
Recursive Updates in Copy-on-write File Systems
- Modeling and Analysis

Jie Chen*, Jun Wang†, Zhihu Tan*, Changsheng Xie*

*School of Computer Science and Technology

Huazhong University of Science and Technology, China
 *Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430074, China

chenjie2003@hust.edu.cn, {stan, cs_xie}@hust.edu.cn

†Dept. of Electrical Engineering and Computer Science
University of Central Florida, Orlando, Florida 32826, USA

jwang@eecs.ucf.edu

Abstract—Copy-On-Write (COW) is a powerful technique
for data protection in file systems. Unfortunately, it
introduces a recursively updating problem, which leads to a
side effect of write amplification. Studying the behaviors of
write amplification is important for designing, choosing and
optimizing the next generation file systems. However, there
are many difficulties for evaluation due to the complexity of
file systems. To solve this problem, we proposed a typical
COW file system model based on BTRFS, verified its
correctness through carefully designed experiments. By
analyzing this model, we found that write amplification is
greatly affected by the distributions of files being accessed,
which varies from 1.1x to 4.2x. We further found that write
amplification is also affected by the number of files being
accessed, the number of files contained in a file system, and
as well as the space utilization of file system trees.

Index Terms—copy-on-write, file systems, write
amplification

I. INTRODUCTION

Copy-On-Write (COW) is one of the fundamental
update policies used when modifying data in disk blocks.
With COW update policy, the target block is read into
memory, modified, and then written to disk at an alternate
location (not overwriting the old data). Since it never
overwrites old data, COW is usually used to prevent data
loss from system crashes in file systems [1-3].

Nevertheless, COW introduces an unpleasant recursive
updating procedure. Assuming that a file system is a large
tree made up of disk blocks, when a leaf block is
modified with the COW policy, its parent node also needs
to be modified to update the new location of the modified
child block. This update process will recursively occur
until it reaches the root block which can be updated in a
fixed place on disk. We define such a procedure as a

recursive update. Recursive updates can lead to several
side effects to a storage system, such as write
amplification (also can be referred as additional writes)
[4], I/O pattern alternation [5], and performance
degradation [6]. This paper focuses on the side effects of
write amplification.

Studying the behaviors of write amplification is
important for designing, choosing, and optimizing the
next generation file systems, especially when the file
systems uses a flash-memory-based underlying storage
system under online transaction processing (OLTP)
workloads. That’s because the OLTP workloads
introduce random write access pattern, which would
trigger the worst case of recursive updates. Besides, the
flash-memory media would also suffer from the effects of
high write amplification because of its limited write-
endurance and poor write performance.

There are many difficulties for evaluating the
behaviors of write amplification. First, the mainstream
COW file systems like ZFS [2], BTRFS [3] are running
in the OS kernel. It is hard to hack these file systems for
evaluation because of their complex implementation.
Second, a recursive update process is affected by many
factors such as the organization of a file system, the
number of files contained in a file system, the distribution
of files being accessed, as well as the time epoch a
checkpoint lasts. It is hard to evaluate how these factors
influence the write amplification in a real file system.

To solve this problem, we proposed a typical COW file
system model based on BTRFS, and verified its
correctness through carefully designed experiments. By
analyzing this model, we found that write amplification is
greatly affected by the distributions of files being
accessed, which varies from 1.1x to 4.2x. We further
found that write amplification is also affected by the
number of files accessed, the number of files contained in
the file system, and as well as the space utilization of file
system trees.

The contributions of this paper are:

Manuscript received March 2, 2014; revised May 21, 2014; accepted
May 22, 2014.

2342 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.10.2342-2351

Figure 1. A file system can be conceptually modeled as a tree made up
of disk blocks.

• To our knowledge, the first study to
systematically analyze the behaviors of write
amplification caused by recursive updates;

• Proposed a B-tree based file system model.
The rest of this paper is organized as follows. In

Section II, we motivate our work by discussing the
background of recursive updates. In Section III, we
describe our COW file system model. Section IV
describes the methodology of calculation and verification.
Section V describes the verification results and
theoretical analysis results. Section VI discusses the
related work and Section VII concludes our work.

II. BACKGROUND

This section provides the background of recursive
updates. Here, we discuss what is copy-on-write, what is
the definition of recursive updates, how does it work in
file systems, and what are their effects.

A. What Is COW?
COW is one of the fundamental update policies used in

storage systems. The basic schema is never overwriting
old data. When updating a block with COW policy, the
data block is read into memory, modified, and then
written to a new location, leaving the old data unmodified.
COW update policy has been used vastly in storage
systems:

Protecting data: File systems like WAFL [1], ZFS [2],
and BTRFS [3] use COW update policy to implement
snapshot for data protection.

