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Abstract—Copy-On-Write (COW) is a powerful technique 
for data protection in file systems. Unfortunately, it 
introduces a recursively updating problem, which leads to a 
side effect of write amplification. Studying the behaviors of 
write amplification is important for designing, choosing and 
optimizing the next generation file systems. However, there 
are many difficulties for evaluation due to the complexity of 
file systems. To solve this problem, we proposed a typical 
COW file system model based on BTRFS, verified its 
correctness through carefully designed experiments. By 
analyzing this model, we found that write amplification is 
greatly affected by the distributions of files being accessed, 
which varies from 1.1x to 4.2x. We further found that write 
amplification is also affected by the number of files being 
accessed, the number of files contained in a file system, and 
as well as the space utilization of file system trees.  
 
Index Terms—copy-on-write, file systems, write 
amplification 
 

I. INTRODUCTION 

Copy-On-Write (COW) is one of the fundamental 
update policies used when modifying data in disk blocks. 
With COW update policy, the target block is read into 
memory, modified, and then written to disk at an alternate 
location (not overwriting the old data). Since it never 
overwrites old data, COW is usually used to prevent data 
loss from system crashes in file systems [1-3]. 

Nevertheless, COW introduces an unpleasant recursive 
updating procedure. Assuming that a file system is a large 
tree made up of disk blocks, when a leaf block is 
modified with the COW policy, its parent node also needs 
to be modified to update the new location of the modified 
child block. This update process will recursively occur 
until it reaches the root block which can be updated in a 
fixed place on disk. We define such a procedure as a 

recursive update. Recursive updates can lead to several 
side effects to a storage system, such as write 
amplification (also can be referred as additional writes) 
[4], I/O pattern alternation [5], and performance 
degradation [6]. This paper focuses on the side effects of 
write amplification. 

Studying the behaviors of write amplification is 
important for designing, choosing, and optimizing the 
next generation file systems, especially when the file 
systems uses a flash-memory-based underlying storage 
system under online transaction processing (OLTP) 
workloads. That’s because the OLTP workloads 
introduce random write access pattern, which would 
trigger the worst case of recursive updates. Besides, the 
flash-memory media would also suffer from the effects of 
high write amplification because of its limited write-
endurance and poor write performance. 

There are many difficulties for evaluating the 
behaviors of write amplification. First, the mainstream 
COW file systems like ZFS [2], BTRFS [3] are running 
in the OS kernel. It is hard to hack these file systems for 
evaluation because of their complex implementation. 
Second, a recursive update process is affected by many 
factors such as the organization of a file system, the 
number of files contained in a file system, the distribution 
of files being accessed, as well as the time epoch a 
checkpoint lasts. It is hard to evaluate how these factors 
influence the write amplification in a real file system. 

To solve this problem, we proposed a typical COW file 
system model based on BTRFS, and verified its 
correctness through carefully designed experiments. By 
analyzing this model, we found that write amplification is 
greatly affected by the distributions of files being 
accessed, which varies from 1.1x to 4.2x. We further 
found that write amplification is also affected by the 
number of files accessed, the number of files contained in 
the file system, and as well as the space utilization of file 
system trees. 

The contributions of this paper are: 
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Figure 1. A file system can be conceptually modeled as a tree made up 
of disk blocks. 

• To our knowledge, the first study to 
systematically analyze the behaviors of write 
amplification caused by recursive updates; 

• Proposed a B-tree based file system model. 
The rest of this paper is organized as follows. In 

Section II, we motivate our work by discussing the 
background of recursive updates. In Section III, we 
describe our COW file system model. Section IV 
describes the methodology of calculation and verification. 
Section V describes the verification results and 
theoretical analysis results. Section VI discusses the 
related work and Section VII concludes our work. 

II. BACKGROUND 

This section provides the background of recursive 
updates. Here, we discuss what is copy-on-write, what is 
the definition of recursive updates, how does it work in 
file systems, and what are their effects. 

