0, DMA2 has an average 2%
performance improvement compared with DMA1,
DMA3 has an average 6% performance improvement
compared with DMA2, and the total performance
improvement of DMA3 is about 17.8% compared with
DMA0. Therefore, it is very suitable for multimedia
applications to employ DMA to optimize inter-core data
transmission in MPSoC.

In addition, we use cjpeg program as an example to

test the performance of our algorithm under different

input data size. After using DMA to optimize inter-core
data transmission, the performance improvement ratio of
cjpeg benchmark under different input data size is shown
in fig.6 compared with DMA0 which does not use DMA.
From fig.6, we can find the performance of all DMA
optimization modes for cjpeg benchmark can improve
with the increase of input data size, and with the increase
of input data, the performance improvement ratio is slow
down. Therefore, in a fixed application, by optimizing
data transmission to optimize the performance of the
system, there will be an upper limit values. Similarly, for
the lame and mpeg2enc test bench, the results are similar
to cjpeg.

V. CONCLUSION

For the parallelism problem of data processing and
data transmission in MPSoC, we propose an ILP-based
optimization algorithm, which integrates task assignment
& schedule and DMA data transmission optimization.
The experimental results show that DMA1 has an average
9% performance improvement compared with DMA0,
DMA2 has an average 2% performance improvement
compared with DMA1, DMA3 has an average 6%
performance improvement compared with DMA2, and
the total performance improvement of DMA3 is about
17.8% compared with DMA0. Therefore, the algorithm is
very suitable for MPSoC with multimedia application.
The future work is combination of DMA data prefetching
technique and on-chip and off-chip data allocation
algorithm, to further optimize the performance of our
proposed algorithm.

ACKNOWLEDGMENT

This work was supported in part by a grant from the
National Natural Science Fund No. 61100044 (China).

(a) lame

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

8k 16k 32k 64k

SPM size (Bytes)

I
I
（

c
y
c
l
e
s
）

DMA0

DMA1
DMA2

DMA3

(b) cjpeg

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

8k 16k 32k 64k

SPM size (Bytes)

I
I
（

c
y
c
l
e
s
）

DMA0

DMA1
DMA2

DMA3

(c) mpeg2enc

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

8k 16k 32k 64k

SPM size (Bytes)

I
I
（

c
y
c
l
e
s
）

DMA0

DMA1

DMA2
DMA3

Figure 5. The simulation results with different DMA mode

Input data size (bytes), SPM=16K, P=0.8

Figure 6. The performance improvement with different input data size.

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t (

%
)

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2465

© 2014 ACADEMY PUBLISHER

REFERENCES
[1] Wolf W, Atlanta GA, Jerraya A.A, Martin G, “Multi-

processor System-on-Chip (MPSoC) Technology,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 27, No. 10, pp. 1701-1713,
2008.

[2] A. Jerraya, H. Tenhunen, and W. Wolf, “Introduction:
Multiprocessor Systems-on-Chips,” Computer, vol. 38, no.
7, pp. 36-40, July 2005.

[3] G. Wang et al., “Design space exploration using time and
resource duality with the ant colony optimization,” in
Proceedings of the 43rd Annual ACM/IEEE Design
Automation Conference, New York: ACM Press, pp. 451-
454, 2006.

[4] M. Damavandpeyma et al., “Hybrid Code-Data Prefetch-
Aware Multiprocessor Task Graph Scheduling,” in
Proceedings of 14th Euro micro Conference on Digital
System Design, Washington D C: IEEE Computer Society
Press, pp. 583 -590, 2011.

[5] Reakook Hwang, Mitsuo Genb, Hiroshi Katayama, “A
comparison of multiprocessor task scheduling algorithms
with communication costs,” Computers & Operations
Research, Vol.35, No. 2, pp. 976 – 993, 2008.

