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Abstract—Shuffled leap frog algorithm (SFLA) is a new 
nature-inspired intelligent algorithm, which uses the whole 
update and evaluation strategy on solutions. For solving 
multi-dimension function optimization problems, this 
strategy will deteriorate the convergence speed and the 
quality of solution of algorithm due to interference 
phenomena among dimensions. To overcome this shortage, 
a dimension by dimension improvement based on SFLA is 
proposed. The proposed strategy  combines an updated 
value of one dimension with values of other dimensions into 
a new solution, and that whose updated value can improve 
the solution will be accepted greedily. Further, a new 
individual update formula is designed to learn experiences 
both from the global best and the local best solution 
simultaneously. Meanwhile, they also reveal the modified 
algorithm is competitive for continuous function 
optimization problems compared with other improved 
algorithms.  
 
Index Terms—shuffled leap frog algorithm, dimension by 
dimension, multi-dimensional function optimization 
 

I.  INTRODUCTION 

Shuffled frog-leaping algorithm (SFLA) is a stochastic 
population based optimization algorithm, first published 
by Eusuff and Lansey in 2003[1]. In SFLA, frogs are 
seen as hosts for memes and described as a memetic 
vectors. Each meme consists of a number of memotypes. 
The monotype represents an idea in a manner similar to a 
gene representing a trait of a chromosome in genetic 
algorithm (GA). Based on this abstract model, SFLA 
draws on a local search, the idea of competitiveness and 
mixing information from parallel local searches to move 
toward the global best solution. 

Since its first publication, a large body of research has 
been done to study of the applications of SFLA ，
involving the  industrial system optimization and control, 
data mining, radio technology, bioinformatics and soft 
computing[2-7]  etc.  

To improve the performance of SFLA, many studies 
concentrated on a better understanding of the local update 
formula, the control parameters and the grouping strategy. 
Ref.[2] introduced a new search-acceleration parameter 
into the update formula.  Bhaduri[8] used a modified 

clonal selection  and mutation for the best frogs in each 
population. Zhen et al. [9] proposed a new grouping 
strategy and made all the frogs participate in the 
evolvement by keeping the inertia learning behaviors and 
learning from better ones selected randomly. Li et al.[10] 
improved the leaping rule by extending the leaping step 
size and adding a leaping inertia component to account 
for social behavior. They also introduced the extremal 
optimization into SFLA to enhance the local search 
ability. Luo and Chen[11] studied the trajectory and 
convergence of SFLA, deduced a conclusion that SFLA 
is global convergent. Their also presented a mutation 
selection of EO-SFLA to expand the search space. 
Zhao[12] added an mutation idea in Differential 
Evolution(DE) algorithm to disturb updating strategy 
locally. In order to accelerate the convergence, Ding et al. 
[13] proposed a quantum frog-leaping co-evolution and 
designed a dynamic multi-cluster frog structure. In view 
of overcoming the slow searching speed in the late 
evolution and local minimum, the ideas of simulated 
annealing(SA) and immune vaccination were involved by 
Zhang et al. [14]with Gaussian mutation and chaotic 
disturbance.  

From the above studies it can be concluded that the 
local search strategy is very important in SFLA, the 
appropriate strategy may improve its performance 
remarkably. Therefore, a more sophisticated 
neighborhood search space is necessary. In order to 
improve the ability of intensification, this paper presents 
new algorithm with a dimension by dimension 
improvement. In the progress of local search, the worst 
frogs in the submemeplexes are updated and evaluated 
dimension by dimension, and then accepted greedily. The 
individual update equation is redesigned to absorb good 
information from the optimal individual within the 
submemeplex and the global best one concurrently, 
which contributes to the acceleration of convergence. 

The remainder of the paper is organized as following: 
Section 2 provides a short description of SFLA. Section 3 
discusses the problem arises from all dimensions 
simultaneously update, and then presents the SFLA 
framework with dynamic leap dimension and iterative 
improvement strategy. Section 4 gives the experimental 

2352 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.10.2352-2358



 

approach and results, which were carried on typical 
benchmark function optimization problems. Finally, 
section 5 summaries the study. 

II. SHUFFLED FROG-LEAPING ALGORITHM 

SFLA involves a population of possible solutions 
arranged according to the fitness, which is divided into 
several memeplexes. Each memeplex symbolizes a 
collection of frogs with different memes (ideas), performs 
simultaneously an independent local search, and moves 
towards the best solution in the memeplex and the 
population one. All memeplexes are periodically shuffled 
and reorganized to exchange the evolutionary information. 
Local exploration and global shuffling alternate until a 
pre-defined convergence criterion is satisfied. 