A.  What Is COW? 
COW is one of the fundamental update policies used in 

storage systems. The basic schema is never overwriting 
old data. When updating a block with COW policy, the 
data block is read into memory, modified, and then 
written to a new location, leaving the old data unmodified. 
COW update policy has been used vastly in storage 
systems: 

Protecting data: File systems like WAFL [1], ZFS [2], 
and BTRFS [3] use COW update policy to implement 
snapshot for data protection. 

Improving performance: Log-structured file systems, 
such as LFS [7], use COW update policy to transform the 
access pattern from a large amount of small random 
writes to a single large sequential write, which leverages 
the disk sequential I/O semantics. 

Updating data on special media: Write-once-read-
many media, such as optical disk [8], uses COW to 
implement random write. Flash-memory file systems, 
such as CFFS [9], FlashFS [10], JFFS [11], use COW to 
optimize update operations to improve write performance 
and implement wear-leveling. 

Different than COW, the natural update policy is called 
Update-In-Place (UIP), which means the target data is 
read into memory, modified, and then written to disk at 
its original location (overwriting the old data).  

B.  What Is the Definition of Recursive Updates? 
File systems can be conceptually modeled as a tree of 

disk blocks, as seen in Fig. 1. The file system tree rooted 
at the super block. Inodes are the immediate children of 
the root, and they in turn are the parents of data blocks 
and/or indirect or even double-indirect blocks. Thus, 
every allocated block with the exception of the super 
block has a parent.  

COW update policy causes recursive updates in a file 
system tree. In COW file systems, a modification to a 
disk block is always written to a newly allocated block, 
which recursively updates the appropriate pointers in the 
parent blocks. Fig. 2 illustrates this process. When the 
application requests to modify the block f, the block f is 

not modified directly. Instead, a new block F is allocated, 
and then the data in f is copied to F, and then requested 
modifications are made in F. However, the modified data 
in block F cannot be seen by the file system until its 
block address has been updated in its parent block d. This 
means that the modification to the child propagates to its 
parent block. Furthermore, this modification to the parent 
block will continue propagating along with the child-
parent path until it reaches a special node which can be 
modified at a fixed place. We define such a procedure as 
a recursive update. 

In order to mitigate the overhead of recursive updates, 
COW file systems usually use a checkpoint (or 
transaction) mechanism. The checkpoint (or transaction) 
mechanism is used to accumulate updates in memory and 
apply them all at once to form a consistency view of the 
whole file system structure. (In the following, we refer 
checkpoint as the operation of flushing all modified data 
to disk, while referring transaction as the process of 
accumulating updates and flushing them back during two 
contiguous checkpoints.) As seen from Fig. 2, after the 
last transaction is flushed to disk, a new transaction will 
start. Within the transaction, modifications to a block 
only trigger its COW operation once at the first time it is 
modified, which means a previously modified block can 
be updated in place. Finally, the transaction commit 
operation will perform a checkpoint. Several conditions 
can trigger the commit operation, such as a calling to 
fsync, a write-operation with O_SYNC flag, the number of 
modified blocks reaches a predefined upper limit, as well 
as the current transaction is timeout (usually 30s).  

C.  What Are the Effects of Recursive Updates? 
Here, we identify three side effects of recursive 

updates: 
Write amplification: Recursive updates may cause 

write amplification. As shown in Fig. 2, the application 
only needs to modify one leaf data block f, however, the 
recursive update causes a total of four tree blocks (super, 
A, D, F) modified. So, the data actually flushed is as high 
as 4x of the data requested. In practice, the amount of 
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Figure 3. The overview of BTRFS. BTRFS is structured as several 
layers of COW-friendly B-trees. 
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Figure 2. Recursive updates within a transaction in COW file systems. 

blocks modified may be higher, since the recursive 
updates caused by block allocation/release are ignored in 
this case. 