Improving performance: Log-structured file systems,
such as LFS [7], use COW update policy to transform the
access pattern from a large amount of small random
writes to a single large sequential write, which leverages
the disk sequential I/O semantics.

Updating data on special media: Write-once-read-
many media, such as optical disk [8], uses COW to
implement random write. Flash-memory file systems,
such as CFFS [9], FlashFS [10], JFFS [11], use COW to
optimize update operations to improve write performance
and implement wear-leveling.

Different than COW, the natural update policy is called
Update-In-Place (UIP), which means the target data is
read into memory, modified, and then written to disk at
its original location (overwriting the old data).

B. What Is the Definition of Recursive Updates?
File systems can be conceptually modeled as a tree of

disk blocks, as seen in Fig. 1. The file system tree rooted
at the super block. Inodes are the immediate children of
the root, and they in turn are the parents of data blocks
and/or indirect or even double-indirect blocks. Thus,
every allocated block with the exception of the super
block has a parent.

COW update policy causes recursive updates in a file
system tree. In COW file systems, a modification to a
disk block is always written to a newly allocated block,
which recursively updates the appropriate pointers in the
parent blocks. Fig. 2 illustrates this process. When the
application requests to modify the block f, the block f is

not modified directly. Instead, a new block F is allocated,
and then the data in f is copied to F, and then requested
modifications are made in F. However, the modified data
in block F cannot be seen by the file system until its
block address has been updated in its parent block d. This
means that the modification to the child propagates to its
parent block. Furthermore, this modification to the parent
block will continue propagating along with the child-
parent path until it reaches a special node which can be
modified at a fixed place. We define such a procedure as
a recursive update.

In order to mitigate the overhead of recursive updates,
COW file systems usually use a checkpoint (or
transaction) mechanism. The checkpoint (or transaction)
mechanism is used to accumulate updates in memory and
apply them all at once to form a consistency view of the
whole file system structure. (In the following, we refer
checkpoint as the operation of flushing all modified data
to disk, while referring transaction as the process of
accumulating updates and flushing them back during two
contiguous checkpoints.) As seen from Fig. 2, after the
last transaction is flushed to disk, a new transaction will
start. Within the transaction, modifications to a block
only trigger its COW operation once at the first time it is
modified, which means a previously modified block can
be updated in place. Finally, the transaction commit
operation will perform a checkpoint. Several conditions
can trigger the commit operation, such as a calling to
fsync, a write-operation with O_SYNC flag, the number of
modified blocks reaches a predefined upper limit, as well
as the current transaction is timeout (usually 30s).

C. What Are the Effects of Recursive Updates?
Here, we identify three side effects of recursive

updates:
Write amplification: Recursive updates may cause

write amplification. As shown in Fig. 2, the application
only needs to modify one leaf data block f, however, the
recursive update causes a total of four tree blocks (super,
A, D, F) modified. So, the data actually flushed is as high
as 4x of the data requested. In practice, the amount of

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2343

© 2014 ACADEMY PUBLISHER

Figure 3. The overview of BTRFS. BTRFS is structured as several
layers of COW-friendly B-trees.

ch
ec
kp
oi
nt

ch
ec
kp
oi
nt

Figure 2. Recursive updates within a transaction in COW file systems.

blocks modified may be higher, since the recursive
updates caused by block allocation/release are ignored in
this case.

I/O pattern alternation: Recursive updates may change
the I/O pattern at the underlying storage. As shown in Fig.
2, suppose that block f is a large contiguous data extent,
while recursive updates cause additional tree blocks
modified (which usually are 4KB-sized). These tree-
blocks are unlikely to be contiguously stored together,
thus making the I/O pattern be altered from large
sequential writes to small random writes.

Performance degradation: The above effects
eventually degrade the file system performance. Write
amplification introduces additional data to write. Access
pattern alternation may result in poor performance at the
underlying storage.

In this paper, we only focus on the effect of write
amplification.

III. ANALYTICAL MODELING

In this section we discuss our BTRFS based file system
model. First, we give a brief introduction of BTRFS and
its core data structure B-tree, and then we proposal a
simple model for B-tree, and then derive it to a B-tree
based file system.

A. Introduction to BTRFS
BTRFS (B-tree file system) is a GPL-licensed COW

file system for Linux, which is intended to address the
lack of pooling, snapshots, checksums and integral multi-
device spanning in Linux file systems.