Suppose the search space is D-dimensional, then the i-
th frog of the swarm can be represented by a D-
dimensional vector, Xi=(xi1,xi2,…xiD). The frogs are sorted 
in a descending order according to their fitness. The 
whole population is divided into m memeplexes, each 
comprising n frogs. (i.e. P=m*n, P is the size of the 
population). Each memeplex is constructed according to 
the following equations:  

{ | , 1,2,... } 1,2,...( 1)
k k kY X X X i n k mk m ii i= = = =+ −    (1) 

where Yk means the k-th memeplexes. 
To avoid the local optimum, a subset of the memeplex 

called a submemeplex is considered. The submemeplex 
selection strategy facilitates the frogs that have higher 
performance values into the submemeplex with higher 
weight. The weights are assigned with a triangular 
probability distribution according to (2): 

                      2( 1 )
( 1)j

n jp
n n

+ −=
+

                           (2) 

where pj is the j-th frog in the memeplex. 
Within each memeplex, the frog with the worst fitness 

in the submemeplex is identified as Xw, the best one as Xb. 
Then the step S and new position of Xw are manipulated 
according to the following two equations: 

        ()*( )b wS rand X X= −                                (3) 

       ' max maxX Xw S S S Sw = + − ≤ ≤                   (4) 

where rand() is a uniform random number between 0 and 
1; Xw’ is the new position. Smax is the maximum allowed 
change in a frogs’ position. If this process produces a 
better solution, Xw is replaced by Xw’. Otherwise the 
calculation is repeated with respect to the global best frog 
Xg. If there is still no improvement, a feasible solution to 
replace Xw is randomly generated. After a specific 
number of memetic evolution time loops, the 
memeplexes are shuffled to enhance the exchange of 
global information. The main parameters of the SFLA are: 
number of frogs P, number of memeplexes m, number of 
iterations within each memeplex N and the maximum 
leaping size Smax. 

III. SFLA WITH ADAPTIVE LEAP DIMENSION 

The local exploitation makes the worst frog 
substantially influenced by the local or global best 
position, with the maximum step size controlling the fine 
degree of search. The fitness will be recalculated only 
when all dimensions of the worst frog have been updated. 
In this way, the entire individual (all dimensions) is an 
independent evaluation unit, completely ignores the 
excellent partial dimensions in the update process, scilicet, 
the part of dimensions of an individual which may be 
closer to the global optimum. If the overall fitness was 
worse than the original one, this part of the information 
would be discarded, and the frog would move to the next 
round of modification until re-randomized generation. On 
the other hand, even the new fitness is better than the old 
one, some dimensions may be degraded. It is accepted 
just for the improvement of the overall fitness. 

During the memetic evolution within each memeplex, 
Xw first learns the idea from the best frog within the 
memeplex. If the evolution produces a benefit, Xw is 
replaced with a new individual. Otherwise the process is 
repeated with the global best frog. If it still does not 
produce a better result, Xw is replaced with a random 
individual Xr. In this manner, the effective information 
from Xb and Xg cannot be learned simultaneously. Further, 
if Xw has not been successfully updated by Xb and Xg, 
which means the number of function evaluations times 
(FEs) is wasted. If we update Xw with Xb and Xg at one 
step like the speed update equation in PSO (Clerc, 1999), 
we may make full use of the good information both from 
Xb and Xg, and save the function evaluation times. 
Inspired by the idea of PSO algorithm, we design the step 
size S generation equation in our compositive learning 
strategy as follows: 

1 1 2 2( ( ) ( ))b w g wS k c r X X c r X X= − + −         (5) 

2
1 22 2 4 , , 4k where c cφ φ φ φ φ= − − − = + >  (6) 

where c1, c2 are two positive constants, called cognitive 
and social parameter respectively in PSO. 

Here we use their control the submemeplex and the 
global factor.  The constriction factor k is a function of c1  
and c1 as reflected in (6).  r1, r1 are random numbers, 
uniformly distributed in [0, 1]. In this way, Xw can be 
updated through tracking Xb and Xg simultaneously. 
Randomly generator is retained where there is no 
improvement during above procedure.  