I/O pattern alternation: Recursive updates may change 
the I/O pattern at the underlying storage. As shown in Fig. 
2, suppose that block f is a large contiguous data extent, 
while recursive updates cause additional tree blocks 
modified (which usually are 4KB-sized). These tree-
blocks are unlikely to be contiguously stored together, 
thus making the I/O pattern be altered from large 
sequential writes to small random writes. 

Performance degradation: The above effects 
eventually degrade the file system performance. Write 
amplification introduces additional data to write. Access 
pattern alternation may result in poor performance at the 
underlying storage. 

In this paper, we only focus on the effect of write 
amplification.  

III. ANALYTICAL MODELING 

In this section we discuss our BTRFS based file system 
model. First, we give a brief introduction of BTRFS and 
its core data structure B-tree, and then we proposal a 
simple model for B-tree, and then derive it to a B-tree 
based file system. 

A.  Introduction to BTRFS 
BTRFS (B-tree file system) is a GPL-licensed COW 

file system for Linux, which is intended to address the 
lack of pooling, snapshots, checksums and integral multi-
device spanning in Linux file systems. 

BTRFS uses COW-friendly B-trees to store metadata 
and extents to organize file data. A COW-friendly B-tree 
[12] is a variant of a standard B-tree. It adds reference 
counts and removes the leaf linking to the balancing 
algorithms of a standard B-tree. A B-tree in file systems 
is made up of tree blocks. Various data types are stored in 
such tree blocks as generic items, which are sorted by 
136-bit keys. Extents are contiguous runs of disk blocks, 
which contain only file data. 

BTRFS is structured as several layers of COW-friendly 
B-trees, as seen in Fig. 3. The most important trees in 
BTRFS are Root Tree, Extent Tree and FS Tree. Root 
Tree is a tree of tree roots, which stores the roots of 
Extent Tree, FS Tree, etc. Extent Tree tracks space 
allocation for both metadata and data. FS Tree contains 
the user-visible files and directories, which are 
represented by inode items. Within each directory, 
directory entries stored as directory items. File data are 
kept outside the tree in data extents, which are tracked by 
extent data items. The key assigning policy used in 
BTRFS makes all the items related to the same file be 
stored together. 

Supposing that a COW file system like BTRFS 
contains N files, each of which only takes up one data 
block (or extent). If we need to modify x files with 
rewrite-4k-operation, how many additional writes it 
would cause? To answer this question, we first discuss a 
simpler question on a single B-tree with COW update 
mechanism, and then we derive the results to a COW file 
system. 
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220 ... 250
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Figure 4. An example of COW-friendly B-trees. Leaf-nodes contain 
key-data pairs, all of which are in the same level. Index-nodes contain 

key-pointer pairs, which are used for accelerating the key-data pair 
lookup process. 

Figure 5. The best case of recursive updates. All modified k key-data 
entries are compacted into a minimum sub-tree, then ⌈k⁄md+1-i⌉ nodes at 

level i would be modified. So total nodes modified would be 
∑ i=1

d⌈k⁄md+1-i⌉. 

Figure 6. The worst case of recursive updates. All modified k key-data 
entries spread out totally, which causes k nodes at each level from 

level d to a level j + 1, where mj-1 ≤ k < mj. Then all the nodes above 
level j + 1 would be modified. We can resolve j = ⌊log m k⌋ + 1. So total 

nodes modified would be ∑ i=1
jmi-1 + k * (d -j). 

B.  Recursive Updates in a Single B-tree 
In this subsection we discuss how is COW-friendly B-

tree organized, and what are the best and worst effects of 
recursive updates on such B-tree. 

 
1) COW-friendly B-trees 
The B-tree discussed here is made up by individual 

nodes where each node takes up 4KB of disk space, see 
Fig. 4. There are two kinds of nodes: leaf-node containing 
the key-data pairs, and index-node containing the key-
pointer pairs using minimum-key rule. A pointer points to 
the root of a sub-tree in which all the keys are greater or 
equal to the key in the key-pointer pair. Index-node is 
used to accelerate the key-data lookup process.  Each 
node in the tree except the root-node has entries 
between M and 2M +1. The root-node has entries 
between 1 and 2M + 1. M is defined as the order of the 
B-tree. 