BTRFS uses COW-friendly B-trees to store metadata
and extents to organize file data. A COW-friendly B-tree
[12] is a variant of a standard B-tree. It adds reference
counts and removes the leaf linking to the balancing
algorithms of a standard B-tree. A B-tree in file systems
is made up of tree blocks. Various data types are stored in
such tree blocks as generic items, which are sorted by
136-bit keys. Extents are contiguous runs of disk blocks,
which contain only file data.

BTRFS is structured as several layers of COW-friendly
B-trees, as seen in Fig. 3. The most important trees in
BTRFS are Root Tree, Extent Tree and FS Tree. Root
Tree is a tree of tree roots, which stores the roots of
Extent Tree, FS Tree, etc. Extent Tree tracks space
allocation for both metadata and data. FS Tree contains
the user-visible files and directories, which are
represented by inode items. Within each directory,
directory entries stored as directory items. File data are
kept outside the tree in data extents, which are tracked by
extent data items. The key assigning policy used in
BTRFS makes all the items related to the same file be
stored together.

Supposing that a COW file system like BTRFS
contains N files, each of which only takes up one data
block (or extent). If we need to modify x files with
rewrite-4k-operation, how many additional writes it
would cause? To answer this question, we first discuss a
simpler question on a single B-tree with COW update
mechanism, and then we derive the results to a COW file
system.

2344 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

1 ... 101

...

1 ... 11

...

1 ... 5

data ... data

11 ... 22

data ... data

101 ... 220

...

101 ... 110

data ... data

220 ... 250

data ... data

Root-node

Figure 4. An example of COW-friendly B-trees. Leaf-nodes contain
key-data pairs, all of which are in the same level. Index-nodes contain

key-pointer pairs, which are used for accelerating the key-data pair
lookup process.

Figure 5. The best case of recursive updates. All modified k key-data
entries are compacted into a minimum sub-tree, then ⌈k⁄md+1-i⌉ nodes at

level i would be modified. So total nodes modified would be
∑ i=1

d⌈k⁄md+1-i⌉.

Figure 6. The worst case of recursive updates. All modified k key-data
entries spread out totally, which causes k nodes at each level from

level d to a level j + 1, where mj-1 ≤ k < mj. Then all the nodes above
level j + 1 would be modified. We can resolve j = ⌊log m k⌋ + 1. So total

nodes modified would be ∑ i=1
jmi-1 + k * (d -j).

B. Recursive Updates in a Single B-tree
In this subsection we discuss how is COW-friendly B-

tree organized, and what are the best and worst effects of
recursive updates on such B-tree.

1) COW-friendly B-trees
The B-tree discussed here is made up by individual

nodes where each node takes up 4KB of disk space, see
Fig. 4. There are two kinds of nodes: leaf-node containing
the key-data pairs, and index-node containing the key-
pointer pairs using minimum-key rule. A pointer points to
the root of a sub-tree in which all the keys are greater or
equal to the key in the key-pointer pair. Index-node is
used to accelerate the key-data lookup process. Each
node in the tree except the root-node has entries
between M and 2M +1. The root-node has entries
between 1 and 2M + 1. M is defined as the order of the
B-tree.

Suppose we need to modify k key-data pairs in the
leaf-nodes under COW mechanism, how many tree node
modifications (additional writes) would be caused due to
recursive updates? The result to this question varies
greatly depending on the distribution of the key-data pairs
being modified as well as the number of entries in each
node. Instead of discussing a generalized distribution, we
will discuss two special distributions: the best case and
the worst case, which would give us a boundary of the
additional writes. Worst means that the corresponding
distribution causes the most serious additional writes,
while the best means the least additional writes. For
simplicity, we also assume that the number of entries in
each node is a fixed value m, which represents the
average number of entries in a node of the B-tree.

2) The Best Case
The best case of modifying k key-data entries is that all

the entries are compacted together in a minimum sub-tree,
see Fig. 5. The number of leaf-nodes need to be modified
is ⌈k ⁄ m⌉, and the number in the upper level is ⌈k ⁄ m2⌉. So
on it would follow that at level i there is ⌈k ⁄ md+1-i⌉ nodes
to be modified. Finally, the number of the tree nodes need
to be modified is:

 ⎡ ⎤∑
=

−+=
d

i

id
best mkkdmM

1

1),,((1)

3) The worst Case

The worst case of modifying k key-data entries is that
all the entries spread out evenly, see Fig. 6, which
causes k nodes to be modified at each level from a
level j+1 to level d, and then all nodes above level j+1 are
modified, where j should meet mj-1≤k<mj, that
is j=⌊logmk⌋+1. So the total nodes need to be modified
is ∑i=1

jmi-1+k*(d-j). Finally, the number of the tree nodes
need to be modified is:

()jdk
m

m
kdmM

j

worst −+
−
−= *
1

1
),,(,

where ⎣ ⎦ 1log += kj m (2)

C. Recursive Updates in a B-tree File System
A B-tree file system is more complex than a singular

B-tree. Here we model a BTRFS based COW file system
for discussing.