Algorithm 1 is the framework of improvement SFLA 
algorithm updated with dimension by dimension denoted 
as SFLA-D. Xwnew is used to store the updated position 
within each iteration. Xw j-D and X wnew j-D is the original 
individual and the new one’s  D-th dimension. 
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Figure 1.  The Framework of SFLA-D 

IV. SIMULATION 

There different experiments to access the performance 
of SFLA-D using the test suite described in Table 1. The 
test suite consists of 10 unconstrained single-objective 
benchmark functions with different characteristics. 
According to their properties, these functions are divided 
into three groups: unimodal problems, unrotated 
multimodal problems, rotated multimodal problems[15]. 
Although the Rosenbrock’s function is listed in the first 
group, it also can be treated as a multimodel function at 
high-dimensional problems[16]. 

The function error value is used to evaluate the 
performance of the algorithms. With a solution X, the 
function error value is defined as: 

          *Error Value ( ) ( )f X f X= −                  (7) 

where X* is the global optimum of the function.  

We follow the parameter settings investigated by 
ELBELTAGI et al.[17]. Population size P=200, the 
number of memeplexes m =20, the number of local 
iterations N = 10. The frogs in each submemeplex are 8. 
Smax is set to 0.4. The maximum number of fitness 
evaluations that allowed for each algorithm to minimize 
the error set 10000*D, where D is the dimension of the 
problem. Each function is processed for 30 times 

The focus of the study is to compare the performance 
of the proposed SFLA-D with the original SFLA in 
different experiments. The performance of SFLA-D 
comparing with other modified SFLAs also present. 

A.  Performance Evaluation 
We compared the SFLA-D and SFLA at dimension 

D=30 and the results are presented in Table 2 and Table 3 
with two performance evaluation criteria. Table 2 were 
the results of the minimum function error value can be 
found, recorded in each run and the average and standard 
deviation(SD) of the error values were calculated. Table 3 
were the results of the number of function evaluations 
(FEs) required to reach an error value less than the 
accuracy level ε listed in table 1. The average and SD of 
the number of evaluations were calculated.  

From table 2 we can see, for all kinds of test function, 
SFLA-D is better than SFLA both with the average and 
SD of the error values.  In addition to f2 and f6, SFLA-D 
is far superior to SFLA on all functions. Especially on f4 
and f5, SFLA-D can always find the global optimal 
solution within the fixed FEs in 30 runs. And for all 
functions expect for f2 and f6, SFLA-D reached the target 
accuracy level successfully using fewer fitness evaluation. 

TABLE 1 
PERFORMANCES OF COMPARE OF SFLA AND SFLA-D FOR MEAN 

ERROR VALUES  ACHIEVED (D=30) 

SFLA SFLA-D 

f1 3.36E-06±3.76E-06 2.54E-57±1.05E-56 

f2 1.69E+02±9.85E+01 2.95E+01±1.79E+01 

f3 3.55E-02±1.70E-01 2.33E-14±2.75E-15 

f4 3.90E-02±3.75E-02 0.00E+00±0.00E+00 

f5 1.20E+01±4.71E+00 0.00E+00±0.00E+00 

f6 6.33E+03±5.34E+02 1.18E+01±3.61E+01 

f7 3.46E-03±1.89E-02 1.57E-32±8.35E-48 

f8 1.47E-03±3.80E-03 1.35E-32±5.57E-48 

f9 3.82E+03±6.56E+02 5.87E-14±1.82E-14 

f10 1.27E+02±1.65E+01 7.05E+00±8.42E+00 

 
TABLE 2 

PERFORMANCES OF COMPARE OF SFLA AND SFLA-D FOR MEAN 
NUMBER OF FES TO ACHIEVE THE ERROR VALUES (D=30) 

SFLA SFLA-D 

f1 2.92E+05±1.07E+04(50) 4.86E+04±1.97E+03(100) 

f2 3.00E+05±0.00E+00(0) 3.00E+05±0.00E+00(0) 

f3 3.00E+05±0.00E+00(0) 7.20E+04±2.57E+03(100) 

f4 2.97E+05±1.06E+04(10) 8.99E+04±1.84E+04(100) 

f5 3.00E+05±0.00E+00(0) 8.19E+04±1.16E+04(100) 

f6 3.00E+05±0.00E+00(0) 3.00E+05±0.00E+00(0) 

f7 2.42E+05±3.19E+04(93.3) 3.54E+04±1.91E+03(100) 

f8 2.52E+05±3.31E+04(86.7) 4.03E+04±2.08E+03(100) 

f9 3.00E+05±0.00E+00(0) 2.99E+04±1.50E+03(100) 

f10 2.99E+05±6.50E+01(100) 2.35E+05±8.27E+04(100) 