Suppose we need to modify k key-data pairs in the 
leaf-nodes under COW mechanism, how many tree node 
modifications (additional writes) would be caused due to 
recursive updates? The result to this question varies 
greatly depending on the distribution of the key-data pairs 
being modified as well as the number of entries in each 
node. Instead of discussing a generalized distribution, we 
will discuss two special distributions: the best case and 
the worst case, which would give us a boundary of the 
additional writes. Worst means that the corresponding 
distribution causes the most serious additional writes, 
while the best means the least additional writes. For 
simplicity, we also assume that the number of entries in 
each node is a fixed value m, which represents the 
average number of entries in a node of the B-tree. 

 
2) The Best Case 
The best case of modifying k key-data entries is that all 

the entries are compacted together in a minimum sub-tree, 
see Fig. 5. The number of leaf-nodes need to be modified 
is ⌈k ⁄ m⌉, and the number in the upper level is ⌈k ⁄ m2⌉.  So 
on it would follow that at level i there is ⌈k ⁄ md+1-i⌉ nodes 
to be modified. Finally, the number of the tree nodes need 
to be modified is: 

            ⎡ ⎤∑
=

−+=
d

i

id
best mkkdmM

1

1),,(  (1) 

3) The worst Case 

The worst case of modifying k key-data entries is that 
all the entries spread out evenly, see Fig. 6, which 
causes k nodes to be modified at each level from a 
level j+1 to level d, and then all nodes above level j+1 are 
modified, where j should meet mj-1≤k<mj, that 
is j=⌊logmk⌋+1. So the total nodes need to be modified 
is ∑i=1

jmi-1+k*(d-j). Finally, the number of the tree nodes 
need to be modified is: 

( )jdk
m

m
kdmM

j

worst −+
−
−= *
1

1
),,( ,    

where ⎣ ⎦ 1log += kj m   (2) 

C.  Recursive Updates in a B-tree File System 
A B-tree file system is more complex than a singular 

B-tree. Here we model a BTRFS based COW file system 
for discussing. 

 
1) B-tree file system model 
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Figure 7. The B-tree file system model. Four components: super block, root-tree, reference-tree, as well as files-tree. Reference-tree records the 
space allocation. Files-tree records all the files metadata. Root-tree records the root of all other trees. 

The modeled file system, see Fig. 7, is composed of 
one super-block, and three COW-friendly B-trees: root-
tree, reference-tree and files-tree. 

• Super-block: The super-block contains the block 
address of root-node of root-tree, as well as other 
global information in a common file system. 

• Root-tree: The root-tree stores the block 
addresses of the roots of all other B-trees. Since 
the root-tree is quite small, we omit it in the later 
analysis. 

• Reference-tree: The reference-tree stores all the 
reference information of disk space allocation, 
which includes the address information (start 
address and length), the reference count, as well 
as the owners. 

• Files-tree: The files-tree stores all the file 
information, which includes inode and data 
extent mappings. Each inode represents a file, 
which can be a regular file or a directory file. 
Each file has one or more extent mappings, 
which maps file linear space to disk space by 
extents. 

The modeled file system updates using COW 
transaction model to ensure data consistency. Its behavior 
is like a single B-tree’s COW operation, but a little more 
complex because of space allocation management. When 
allocating or releasing space, the reference-tree would be 
modified, while this modification will cause new space 
allocation/release. This process will recursively occur 
until the space allocation and nodes modification get 
balanced in the transaction. This balance can be met 
because COW operation is only performed once at the 
first time when a node is modified in the current 
transaction. 

The modeled file system manages the disk space 
allocation by dividing the space into metadata space and 
data space. All the tree-nodes are allocated from the 

metadata space, and file data extents are allocated from 
the data space. To improve the write performance, the file 
system applies lazy-allocation policy and allocates space 
sequentially. 