1) B-tree file system model

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2345

© 2014 ACADEMY PUBLISHER

Figure 7. The B-tree file system model. Four components: super block, root-tree, reference-tree, as well as files-tree. Reference-tree records the
space allocation. Files-tree records all the files metadata. Root-tree records the root of all other trees.

The modeled file system, see Fig. 7, is composed of
one super-block, and three COW-friendly B-trees: root-
tree, reference-tree and files-tree.

• Super-block: The super-block contains the block
address of root-node of root-tree, as well as other
global information in a common file system.

• Root-tree: The root-tree stores the block
addresses of the roots of all other B-trees. Since
the root-tree is quite small, we omit it in the later
analysis.

• Reference-tree: The reference-tree stores all the
reference information of disk space allocation,
which includes the address information (start
address and length), the reference count, as well
as the owners.

• Files-tree: The files-tree stores all the file
information, which includes inode and data
extent mappings. Each inode represents a file,
which can be a regular file or a directory file.
Each file has one or more extent mappings,
which maps file linear space to disk space by
extents.

The modeled file system updates using COW
transaction model to ensure data consistency. Its behavior
is like a single B-tree’s COW operation, but a little more
complex because of space allocation management. When
allocating or releasing space, the reference-tree would be
modified, while this modification will cause new space
allocation/release. This process will recursively occur
until the space allocation and nodes modification get
balanced in the transaction. This balance can be met
because COW operation is only performed once at the
first time when a node is modified in the current
transaction.

The modeled file system manages the disk space
allocation by dividing the space into metadata space and
data space. All the tree-nodes are allocated from the

metadata space, and file data extents are allocated from
the data space. To improve the write performance, the file
system applies lazy-allocation policy and allocates space
sequentially.

2) The depth of the trees
Suppose there are already N files in the file system,

then there would be N inodes entries and N data extent
mappings entries in the leaf-nodes (assuming each file
only has on extent), that is 2N entries in the files-tree.

So the depth of the files-tree dfiles would be:

 ⎡ ⎤)2(log Nd mfiles = (3)

While in order to compute the depth of the reference-
tree, we need to figure out how many blocks are allocated,
including data blocks, file-tree blocks and reference-tree
blocks. The number of data blocks is N. The files-tree has
a number of Bfiles tree blocks:

 ∑
=

−

−
−==

files filesd

i

d
i

files m

m
mB

1

1

1

1
 (4)

Suppose there are Bref tree blocks for reference-tree,
the reference-tree would have entries of Bref + Bfiles + N.
So the depth of the reference-tree dref meets:

 ()⎡ ⎤NBBd filesrefmref ++= log (5)

Meanwhile the total tree blocks of reference-
tree Bref would be:

 ∑
=

−

−
−==

ref refd

i

d
i

ref m

m
mB

1

1

1

1
 (6)

2346 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

According to (4), (5) and (6), we can get the
following y = f(y) type equation (How to resolve this kind
of equation refers to Appendix A):

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−+

−
−= N

m

m

m

m
d

filesref dd

mref
1

1

1

1
log

 (7)

From the above, when the number of files N is known,
we can calculate the depth of files-tree dfiles and the depth
of reference-tree dref.

3) The bound of additional writes
We return to the question which is asked at the

beginning of this section: Suppose there are x files need
to be re-written one block each, how many tree blocks
would be modified? The answer to this question varies
greatly depending on the distribution of x accessed files.
Here we discuss the worst situation and the best situation.

The worst situation is all the files being accessed are
randomly selected. Re-writing x files data means to
modify x inodes for updating time-stamps and x data
extent mappings for mapping new data extents, as well as
allocating x data extents in reference-tree for COW
mechanism. Since the x files random accessed as well as
inodes and data extent mapping of a file are stored
together, the files-tree is trigged the worst case of COW
with x leaf-nodes modified. So the total tree-blocks need
to be modified in the files-tree are Mworst(x), which causes
the same number space allocation in the reference-tree.

