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Abstract—Internet worms have drawn a significant 
attention owing to their enormous threats to the Internet 
infrastructure and services. In order to effectively defend 
against them, this paper proposes a novel epidemic SEIQRS 
model with graded infection rates for Internet worms. Using 
this SEIQRS model, we obtain the basic reproduction 
number for determining whether the worm dies out 
completely. The global stabilities of worm-free equilibrium 
and endemic equilibrium are proved, and determined by the 
basic reproduction number. The impact of different 
parameters of this model is studied. Simulation results show 
that the number of susceptible and infected hosts are 
consistent with theoretical analysis. The model provides a 
theoretical foundation for control and forecasting for 
Internet worms. 
 
Index Terms—network security, Internet worm, stability 
analysis, endemic equilibrium, basic reproduction number 
 

I.  INTRODUCTION 

Internet worms are malicious codes or programs which 
can replicate themselves and spread via Internet. 
Numerous worms have appeared on the Internet over the 
last decade whose goal is to compromise the 
confidentiality, integrity, and availability of infected 
computing systems. With the ever increasing number of 
Internet applications and the emergence of new 
technologies, Internet worms have become a great threat 
to our work and daily life, caused tremendous economic 
losses. Especially, the advent of the Internet of things 
would make the threat increasingly serious. How to 
combat Internet worms effectively is an urgent issue 
confronted with defenders. Therefore, it is necessary to 
comprehend the long-term behavior of worms and to 
propose effective strategies to defend against Internet 

worms. The similarity between the spread of biological 
viruses and that of Internet worms encourages researchers 
to adopt appropriately modifying epidemic models to 
describing the propagation of worms across the Internet. 

Based on the infectivity between a worm and a 
biological virus, some epidemic models representing 
worm propagations were presented to depict the 
propagation of worms, e.g., SIR model [1], SIRS model 
[2], [3], SIQ model [4],  SEIR model [5], SEIRS model [6], 
[7], SEIQV model [8], SEIQRS model [9], which assume 
that infected hosts in which the worm resides are in an 
exposed state can not infect other hosts. Actually, an 
infected host which is in latency can infect other hosts by 
means of some methods, e.g., vulnerability seeking. All 
the previous models do not take this passive infectivity 
into consideration. Recently, Yang et al. proposed some 
models [10], [11], [12], by taking into account the fact 
that a host immediately possesses infectivity once it is 
infected. These models, however, all make an assumption 
that exposed hosts and infected hosts have the same 
infectivity. This is not consistent with the reality. 
Although an exposed host also sends scanning packets to 
find susceptive hosts with certain vulnerabilities, the 
scanning packets sent by an exposed host are less than an 
infected one. Usually, the infection rate of exposed hosts 
is less than that of infected ones. Therefore, they should 
have a different infection rate. 

Due to the frequent occurrence of worms over the 
Internet in the last decade, users usually install some 
antivirus softwares or firewalls to protect their hosts 
avoiding. Once a user feels that the performance of his 
host is degraded or there exists some useless data in disks 
(e.g., Witty can do it), he will clean worms by the means 
of antivirus softwares. In order to protect his important 
files, the user spontaneously cleans worms even if he is 
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Figure 1.  The states and state transitions in SEIQRS model. 

not sure the existence of worms in his host. Additionally, 
an infected host often represents more obvious 
characteristics than an exposed host, the user could take 
some more effective measurements, e.g., patching, 
dynamic instruction sequences [13]. Therefore, the cured 
rate of exposed hosts would be lower than that of infected 
ones. The feature should be considered when modeling 
Internet worms. 

In this paper, we propose a new worm attack model, 
referred to as SEIQRS (susceptible - exposed - infected - 
quarantined - recovered - susceptible) model, which 
incorporates the two features mentioned above. Using the 
basic reproduction number, we derive global stabilities of 
a worm-free equilibrium and a unique endemic 
equilibrium by a Lyapunov function and a geometric 
approach. Based on these results and further analysis, 
some effective methods for controlling worms are 
recommended.  