 
2) The depth of the trees 
Suppose there are already N files in the file system, 

then there would be N inodes entries and N data extent 
mappings entries in the leaf-nodes (assuming each file 
only has on extent), that is 2N entries in the files-tree. 

So the depth of the files-tree dfiles would be: 

                      ⎡ ⎤)2(log Nd mfiles =  (3) 

While in order to compute the depth of the reference-
tree, we need to figure out how many blocks are allocated, 
including data blocks, file-tree blocks and reference-tree 
blocks. The number of data blocks is N. The files-tree has 
a number of Bfiles tree blocks: 

           ∑
=

−

−
−==

files filesd

i

d
i

files m

m
mB

1

1

1

1
 (4) 

Suppose there are Bref tree blocks for reference-tree, 
the reference-tree would have entries of Bref + Bfiles + N. 
So the depth of the reference-tree dref meets: 

        ( )⎡ ⎤NBBd filesrefmref ++= log  (5) 

Meanwhile the total tree blocks of reference-
tree Bref would be: 

               ∑
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ref refd
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 (6) 
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According to (4), (5) and (6), we can get the 
following y = f(y) type equation (How to resolve this kind 
of equation refers to Appendix A): 

⎥
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filesref dd

mref
1

1
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log

 (7) 

From the above, when the number of files N is known, 
we can calculate the depth of files-tree dfiles and the depth 
of reference-tree dref. 

 
3) The bound of additional writes 
We return to the question which is asked at the 

beginning of this section: Suppose there are x files need 
to be re-written one block each, how many tree blocks 
would be modified? The answer to this question varies 
greatly depending on the distribution of x accessed files. 
Here we discuss the worst situation and the best situation. 

The worst situation is all the files being accessed are 
randomly selected. Re-writing x files data means to 
modify x inodes for updating time-stamps and x data 
extent mappings for mapping new data extents, as well as 
allocating x data extents in reference-tree for COW 
mechanism. Since the x files random accessed as well as 
inodes and data extent mapping of a file are stored 
together, the files-tree is trigged the worst case of COW 
with x leaf-nodes modified. So the total tree-blocks need 
to be modified in the files-tree are Mworst(x), which causes 
the same number space allocation in the reference-tree. 

Suppose there are yworst tree blocks need to be modified 
in the file system, so the reference-tree would need to 
modify yworst entries sequentially, which is the best case 
of COW. Besides, allocation x data extents 
causes x entries in the reference-tree sequentially 
modified, which is a best case too. So we get 
following y = f(y) type equation: 

),,(),,(

),,(

worstrefbestrefbest

filesworstworst

ydmMxdmM

xdmMy

++
=

   (8) 

The best situation is all the files being accessed are 
sequentially selected, in which situation the files-tree is 
trigged the best case of COW with 2x leaf-nodes 
modified. And then the chain effect to the reference-tree 
is the same with the worst situation. Suppose there 
are ybest tree blocks need to be modified in the file system, 
so we get following y = f(y) type equation: 

  
),,(),,(

)2,,(

bestrefbestrefbest

filesbestbest

ydmMxdmM

xdmMy

++
=

    (9) 

Finally, total tree blocks need to be modified under 
COW model ycow(x) would meet: 

                    worstcowbest yxyy ≤≤ )(  (10) 

The accurate value of ycow(x) is determined by the 
actual distribution of x accessed files in the files-tree. 

IV. METHODOLOGY 

This section talks about how we calculate and verify 
the COW file system model. 

A.  Calculate the Model 
From all the above equations, we can know that the 

overhead of recursive updates is in the range [ybest, yworst]. 
And the range bounds are determined by the average 
entries in each node m, the number of files in the file 
system N, as well as the number of files accessed x. 