Suppose there are yworst tree blocks need to be modified
in the file system, so the reference-tree would need to
modify yworst entries sequentially, which is the best case
of COW. Besides, allocation x data extents
causes x entries in the reference-tree sequentially
modified, which is a best case too. So we get
following y = f(y) type equation:

),,(),,(

),,(

worstrefbestrefbest

filesworstworst

ydmMxdmM

xdmMy

++
=

 (8)

The best situation is all the files being accessed are
sequentially selected, in which situation the files-tree is
trigged the best case of COW with 2x leaf-nodes
modified. And then the chain effect to the reference-tree
is the same with the worst situation. Suppose there
are ybest tree blocks need to be modified in the file system,
so we get following y = f(y) type equation:

),,(),,(

)2,,(

bestrefbestrefbest

filesbestbest

ydmMxdmM

xdmMy

++
=

 (9)

Finally, total tree blocks need to be modified under
COW model ycow(x) would meet:

 worstcowbest yxyy ≤≤)((10)

The accurate value of ycow(x) is determined by the
actual distribution of x accessed files in the files-tree.

IV. METHODOLOGY

This section talks about how we calculate and verify
the COW file system model.

A. Calculate the Model
From all the above equations, we can know that the

overhead of recursive updates is in the range [ybest, yworst].
And the range bounds are determined by the average
entries in each node m, the number of files in the file
system N, as well as the number of files accessed x.

Suppose the tree block is 4KB-sized, and each key-
pointer pair takes up 32B (a key takes up 24B, and a
pointer takes up 8B), then the value of m should be in the
range [64,128]. Yao [13] pointed that the space utilization
in the B-trees is about 69%, from which we can
set 128 * 69% as the reference value of m, that is m =
88.32.

According to Meyer’s research [14], the average
number of files in file systems reaches about 640,000,
which can be set as the reference value of N.

The number of files accessed in a transaction varies
greatly depending on the workloads and the file system’s
configuration. Here, we use 100 as a reference value.

In the following, we use MATLAB to analyze the
effects of above parameters on the behaviors of write
amplification caused by recursive updates.

B. Verify the Model
The basic idea of verifying the model is to measure

write amplification of recursive updates in a real BTRFS
under the simulated best/worst cases, and then compare
them to the theoretical results.

1) Write amplification measurement
In order to measure the write amplification, we hacked

into BTRFS to count the following two metrics: the
amount of data flushed (denoted as Ndata) and the amount
of metadata flushed (denoted as Nmeta). The two counters
are reset to zero and start to count when BTRFS is
mounted, the counting stops and results are written to the
system log when BTRFS is dismounted. The write
amplification (denoted as rw.a.) discussed here is
calculated as the ratio of data actually flushed by file
system and the data modified by upper application during
one test (rw.a. = (Ndata + Nmeta) / Ndata).

2) Best/worst workloads simulation
The key to simulate the best/worst workloads is to

acquire relative locations of all the files in the file system
tree, and then lunch modifications to the files at some
special locations. To acquire the relative location, we can
create predefined number of files (each file is 4KB-sized)
in a blank BTRFS under the same directory, and each file
is given the creating sequential number as its name. The
name roughly represents the relative location of a file.
The reasons are as following: (i) each file created in
BTRFS has been assigned an internal id ino, which
represents the file’s creating sequence since it is allocated
with the policy of last allocated ino+1; (ii) The FS-tree in

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2347

© 2014 ACADEMY PUBLISHER

Figure 8. Accessed Files vs. Write Amplification for BTRFS and
Theoretical Model

Figure 9. Write amplification impact of the number of files being
accessed.

BTRFS stores the metadata of files in key-item manner
where keys represent the locations of metadata, and the
determinant part of such a key is ino. Suppose we need to
modify x files, how do we select the target files? To
simulate the best case, we select the x files sequentially
from the first created file. To simulate the worst case, we
select the x files by spreading out the x files evenly
among all the created files.

3) Experimental setup
We conducted our experiments on a Dell Precision 490

workstation, which consists of 2 dual-core Intel(R)
Xeon(TM) CPUs at 3.0GHz, 2GB RAM, and two internal
SATA disks (One is 80GB, the other is 250GB), as
shown in TABLE I. The workstation was running the
Ubuntu-10.04.3 Linux distribution with kernel 2.6.32-33-
generic. All of the benchmarks were executed on the

internal 250GB SATA disk. To reduce the noise of other
non-related applications in the experiments, we disabled
as many system services as possible.

4) Test procedures
In order to verify the model, we suppose there are

640,000 files in BTRFS, and the order of B-trees is 88.
The number of files being accessed varies from 10 to 500
with a step of 10. All the evaluation experiments are
conducted in three steps: (i) format the BTRFS and then
create predefined number of initial files; (ii) remount
BTRFS to reset the count to zero; (iii) run the evaluation
(best/worst case workload) and read the data after
dismounting BTRFS from system log files. Each
experiment was conducted nine times.