The rest of this paper is organized as follows. Section 
II formulates the new model and obtains its basic 
reproduction number. Section III proves the local and 
global stabilities of the worm-free equilibrium. Section 
IV examines the local and stabilities of the endemic 
equilibrium. Section V covers the numerical analysis and 
the simulations. Section VI summarizes the paper with 
some future directions. 

II.  MATHEMATICAL MODEL FOMULATION 

The total host population N is partitioned into five 
groups and any host can potential be in any of these 
groups at any time t: the susceptible, exposed, infectious, 
quarantined, recovered, with sizes denoted by S, E, I, Q, 
R, respectively. The total number of population N at time 
t is given by )()()()()()( tRtQtItEtStN ++++= . The 
dynamical transfer is depicted in the following figure. 

Our model is based on the following assumptions: (1) 
Initially, all hosts are vulnerable to attack. These 
quarantined hosts, without considering the quarantine 
time, will move to the recovered state or susceptible state 
after installing the required security patches or updates. (2) 
All hosts in the recovered state only have a temporary 
immunity, because after the run of anti-virus software as 

soon as we surf Internet or use secondary devices, they 
again become susceptible to malicious objects attack. (3) 
Exposed hosts have a lower infection rate than infected 
ones. 

Fig. 1 shows the five states and state transition in 
SEIQRS. Based on the compartment model presented Fig. 
1, the SEIQRS model having infectious force in the 
exposed, infected period is described by the following 
system of differential equations: 
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where Π  is a constant recruitment of susceptible hosts. 
1β , 2β  are the rates of the efficient contact in the latent, 

infected period, respectively. The positive parameter μ  
is the rate of natural death, 1α , 2α  are non-negative 
constant and denote the rates of worm-caused death, and 

21 αα < . The parameter γ  is the transfer rate between 
the recovered and the susceptible. θ  denotes the transfer 
rate between the quarantined and the susceptible. 2δ , ω  
are the transfer rates between the exposed and the 
recovered, between the exposed and the infectious, 
respectively. The parameter p denotes the quarantined 

rate. 1
1
−δ  is the average cured time. The parameter η  

denotes the transfer rate between the quarantined and the 
recovered. 

Summing the equations of the system (1), we obtain 
.)(' 21 IENtN ααμ −−−Π=                                      (2) 

Therefore, the total population N  may vary with time 
t . In the absence of disease, the total population size 

)(tN  converges to the equilibrium μ/Π . It follows from 
Equation (2) that μ/)(inflim Π≤∞→ tNt . We thus study 
our system (1) in the following feasible region: 

},/:),,,,{( 5 μΠ≤++++∈=Ω + VQIESRVQIES  
which is a positively invariant set of the model (1). We 
next consider the dynamic behavior on Ω . 

Firstly, we obtain the basic reproduction number by the 
method of next generation matrix [15]. It is easy to see 
that the model (1) always has a worm-free 
equilibrium, )0,0,0,0,/(0 μΠ=P . Let TSQRIEx ),,,,(= , 
then the model (1) can be written as )()(/ xVxFdtdx −= , 
where 
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Differentiating )(xF  and )(xV  with respect to E, I, R, 
Q, S, and evaluating at the worm-free equilibrium 

)0,0,0,0,/(0 μΠ=P , respectively, we have 
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 where ωδαμ +++= 21n , 21)1( αδμ ++−+= ppm . 
 Thus, the spectral radius of the next generation matrix 

1−FV  can be found as, 
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=−                                        (3) 

According to Theorem 2 [14], the basic reproduction 
number of model (1) is  

)./()( 210 mnmR μωββ +Π=  

III.  THE WORM-FREE EQUILIBRIUM AND ITS STABILITY 

It is easily obtained that the model has a worm-free 
equilibrium given by )0,0,0,0,/(0 μΠ=P . 

Lemma 1: When 10 <R , the worm-free equilibrium 

0P  is locally asymptotically stable in Ω . When 10 >R , 
the worm-free equilibrium 0P  is an unstable saddle point. 