Suppose the tree block is 4KB-sized, and each key-
pointer pair takes up 32B (a key takes up 24B, and a 
pointer takes up 8B), then the value of m should be in the 
range [64,128]. Yao [13] pointed that the space utilization 
in the B-trees is about 69%, from which we can 
set 128 * 69% as the reference value of m, that is m = 
88.32. 

According to Meyer’s research [14], the average 
number of files in file systems reaches about 640,000, 
which can be set as the reference value of N. 

The number of files accessed in a transaction varies 
greatly depending on the workloads and the file system’s 
configuration. Here, we use 100 as a reference value. 

In the following, we use MATLAB to analyze the 
effects of above parameters on the behaviors of write 
amplification caused by recursive updates. 

 

B.  Verify the Model 
The basic idea of verifying the model is to measure 

write amplification of recursive updates in a real BTRFS 
under the simulated best/worst cases, and then compare 
them to the theoretical results. 

 
1) Write amplification measurement 
In order to measure the write amplification, we hacked 

into BTRFS to count the following two metrics: the 
amount of data flushed (denoted as Ndata) and the amount 
of metadata flushed (denoted as Nmeta). The two counters 
are reset to zero and start to count when BTRFS is 
mounted, the counting stops and results are written to the 
system log when BTRFS is dismounted. The write 
amplification (denoted as rw.a.) discussed here is 
calculated as the ratio of data actually flushed by file 
system and the data modified by upper application during 
one test (rw.a. = (Ndata + Nmeta) / Ndata). 

 
2) Best/worst workloads simulation 
The key to simulate the best/worst workloads is to 

acquire relative locations of all the files in the file system 
tree, and then lunch modifications to the files at some 
special locations. To acquire the relative location, we can 
create predefined number of files (each file is 4KB-sized) 
in a blank BTRFS under the same directory, and each file 
is given the creating sequential number as its name. The 
name roughly represents the relative location of a file. 
The reasons are as following: (i) each file created in 
BTRFS has been assigned an internal id ino, which 
represents the file’s creating sequence since it is allocated 
with the policy of last allocated ino+1; (ii) The FS-tree in 
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Figure 8. Accessed Files vs. Write Amplification for BTRFS and 
Theoretical Model 

Figure 9. Write amplification impact of the number of files being 
accessed. 

BTRFS stores the metadata of files in key-item manner 
where keys represent the locations of metadata, and the 
determinant part of such a key is ino. Suppose we need to 
modify x files, how do we select the target files? To 
simulate the best case, we select the x files sequentially 
from the first created file. To simulate the worst case, we 
select the x files by spreading out the x files evenly 
among all the created files. 

 
3) Experimental setup 
We conducted our experiments on a Dell Precision 490 

workstation, which consists of 2 dual-core Intel(R) 
Xeon(TM) CPUs at 3.0GHz, 2GB RAM, and two internal 
SATA disks (One is 80GB, the other is 250GB), as 
shown in TABLE I. The workstation was running the 
Ubuntu-10.04.3 Linux distribution with kernel 2.6.32-33-
generic. All of the benchmarks were executed on the 

internal 250GB SATA disk. To reduce the noise of other 
non-related applications in the experiments, we disabled 
as many system services as possible. 

 
4) Test procedures 
In order to verify the model, we suppose there are 

640,000 files in BTRFS, and the order of B-trees is 88. 
The number of files being accessed varies from 10 to 500 
with a step of 10. All the evaluation experiments are 
conducted in three steps: (i) format the BTRFS and then 
create predefined number of initial files; (ii) remount 
BTRFS to reset the count to zero; (iii) run the evaluation 
(best/worst case workload) and read the data after 
dismounting BTRFS from system log files. Each 
experiment was conducted nine times. 

V. EVALUATION 

In this section we discuss the results of verification and 
model analysis. 