[6] Hoeseok Yang, Soonhoi Ha, “ILP based data parallel
multi-task mapping/scheduling technique for MPSoC,” in
Proceedings of International SoC Design Conference,
Washington D C: IEEE Computer Society Press, pp. 134-
137, 2008.

[7] Selma Saidi, Pranav Tendulkar, Thierry Lepley, Oded
Maler, “Optimal 2D Data Partitioning for DMA Transfers
on MPSoCs,” 2012 15th Euromicro Conference on Digital
System Design, pp. 584-591, 2012.

[8] Suhendra V, Raghavan C, Mitra T, “Integrated scratchpad
memory optimization and task scheduling for MPSoC
architectures,” in Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for
embedded systems, New York: ACM Press, pp. 401-409,
2006.

[9] S. Udayakumaran, A. Dominguez, R. Barua, “Dynamic
allocation for scratch-pad memory using compile-time
decisions,” ACM Transactions on Embedded Computing
Systems (TECS), Vol. 5, No. 2, pp. 472–511, 2006.

[10] L. Li, L. Gao, J. Xue, “Memory coloring: A compiler
approach for scratchpad memory management,” In
Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques
(PACT), Washington D C: IEEE Computer Society Press,
pp. 329–338, 2005.

[11] Yanqin Y, Meng W, Zili S, and Minyi G, “Dynamic
scratch-pad memory management with data pipelining for
embedded systems,” 2009 International Conference on
Computational Science and Engineering. Washington D C:
IEEE Computer Society Press, pp. 358-365, 2009.

[12] Peng Zhao, Dawei Wang, Ming Yan, Sikun Li, “Parallel
Processing of Sequential Media Algorithms on
Heterogeneous Multi-Processor System-on-Chip”, Journal
of Computers, Vol. 4, No. 6, pp. 477-484, June, 2013.

[13] Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao,
“Optimal Task Scheduling by Removing Inter-Core
Communication Overhead for Streaming Applications on
MPSoC,” 16th IEEE Real-time and Embedded Technology
and Applications Symposium, pp. 195-204, 2010.

[14] Yi Wang, Zili Shao, Henry C. B. Chan, et al, “Memory-
aware task scheduling with communication overhead
minimization for streaming applications on bus-based
multiprocessor system-on-chips,” IEEE Transactions On
Parallel And Distributed Systems, No. 99, pp. 1-11, 2013.

[15] C. Q. Xu, C. J. Xue, B. C. Hu, and E. H. M. Sha,
“Computation and data transfer co-scheduling for
interconnection bus minimization,” in Proceedings of the
2009 Asia and South Pacific Design Automation
Conference (ASP-DAC ’09) , pp. 311–316, 2009.

[16] Hoeseok Yang, Soonhoi Ha, “Pipelined Data Parallel Task
Mapping/Scheduling Technique for MPSoC,” Design,
Automation & Test in Europe Conference & Exhibition
(DATE). Washington D C: IEEE Computer Society Press,
pp.69-74, 2009.

[17] R. Banakar et al., “Scratchpad memory: Design alternative
for Cache On-chip memory in embedded systems,” in
Proceedings of the 10th International Symposium on
Hardware/Software Codesign (CODES), New York: ACM
Press, pp. 73–78, 2002.

[18] Guthaus M.R, Michigan Univ, Ann Arbor, et al, “MiBench:
A free, commercially representative embedded benchmark
suite,” 2001 IEEE International Workshop on Workload
Characterization, pp. 3-14, 2001.

[19] Chunho Lee, Miodrag Potkonjak, William H. Mangione-
Smith, “MediaBench: a tool for evaluating and
synthesizing multimedia and communication systems,”
Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, Washington, DC, USA,
pp. 330-335, 1997.

[20] Honglei Han, Wenju Liu, Wu Jigang, Guiyuan Jiang,
“Efficient Algorithm for Hardware/Software Partitioning
and Scheduling on MPSoC”, Journal of Computers, Vol. 8,
No. 1, pp. 61-68, January, 2013.

2466 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