Proof: The Jacobian matrices of the model (1) at 0P  is  

.
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 Obviously, )( 0PJ  has three negative 
eigenvalues μλ −=1 , )(2 θμηλ ++−= , and 

)(3 γμλ +−= , the other eigenvalues of )( 0PJ  are 
determined by the following equation 

.0/)()/( 211
2 =Π+−+Π−++ μωββλμβλ mmnnm      (4) 

When 10 <R , then μωββ /)( 21 Π+> mmn . For 
μωββ /)( 21 Π+> mmn , we can easily obtain 

)/(/ 21 mmnm μωβμβ Π+Π+>+ , therefore 
0// 21 >Π+>Π−+ μβμβ mnm , which means the Eq. 

(4) has two negative roots. Therefore, the worm-free 
equilibrium 0P  is locally asymptotically stable.  

When 10 >R , then, which means the Eq. (4) has a 
positive root and a negative root. Therefore, the worm-
free equilibrium 0P  is unstable saddle point.                   

Lemma 2: When 10 ≤R , the worm-free equilibrium 

0P  is globally asymptotically stable in Ω . When 10 >R , 
all solutions starting in Ω  and sufficiently close to 0P  
move away from 0P . 

Proof: Consider the following Lyapunov function: 
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 Its derivative along the solutions to the model (1) is 
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Furthermore, 0'=L  if and only if 0== IE  or 10 =R . 

Thus, the largest compact invariant set in 
}0'|),,,,{( =LRQIES  is the singleton }{ 0P . When 

10 ≤R , the global stability of 0P  follows from LaSalle's 
invariance principle [15]. LaSalle's invariance principle 
[15] implies that 0P  is globally asymptotically stable. 
When 10 >R , it follows from the fact 0'>L  if 0>E  
and 0>I .  

IV.  THE ENDEMIC EQUILIBRIUM AND ITS STABILITY 

The endemic equilibrium *)*,*,*,*,(* RQIESP of the 
model (1) is determined by equations 
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where θημ ++=l . 
By a simple computation, we obtain 
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Substituting Eq. (6) into the second equation of the 
system (5), N  satisfies the following equation:  

,0))(( =−Π NNF μ   
where,  

,)]([)( 2121 γωααμμ AmmnAmnNNF +−−=  
where ))(( 21121 ωββωαα +−−Π= mmmnA , 
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  For 10 >R , 0)()0( 21 <+−= γωαμ AmnAF  and 

)1()()/( 0212 −+−=Π RmnAmF γωααμμ , thus )(NF  
is monotone increasing and 0)/( >Π μF . Within the 
interval )/,0( μΠ , )(NF  has only a positive root. That 
is, the model (1) has a unique endemic equilibrium 

),,,,( ****** VQIESP , where ***** ,,,, RQIES  are 
determined by (6). 

Lemma 3: When 10 >R , the endemic equilibrium *P  
is locally asymptotically stable in Ω . 

Proof: Replacing S  with RQIEN −−−−  in the 
model (1), we obtain 
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The Jacobian matrices of the model (7) at 
),,,,( ****** NVQIEP  is 

,

00
0)()1(
000
000

)(

21

12

21

*

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−
+−−

−
−

−−−−−

=

μαα
γμηδδ

ω
ββ

p
lp

m
bbbbBnbB

PJ    (8)   

where  )/( 21 ωββ += mmnB , IEb 21 ββ += .  

Its characteristic equation is 0))(det( * =− PJIλ , 
where I  is the unit matrix. Therefore, 
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By a direct calculation, we obtain that 0321 >−CCC . 
According to the theorem of Routh-Hurwitz, the endemic 
equilibrium *P  is locally asymptotically stable. 

For the model (7), we consider global stability of the 
endemic equilibrium *P  when 021 == αα . Since 

μ/)(inflim Π≤∞→ tNt , the model (9) is a four-
dimensional asymptotically autonomous differential 
system with the limit system 
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Next, we apply the geometrical approach [16] to 
investigate the global stability of the endemic equilibrium 

*P  in the region Ω .    
Theorem 1: Consider the following systems [16]: 

)(' xfx = , Ω∈x .  
If the following conditions are satisfied: (1) The 

system ( ∗ ) exists a compact absorbing set Ω⊂K  and 
has a unique equilibrium *P  in Ω ; (2) *P  is locally 
asymptotically stable; (3) The system  ( ∗ ) satisfies a 
Poincaré-Bendixson criterion; (4) A periodic orbit of the 
system ( ∗ ) is asymptotically orbitally stable, then the 
only equilibrium *P is the globally asymptotically stable 
in Ω . 