A.  Verification Results 
The theoretical model simulates the behavior of write 

amplification in BTRFS quite well, as shown in Fig. 8. In 
the worst case, although the two curves of theoretical 
model and BTRFS show some significant differences 
when the number of files being accessed are in the range 
of [10, 50], the two curves become nearly fitting together 
when the number of files being accessed are in the range 
of [50, 500]. In the best case, the two curves of 

theoretical model and BTRFS show a trend of fitting 
together, even though the results of BTRFS is slightly 
higher than theoretical model. The reason of those 
differences is partly because the real file system BTRFS 
has some additional update features than our model (such 
as writing multi-copies of the super-block for backup), 
which causes some kind of fixed additional writes to the 
results of our model. The effect of these additional writes 
is significant when the number of files being accessed is 
small. However, it becomes negligible when the number 
of files being accessed is big. This indicates that our 
theoretical model can simulate the behavior of write 
amplification in BTRFS quite well, and so it’s reasonable 
to use this model to analyze the behaviors of write 
amplification in BTRFS-like COW file systems.  

B.  Modeling Results 
In the following, we discuss how the write 

amplification is affected by the number of files being 
accessed in a transaction, the number of files contained in 
a file system, and as well as the space utilization of B-
trees. 

TABLE I.   
EXPERIMENTAL SETUP 

Items Description 

CPU Intel ® Xeon ™ 3.0GHz * 4 

RAM 2GB 

DISK-sys 80GB 

DISK-test 250GB 

OS Ubuntu-10.04.3 64bit with Linux-2.6.32-33-
generic 
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Figure 10. Write amplification impact of file system scale. Figure 11. Write amplification impact of B-tree space utilization. 

1) Accessed files vs. write amplification 
The write amplification is reduced when the number of 

files being accessed is increased, as shown in Fig. 9. In 
the worst case, the write amplification is reduced from 
4.9x to 4.0x when the number of files being accessed 
increased from 10 to 100. In the best case, the write 
amplification is reduced from 2.2x to 1.1x when the 
number of files being accessed increased from 10 to 100. 
The reason for this behavior of write amplification is that 
multi leaf-nodes share the same index-nodes in a file 
system tree, which means even though the number of 
leaf-nodes modified are increased, the number of related 
index-nodes might still remain the same. So the whole 
write amplification is reduced. This indicates that 
increasing the number of files being accessed during each 
transaction can reduce the effects of write amplification. 

 
2) Files contained vs. write amplification 
The write amplification is increased when the number 

of files contained in a file system is increased, as shown 
in Fig. 10. In the worst case, the write amplification is 
2.1x when the number of files contained in a file system 
is from 100 to 1,600 files. And the value is increased to 
3.2x when the number of files contained is from 6,400 to 
100,000 files. And the value is increased to 4.2x when the 
number of files contained is from 400,000 to 25.6 million 
files. In the best case, the write amplification is 1.1x 
when the number of files contained in a file system is 
from 100 to 1,600 files. And the value is increased to 
1.2x when the number of files contained is from 6,400 to 
100,000 files. And the value is increased to 1.3x when the 
number of files contained is from 400,000 to 25.6 million 
files. The reason for this behavior of write amplification 
is because the height of a file system tree is mainly 
decided by the number of files contained in that file 
system. The more files it contains, the higher the file 
system tree it would be, and the more additional writes it 
would cause. So the whole write amplification is 
increased when the number of files contained in that file 
system is increased. This indicates that reducing the 

number of files contained in a file system can reduce the 
effects of write amplification. 

 
3) B-tree space utilization vs. write amplification 
The write amplification results of the best case and the 