 

Initialize parameter P, m, n, Smax 
While (End condition is not met) 

Sort P in descending order 
Partition P into m memeplexes 
For each memeplex T 

Repeat the following operation N times 
    Select the submemeplex, Xw and Xb 

For each dimension  
                 Calculate position Xwnew using (4)  

If f(Xwnew)<f(Xw) 
                        xw j-D=xwnew j-D 

End IF 
                End For  
           If (No Improved) 
               Generate a new Xw randomly 

Sort T in descending order 
End Repeat 

End For 
Update Xg 

End while 
Return Xg 
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B.  Scalability Study 
In order to study the effect of dimension on the 

performance of SFLA-D, a scalability study compared 
with the original SFLA was presented. Since f9 and f10 
are defined up to D=50 dimension, we studied them at 
D=50 dimension. Other functions were studied at 
D=50,100 and 200 dimension. We set the same 
parameters mentioned above. From table 3 we can see 
SFLA-D is still maintain a good performance, not 
declined with the increasing dimension. Especially for f5, 
it still converges to the global optimal solution even on 
D=200. f4 can converge to the global optimal on D=50 
and D=100. Other functions can also converge to an ideal 
solution. 

TABLE 3 
PERFORMANCES OF COMPARE OF SFLA AND SFLA-D WITH DIFFERENT 

DIMENSIONS 

  SFLA SFLA-D 

D=50 

f1 4.21E-06±5.49E-06 2.28E-55±1.23E-54 

f2 3.04E+02±2.59E+02 5.61E+01±2.27E+01 

f3 5.21E-01±5.88E-01 4.83E-14±3.33E-15 

f4 2.79E-02±2.60E-02 0.00E+00±0.00E+00 

f5 1.84E+01±5.57E+00 0.00E+00±0.00E+00 

f6 1.15E+04±6.98E+02 3.55E+01±5.52E+01 

f7 2.78E-05±1.46E-04 9.42E-33±2.78E-48 

f8 2.05E-03±4.23E-03 1.35E-32±5.57E-48 

f9 3.05E+03±3.88E+02 4.07E-09±1.58E-08 

f10 1.57E+02±1.63E+01 5.51E+00±9.52E+00 

D=100 

f1 7.26E-06±7.18E-06 7.42E-59±2.22E-58 

f2 4.46E+02±1.49E+02 9.66E+01±1.37E+01 

f3 2.02E+00±3.63E-01 9.49E-14±8.22E-15 

f4 2.55E-02±3.23E-02 0.00E+00±0.00E+00 

f5 2.98E+01±8.67E+00 0.00E+00±0.00E+00 

f6 2.46E+04±9.06E+02 1.58E+01±5.14E+01 

f7 3.13E-03±9.83E-03 4.71E-33±1.39E-48 

f8 4.41E-03±5.68E-03 1.35E-32±5.57E-48 

D=200 

f1 4.46E-06±2.42E-06 1.56E-58±4.10E-58 

f2 9.13E+02±1.62E+02 1.95E+02±1.49E+01 

f3 2.98E+00±2.52E-01 2.08E-13±3.30E-14 

f4 4.45E-03±6.23E-03 1.11E-16±0.00E+00 

f5 4.24E+01±1.40E+01 0.00E+00±0.00E+00 

f6 5.44E+04±2.16E+03 2.55E-03±0.00E+00 

f7 1.11E-05±5.93E-06 2.36E-33±0.00E+00 

f8 4.97E+00±4.50E+00 1.35E-32±2.88E-48 

 

C.  Comparison with Other SFLAs 
Table 4 shows the comparison with three other 

improved SFLA introduced in section I. The first 
algorithm [2] adds an accelerated factor denoted as 
MSFLA. The second one [9] proposed a new group and 
update strategy, we denote as ISFLA. The three one [12] 

gets into DE disturbance denoted as SFLADE. The same 
parameters set to all algorithms expect for the specific 
parameters in separate.  

From table 4 we can see SFLA-D reached smaller error 
values on f6 and f10, reached the global minimum on f4 
and f5 with ISFLA, reached the same error values on f7 
and f8 with MSFLA. On f1, SFLA-I reached the global 
minimum, SFLA-M was better than SFLA-D too. In f2, 
SFLA-M is best in terms of error value, SFLAI is the best 
in SD. In f3, SFLAI is the best. And In f9, SFLA-D is 
only worse than MSFLA with SD. Overall, SFLA-D get 
the better performance on most of the unrotated 
multimodal functions and rotated multimodal functions. 