Lemma 4: If 10 >R , the unique positive equilibrium 
*P  of model (9) is globally asymptotically stable in Ω . 
Proof: We only need to prove that all assumptions of 

Theorem 1 hold. 
If 10 >R , then 0P  is unstable according to Lemma 1. 

Moreover, the behaviour of the local dynamics near the 
region 0P  described in Lemma 1 implies that model (9) 
is uniformly persistent in the region Ω . That is, there 
exists a constant 0>c , such that any solution ),(( tE  

),(tI  ),(tQ ))(tR  of model (9) with initial value ),0((E  
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This can be proved by applying a uniform persistent 
result in [17] and by the use of a similar argument as in 
the proof [18]. The uniform persistence of system (9) in 
the bounded set Ω  is equivalent to the existence of a 
compact Ω⊂K  that is absorbing for system (9). In 
Section III, during the process of obtaining the endemic 
equilibrium *P , we can know that *P  is the unique 
equilibrium in the interval )/,0( μΠ . Assumption (1) 
holds. 

According to Lemma3, we know that the endemic 
equilibrium *P  is locally asymptotically stable in the 
region Ω . Assumption (2) holds. 

The Jacobian matrix of model (9) is denoted by 
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Choosing the matrix H  as }1,1,1,1{ −= diagH , it is 
easy to prove that HJH  has non-positive off-diagonal 
elements, thus we can obtain that system (9) is 
competitive. This verifies the assumption (3). 

The second compound matrix )( *]2[ PJ  of )( *PJ  [19] 
can be calculated as follows: 
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 where,  
)( 11 SmnbD β−++−= ,  

)( 12 SlnbD β−++−= ,  
)( 13 SnbD β−+−= , 

 )(4 lmD +−= ,  
)(5 γμ ++−= mD ,  
)(6 γμ ++−= lD . 

The second compound system of the model (9) in a 
periodic solution can be represented by the following 
differential equations: 
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Next, we will prove that the system (11) is 
asymptotically stable.  

We consider the following Lyapunov function: 
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By the use of the uniform persistence, we obtain that 
the orbit of ))(),(),(),(()( tVtQtItEtP = remains a 
positive distance from the boundary of Ω , thus we know 
that there exists a constant c  satisfying 
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For the differential equations in Eq. (11), we can obtain 
the following differential inequalities by direct 
calculations: 
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  From the previous formula, we can obtain 
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From the model (1), we can obtain 
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Therefore, 
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We find μ−≤ EEtgtg /')}(),(sup{ 21 ,  

and thus 

0|)(ln)}(),(sup{
0 021 <−=−≤∫ μξμξ
ξ ξtEdttgtg ,  

which implies that 0))(),(),(),(),(),(( →tUtMtLtZtYtX , 
as ∞→t . Thus, the second compound system (11) is 
asymptotically stable. This verifies the assumption (4). 

We verify all the assumptions of Theorem 1. Therefore, 
*P  is globally asymptotically stable in Ω . 

V.  NUMERICAL SIMULATIONS 

In order to simulate the real behavior of the spread of a 
worm, the parameters in the experiments are practical 
values for when worms break out in our real life. We 
choose the Slammer as basic behavior of a worm in this 
experiment. Slammer worm is chosen because, despite its 
simplicity, it still holds the world record of fastest-spread 
worm [20]. To obtain the spread of worms in a large-
scale network, 750,000 hosts are selected as the 
population size. According to the real conditions of the 
Slammer worm, its average scan rate is 000,4=s per 
second. Slammer worm's infection rate can then be 
computed as 732

2 103.92/ −×== sβ , 7
2 109 −×=β . At 

the beginning, the number of susceptible, exposed, 
infected, quarantined and recovered hosts are 

000,50)0( =S , 0)0( =E , 000,700)0( =I , 0)0( =Q , 
0)0( =R , respectively. 