V. EVALUATION

In this section we discuss the results of verification and
model analysis.

A. Verification Results
The theoretical model simulates the behavior of write

amplification in BTRFS quite well, as shown in Fig. 8. In
the worst case, although the two curves of theoretical
model and BTRFS show some significant differences
when the number of files being accessed are in the range
of [10, 50], the two curves become nearly fitting together
when the number of files being accessed are in the range
of [50, 500]. In the best case, the two curves of

theoretical model and BTRFS show a trend of fitting
together, even though the results of BTRFS is slightly
higher than theoretical model. The reason of those
differences is partly because the real file system BTRFS
has some additional update features than our model (such
as writing multi-copies of the super-block for backup),
which causes some kind of fixed additional writes to the
results of our model. The effect of these additional writes
is significant when the number of files being accessed is
small. However, it becomes negligible when the number
of files being accessed is big. This indicates that our
theoretical model can simulate the behavior of write
amplification in BTRFS quite well, and so it’s reasonable
to use this model to analyze the behaviors of write
amplification in BTRFS-like COW file systems.

B. Modeling Results
In the following, we discuss how the write

amplification is affected by the number of files being
accessed in a transaction, the number of files contained in
a file system, and as well as the space utilization of B-
trees.

TABLE I.
EXPERIMENTAL SETUP

Items Description

CPU Intel ® Xeon ™ 3.0GHz * 4

RAM 2GB

DISK-sys 80GB

DISK-test 250GB

OS Ubuntu-10.04.3 64bit with Linux-2.6.32-33-
generic

2348 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

Figure 10. Write amplification impact of file system scale. Figure 11. Write amplification impact of B-tree space utilization.

1) Accessed files vs. write amplification
The write amplification is reduced when the number of

files being accessed is increased, as shown in Fig. 9. In
the worst case, the write amplification is reduced from
4.9x to 4.0x when the number of files being accessed
increased from 10 to 100. In the best case, the write
amplification is reduced from 2.2x to 1.1x when the
number of files being accessed increased from 10 to 100.
The reason for this behavior of write amplification is that
multi leaf-nodes share the same index-nodes in a file
system tree, which means even though the number of
leaf-nodes modified are increased, the number of related
index-nodes might still remain the same. So the whole
write amplification is reduced. This indicates that
increasing the number of files being accessed during each
transaction can reduce the effects of write amplification.

2) Files contained vs. write amplification
The write amplification is increased when the number

of files contained in a file system is increased, as shown
in Fig. 10. In the worst case, the write amplification is
2.1x when the number of files contained in a file system
is from 100 to 1,600 files. And the value is increased to
3.2x when the number of files contained is from 6,400 to
100,000 files. And the value is increased to 4.2x when the
number of files contained is from 400,000 to 25.6 million
files. In the best case, the write amplification is 1.1x
when the number of files contained in a file system is
from 100 to 1,600 files. And the value is increased to
1.2x when the number of files contained is from 6,400 to
100,000 files. And the value is increased to 1.3x when the
number of files contained is from 400,000 to 25.6 million
files. The reason for this behavior of write amplification
is because the height of a file system tree is mainly
decided by the number of files contained in that file
system. The more files it contains, the higher the file
system tree it would be, and the more additional writes it
would cause. So the whole write amplification is
increased when the number of files contained in that file
system is increased. This indicates that reducing the

number of files contained in a file system can reduce the
effects of write amplification.

3) B-tree space utilization vs. write amplification
The write amplification results of the best case and the

worst case show different patterns when the B-tree space
utilization varies from 55% to 100%, as shown in Fig. 11.
In the worst case, the write amplification is increased
from 3.9x to 4.1x when the space utilization is increased
from 55% to 80%, while the write amplification remains
the same value of 3.1x when the space utilization is
increased from 85% to 100%. The reason for this
behavior of write amplification is that the distribution of
files being accessed is spread out evenly among the leaf-
nodes of the file system tree, and the number of related
index-nodes of the tree is increased as the space
utilization increased while the total files being accessed
remains the same, so the write amplification is increased
with the increasing space utilization. While when the
space utilization is increased to some threshold, the
height of the tree is reduced, so the whole write
amplification is reduced. In the best case, the write
amplification remains the same value of 1.1x when the
space utilization increased from 55% to 100%. The
reason for this behavior of write amplification is because
the distribution of files being accessed is aggregated at a
smallest sub-tree, and even though the space utilization is
increased, the related index-nodes remain nearly the same,
so the whole write amplification is unchanged. This
indicates that the space utilization can affect the write
amplification, and improves the space utilization can
significant reduce the write amplification.