TABLE 4 
PERFORMANCES COMPARISON WITH OTHER IMPROVED SFLAS 

SFLA-D MSFLA 

f1 2.54E-57±1.05E-56 1.07E-143±2.78E-143 

f2 2.95E+01±1.79E+01 1.52E+01±1.55E+01 

f3 2.33E-14±2.75E-15 7.55E-15±1.62E-15 

f4 0.00E+00±0.00E+00 3.94E-03±6.95E-03 

f5 0.00E+00±0.00E+00 2.02E+01±4.37E+00 

f6 1.18E+01±3.61E+01 5.26E+03±7.20E+02 

f7 1.57E-32±8.35E-48 1.57E-32±8.35E-48 

f8 1.35E-32±5.57E-48 1.35E-32±5.57E-48 

f9 5.87E-14±1.82E-14 5.12E-14±1.73E-14 

f10 7.05E+00±8.42E+00 1.02E+02±1.71E+01 

  

 ISFLA SFLADE 

f1 0.00E+00±0.00E+00 2.42E-04±9.17E-05 

f2 2.89E+01±1.91E-02 6.01E+01±6.42E+01 

f3 4.44E-16±0.00E+00 1.15E+00±8.44E-01 

f4 0.00E+00±0.00E+00 1.23E-02±9.68E-03 

f5 0.00E+00±0.00E+00 1.53E+01±4.67E+00 

f6 8.49E+03±1.82E+02 4.08E+03±1.33E+03 

f7 7.86E-01±1.58E-01 6.95E-03±2.63E-02 

f8 2.88E+00±3.17E-02 6.95E-03±7.14E-03 

f9 5.97E+04±4.14E+03 7.39E-01±3.52E-01 

f10 3.75E+02±1.83E+01 7.87E+01±2.54E+01 

 

D.  Iteration Process for Fixed FEs 
In order to compare the convergence process of the 

algorithms, we draw the typical iteration process of the 
five algorithms on all functions on 30-dimensional cases. 
These graphs show the average error performance of the 
total runs, in respective experiments. From the graphs, we 
can get the same conclusions in section III. For f1, 
MSFLA is best both in convergence speed and accuracy. 
For f2, there were no significant differences between five 
algorithms. ISFLA is the best in f3. And SFLA-D gets the 
same accuracy with ISFLA in f4 and f5, with MSFLA in 
f7, f8 and f9. SFLA-D is best in f6 and f10 considering the 
convergence speed and precision. 
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Figure 2.  Convergence Graph for f1 
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Figure 3.  Convergence Graph for f2 
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Figure 4.  Convergence Graph for f3 
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Figure 5.  Convergence Graph for f4 
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Figure 6.  Convergence Graph for f5 
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Figure 7.  Convergence Graph for f6 
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Figure 8.  Convergence Graph for f7 
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Figure 9.  Convergence Graph for f8 
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Figure 10.  Convergence Graph for f9 
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Figure 11.  Convergence Graph for f10 

V.  CONCLUSION AND FUTURE WORK 

In order to improve algorithm’s intensification ability, 
a dimension by dimension strategy is used to do fine 
grained search based on SFLA. The individual update 
equation is redesigned to maintain the same probability 
close to the best solution with the original algorithm. The 
experiment simulations, which were carried on ten 
different kinds of benchmark function optimization 
problems, indicate that iterative improvement strategy 
can improve the intensification ability of SFLA 
remarkably. The overall performance of SFLA-D is 
superior to or at least competitive with some other 
selected algorithms from literature. 

In future study, we will apply the proposed algorithm 
to solve some real-world problems. We will also verify 
the improvement strategy for other intelligent 
optimization algorithm. 
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APPENDIX A  TEST FUNCTONS 

Name Range Goal
Sphere [-100 100] 10-6

Rosenbrock [-30,30] 10-6

Ackley [-30,30] 10-6

Griewank [-600,600] 10-6

Rastrigin [-5.12,5.12] 10-6

Schwefel [-500 500] 10-6

Generalized Penalized 1 [-50 50] 10-6

Generalized Penalized 2 [-50 50] 10-6

Shifted Sphere [-100 100] 10-2

Shifted Rotated Rastrigin [-5 5] 10-2
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