Other parameters in these simulations are given as 
follows: 75=Π , 0001.0=μ , 3.0=γ , 3.0=θ , 

0001.01 =α , 0002.02 =α , 8.01 =δ , 7.02 =δ , 1.0=ω , 
4.0=p , 5.0=η , where 197.00 <=R . We change some 

parameters about the reproduction number 0R  to obtain 
different 0R , e.g., ω . When 6.0=ω , 190.00 <=R . 
The worm will gradually disappear according to Lemma 
1 and 2. Fig. 2 illustrates the number of susceptible and 
infected hosts when 0R  is 0.97 and 0.90, respectively. 
From Fig. 2, we can clearly see that the tendency of the 
worm propagation is depressive, which is consistent with 
Lemma 1 and 2. Finally, all infected hosts vanish and the 
population, in the long term, is in a susceptible state. In 
order to effectively defend against such worms, we must 
adopt some feasible methods to decrease the infection 
rate [21], [22], improve the accuracy of intrusion 
detection systems [23], or increase the following 

2424 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER



 

 

 
Figure 3. Globally asymptotically stable endemic equilibrium. 

 

Figure 4. Effect of the quarantined rate on infected hosts. 

      
Figure 2. Globally asymptotically stable worm-free equilibrium. 

parameters (e.g., the transfer rates between the exposed 
and the recovered, between the exposed and the 
infectious) to guarantee the basic reproduction number 

10 <R . 

In the second experiment, the number of susceptible, 
exposed, infected, quarantined and recovered hosts are 

,990,749)0( =S ,0)0( =E ,10)0( =I 0)0( =Q , 
,0)0( =R  respectively. When ,2.02 =δ  ,1.0=ω we can 

obtain 159.20 >=R . For ,2.02 =δ  
,9.0=ω .128.10 >=R  Other parameters do not vary. 

We can see the results in Fig. 3. As can be seen from Fig. 
3, the number of susceptible and infected hosts eventually 
become positive values between 0 and μ/Π . The worm 
does not disappear. This is fully consistent with the 
conclusions of Lemma 3 and 4. In this experiment, the 
basic reproduction number 0R  has not an obvious effect 
on the number of infected hosts, however, significantly 
affects the number of susceptible hosts. The larger the 
basic reproduction number is, the more the number of 
susceptible hosts become. 

With other parameters remaining the same, the 
quarantined rate p is set to different value each time in 
order to state that the number of infected hosts is affected 
by every different value of the quarantined rate. Fig. 4 
shows the effect of changing the quarantined rate (which 
vary between 0.1 and 0.9) on worm propagations. As 
expected, a larger quarantined rate results in diminishing 
the worm propagation speed, prolonging the time at 
which infected population reaches its peak, more 
importantly, lowering the total number of infected hosts. 
Quarantined rate p relies mainly on the accuracy and 
detection speed of intrusion detection algorithms. Some 
methods have been proposed on to reach the goal, e.g., a 
pulse quarantine strategy [4], an orchestration approach 
[24]. 

VI.  CONCLUSION 

This paper presented a mathematical model describing 
the dynamical behavior of a SEIQRS epidemic model 
with graded infection rates for Internet worms. Firstly, by 
the method of next generation matrix, we give the basic 
reproduction number determining whether the worm 
extinguishes. Secondly, the global asymptotic stabilities 
of our model have proved by the use of the Lyapunov 
function and a geometric approach. When the basic 
reproduction number is less than or equal to 1, the 
proposed model has only a worm-free equilibrium which 
is globally stable, it implies the worm dies out eventually; 
when the basic reproduction number is larger than 1, our 
model has a unique endemic equilibrium which is 
globally stable, it implies that the worm persists in the 
whole host population and tends to a steady state. Finally, 
some numerical examples are given to verify our 
conclusions. Our future work will expand this model 
which can characterize more features of Internet worms, 
e.g., taking delay or impulse into consideration. 
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