VI. RELATED WORK

COW is used vastly in storage systems. File systems
like WAFL [1], ZFS [2], and BTRFS [3] use COW
mechanism to implement snapshot or clones for data
protection. Log-structured file systems, such as LFS [7]
use COW update policy to transform amount of small
random writes to a single large sequential write to
leverage the disk sequential I/O semantics. Write-once-

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2349

© 2014 ACADEMY PUBLISHER

read-many media such as Optical Disk [8] uses COW to
implement update operation. COW is also used to
improve write performance and implement wear-leveling
on flash-memory media both in file system level [10, 11,
15, 9] and flash translation layer level [16, 17].

The basic schema to reduce the overhead of recursive
updates is the cache technique. File systems [7, 1, 2, 3]
apply transaction update mechanisms to cache multiple
updates in volatile memory during each transaction, in
which COW operations are triggered only once on each
modified block. Unfortunately, this transaction
mechanism fails when encountering the synchronous
writes I/O patterns, since each synchronous write requires
flushing the current transaction. To avoid this
circumstance, ZFS [2] provides ZIL (intent log) write
cache to store a transaction group until it has safely been
written to disk, which keeps the synchronous writes
semantics and caches the recursive update. Reducing the
size of the actual update data also can reduce the
overhead of recursive updates. Inode map is the parent
node of all the file inodes in the file system tree. By
splitting the inode map into multiple pieces, recursive
updates in LFS [7] would only cause a small subset of the
whole inode map to be updated. Another way to reduce
recursive updates is to find the smallest update tree of all
the initial updates and make sure the recursive update
stop at its root by modifying its parent update in place.
This technique requires the special design of the
hardware, which is implemented in byte-addressable
phase-change-memory system PBFS [4]. Recursive
updates also exist in nameless writes SSD systems. Zhang
et al. [18] proposed segmented address space to
circumvent it. The segmented address space consists of a
(large) physical address space for nameless writes (like
COW), and a (small) virtual address space for traditional
named writes (like UIP). The basic idea is to store the
metadata into virtual space, while file data into physical
space. So the recursive updates triggered by modifying
file data would stop at the virtual space.

VII. CONCLUSIONS

We proposed a model to analysis the behaviors of
write amplification of BTRFS-like COW file systems.
We conducted real experiments on BTRFS, and verified
that our model simulates the write amplification
behaviors of BTRFS quite well. Through analyzing this
model, we found that write amplification is greatly
affected by the distributions of files being accessed,
which varies from 1.1x to 4.2x. We further found that by
increasing the number of files being accessed during a
transaction, and reducing the number of files contained in
a file system, and as well as increasing the space
utilization of B-trees to some threshold, we can reduce
the write amplification significantly.

APPENDIX A RESOLVE Y = F(Y) EQUATION
From previous discussion, we can know that y is an

integer, and y ≥ 0, and f(y) ≥ y always to be true. So we

can use following algorithm to resolve this type equation
efficiently, see Algorithm 1.

Algorithm 1 Resolve y = f(y) type equation
Require: target function f(x)

x ← 0
y ← f(0)
while x≠y do

x ← y
 y ← f(x)
end while

 return y

ACKNOWLEDGMENT

We thank the anonymous reviewers for their
tremendous feedback and comments, which have
substantially improved the content and presentation of
this paper.

This research is supported in part by the National Basic
Research Program of China under Grant
No.2011CB302303 and National High Technology
Research Program of China under Grant
No.2013AA013203, and the HUST Fund under Grant
No.2014QN006. This work is also supported by Key
Laboratory of Information Storage System, Ministry of
Education.

REFERENCES

[1] D. Hitz, J. Lau, and M. Malcolm, “File System Design for
an NFS File Server Appliance,” in Proceedings of the
USENIX Winter 1994 Technical Conference, ser.
WTEC’94. Berkeley, CA, USA: USENIX Association,
1994, pp. 19–19. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267074.1267093

[2] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M.
Shellenbaum, “The Zettabyte File System,” in FAST 2003:
2nd USENIX Conference on File and Storage
Technologies, 2003.

[3] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-
tree Filesystem,” Trans. Storage, vol. 9, no. 3, pp. 9:1–9:32,
Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2501620.2501623

[4] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D.
Burger, and D. Coetzee, “Better I/O Through Byte-
addressable, Persistent Memory,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles, ser. SOSP ’09. New York, NY, USA: ACM,
2009, pp. 133–146. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629589

[5] Z. Peterson, “Data Placement for Copy-on-write Using
Virtual Contiguity,” Ph.D. dissertation, UNIVERSITY OF
CALIFORNIA, 2002.