worst case show different patterns when the B-tree space 
utilization varies from 55% to 100%, as shown in Fig. 11. 
In the worst case, the write amplification is increased 
from 3.9x to 4.1x when the space utilization is increased 
from 55% to 80%, while the write amplification remains 
the same value of 3.1x when the space utilization is 
increased from 85% to 100%. The reason for this 
behavior of write amplification is that the distribution of 
files being accessed is spread out evenly among the leaf-
nodes of the file system tree, and the number of related 
index-nodes of the tree is increased as the space 
utilization increased while the total files being accessed 
remains the same, so the write amplification is increased 
with the increasing space utilization. While when the 
space utilization is increased to some threshold, the 
height of the tree is reduced, so the whole write 
amplification is reduced. In the best case, the write 
amplification remains the same value of 1.1x when the 
space utilization increased from 55% to 100%. The 
reason for this behavior of write amplification is because 
the distribution of files being accessed is aggregated at a 
smallest sub-tree, and even though the space utilization is 
increased, the related index-nodes remain nearly the same, 
so the whole write amplification is unchanged. This 
indicates that the space utilization can affect the write 
amplification, and improves the space utilization can 
significant reduce the write amplification. 

VI. RELATED WORK 

COW is used vastly in storage systems. File systems 
like WAFL [1], ZFS [2], and BTRFS [3] use COW 
mechanism to implement snapshot or clones for data 
protection. Log-structured file systems, such as LFS [7] 
use COW update policy to transform amount of small 
random writes to a single large sequential write to 
leverage the disk sequential I/O semantics. Write-once-
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read-many media such as Optical Disk [8] uses COW to 
implement update operation. COW is also used to 
improve write performance and implement wear-leveling 
on flash-memory media both in file system level [10, 11, 
15, 9] and flash translation layer level [16, 17]. 

The basic schema to reduce the overhead of recursive 
updates is the cache technique. File systems [7, 1, 2, 3] 
apply transaction update mechanisms to cache multiple 
updates in volatile memory during each transaction, in 
which COW operations are triggered only once on each 
modified block. Unfortunately, this transaction 
mechanism fails when encountering the synchronous 
writes I/O patterns, since each synchronous write requires 
flushing the current transaction. To avoid this 
circumstance, ZFS [2] provides ZIL (intent log) write 
cache to store a transaction group until it has safely been 
written to disk, which keeps the synchronous writes 
semantics and caches the recursive update. Reducing the 
size of the actual update data also can reduce the 
overhead of recursive updates. Inode map is the parent 
node of all the file inodes in the file system tree. By 
splitting the inode map into multiple pieces, recursive 
updates in LFS [7] would only cause a small subset of the 
whole inode map to be updated. Another way to reduce 
recursive updates is to find the smallest update tree of all 
the initial updates and make sure the recursive update 
stop at its root by modifying its parent update in place. 
This technique requires the special design of the 
hardware, which is implemented in byte-addressable 
phase-change-memory system PBFS [4]. Recursive 
updates also exist in nameless writes SSD systems. Zhang 
et al. [18] proposed segmented address space to 
circumvent it. The segmented address space consists of a 
(large) physical address space for nameless writes (like 
COW), and a (small) virtual address space for traditional 
named writes (like UIP). The basic idea is to store the 
metadata into virtual space, while file data into physical 
space. So the recursive updates triggered by modifying 
file data would stop at the virtual space. 

VII. CONCLUSIONS 

We proposed a model to analysis the behaviors of 
write amplification of BTRFS-like COW file systems. 
We conducted real experiments on BTRFS, and verified 
that our model simulates the write amplification 
behaviors of BTRFS quite well. Through analyzing this 
model, we found that write amplification is greatly 
affected by the distributions of files being accessed, 
which varies from 1.1x to 4.2x. We further found that by 
increasing the number of files being accessed during a 
transaction, and reducing the number of files contained in 
a file system, and as well as increasing the space 
utilization of B-trees to some threshold, we can reduce 
the write amplification significantly. 

APPENDIX A  RESOLVE Y = F(Y) EQUATION 
From previous discussion, we can know that y is an 

integer, and y ≥ 0, and f(y) ≥ y always to be true. So we 

can use following algorithm to resolve this type equation 
efficiently, see Algorithm 1. 

 
Algorithm 1  Resolve y = f(y) type equation 
Require:  target function f(x)    

x ← 0  
y ← f(0)  
while x≠y do  

x ← y  
    y ← f(x)  
end while 

    return  y 
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