[6] C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An Efficient B-
tree Layer Implementation for Flash-memory Storage
Systems,” ACM Trans. Embed. Comput. Syst., vol. 6, no.
3, July 2007. [Online]. Available:
http://doi.acm.org/10.1145/1275986.1275991

[7] M. Rosenblum and J. K. Ousterhout, “The Design and
Implementation of a Log-structured File System,” in
Proceedings of the thirteenth ACM symposium on
Operating systems principles, ser. SOSP ’91. New York,
NY, USA: ACM, 1991, pp. 1–15. [Online]. Available:
http://doi.acm.org/10.1145/121132.121137

2350 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

[8] J. Gait, “The Optical File Cabinet: A Random-access File
System for Write-once Optical Disks,” Computer, vol. 21,
no. 6, pp. 11–22, June 1988. [Online]. Available:
http://dx.doi.org/10.1109/2.947

[9] S.-H. Lim and K.-H. Park, “An Efficient Nand Flash File
System for Flash Memory Storage,” IEEE Trans. Comput.,
vol. 55, no. 7, pp. 906–912, July 2006. [Online]. Available:
http://dx.doi.org/10.1109/TC.2006.96

[10] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-
Memory Based File System,” in Proceedings of the
USENIX 1995 Technical Conference Proceedings, ser.
TCON’95. Berkeley, CA, USA: USENIX Association,
1995, pp. 13–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267411.1267424

[11] D. Woodhouse, “JFFS: The Journaling Flash File System,”
in Ottawa Linux Symposium, vol. 2001. Citeseer, 2001.

[12] O. Rodeh, “B-trees, Shadowing, and Clones,” Trans.
Storage, vol. 3, no. 4, pp. 2:1–2:27, Feb. 2008. [Online].
Available: http://doi.acm.org/10.1145/1326542.1326544

[13] A. Yao, “On Random 2–3 Trees,” Acta Informatica, vol. 9,
no. 2, pp. 159–170, 1978.

[14] D. T. Meyer and W. J. Bolosky, “A Study of Practical De-
duplication,” in Proceedings of the 9th USENIX
conference on File and storage technologies, 2011.

[15] C. Manning, “YAFFS: The Nand-specific Flash File
System,” Linuxdevices.org, 2002.

[16] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A
Space-efficient Flash Translation Layer for Compact Flash
Systems,” Consumer Electronics, IEEE Transactions on,
vol. 48, no. 2, pp. 366 –375, may 2002.

[17] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee,
and H.-J. Song, “A Survey of Flash Translation Layer,” J.
Syst. Archit., vol. 55, no. 5-6, pp. 332–343, May 2009.
[Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2009.03.005

[18] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “De-indirection for Flash-based SSDs
with Nameless Writes,” in Proceedings of the 10th
USENIX conference on File and Storage Technologies, ser.
FAST’12. Berkeley, CA, USA: USENIX Association,
2012, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2208461.2208462

Jie Chen is a PhD student in Computer Science at Huazhong
University of Science and Technology. He received the B.S.
degree in Computer Science from Huazhong University of
Science and Technology in 2007. His research interests include
file systems, storage systems, and cloud computing.

Jun Wang is an Associate Professor in the Department of
Electrical Engineering and Computer Science in University of
Central Florida. Prior to that, he was a faculty in Computer
Science and Engineering Department of University of Nebraska,
Lincoln. He received his Ph.D. from University of Cincinnati in
2002. His research interests include: data-intensive high
performance computing, massive storage and file system, I/O
architecture, peer-to-peer system, and low-power computing.

Zhihu Tan is an Associate Professor in the School of Computer
Science and Technology at Huazhong University of Science and
Technology. He received PhD degree in Computer Architecture
from Huazhong University of Science and Technology in 2008.
His research interests include mass data storage, reliability of
storage systems, parallel and distributed computing.

Changsheng Xie is the deputy Director of the Wuhan National
Laboratory for Optoelectronics. He is also the Director of the
Data Storage Systems Laboratory (the key laboratory of
Ministry of Education of China) and the Professor in the School
of Computer Science and Technology at Huazhong University
of Science and Technology. His research interests have been in
the fields of networking storage system, optical and magnetic
data storage technologies. He is now interested in cloud storage
and big data technologies.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2351

© 2014 ACADEMY PUBLISHER

