
Design Issues of Shingled Write Disk for Database
Table Implementation

Soror Sahri
Université Paris Descartes

Laboratoire d’Informatique Paris Descartes

45 Rue des Saints Pères

75270 Paris, France

Soror.Sahri@ParisDescartes.Fr

Thomas Schwarz, S.J.
Universidad Católica del Uruguay

Informática y Ciencias de la Computación

Av. 8 de Octubre 2738

11600 Montevideo, Uruguay

TSchwarz@Calprov.org

Abstract—To maintain the continuing growth of bit density
in magnetic recording media, the disk industry will have to
change technologies. Shingled write disks are expected to be
the next generation of high capacity magnetic disks and already
in prototype. Shingled write technology is not disruptive at the
level of disk design and manufacturing, but as shingled writes
prevent updates in place, the technology is disruptive at the level
of usage. It is possible to design a disk device driver or disk
firmware that allows a shingled write disk to be used as a drop
in replacement for traditional disks. Database implementations
however have traditionally bypassed the file system and accessed
the disk directly in order to achieve better performance. We
discuss here adaptation of B+-trees and linear hash tables to
shingled write disk to support indexed database tables and
secondary indices. Our proposal is based on dividing the disk in
low-capacity Random Access Zones (RAZ) and high capacity Log
Access Zones (LAZ). The LAZ use the shingled disk effectively
while RAZ places guard bands around each track in the zone in
order to regain the capacity of in-place updates at the costs of
loosing capacity.

I. INTRODUCTION

Disk drive capacity has grown from 5MB for the IBM

RAMAC 305 in 1956 to 1TB disks in 2013. To continue this

growth rate, the current design of disks needs to change. The

superparamagnetic effect for perpendicular recording stands

at about 1 Tb/in2 [50]. To overcome this boundary, one can

change the medium or one can change the strength of the

magnetic field. Solutions using both approaches are actively

sought and the likely road map for the industry includes both,

including Bit Patterned Media Recording (BPMR) and Heat

(or thermally) Assisted Magnetic Recording (HAMR). Even

before the introduction of these changes which will transform

the design and manufacturing process of magnetic drives, we

will most likely see the introduction of shingled write disks.

Seagate is starting to ship shingled write disks in 2014. The

write head in a shingled write disk has a stronger magnetic

field that is assymetric, focused in one direction and diffused

in the other. Writing with the assymetric write head destroys

data in tracks parallel to the one being written but only in one

direction. A shingled write disk overlaps the currently written

track with the previous track, leaving only a relatively narrow

strip of the previous write track untouched. While this remnant

is only a fraction of the written track, it is still sufficiently wide

to be read with current GMR heads. The overall results are

tracks placed closer together. Since a stronger magnetic field

is used, the data density inside a track is also higher. The

combination of higher track and higher bit density in a track

gives a density increase estimated conservatively to be at least

2.3 times [51]. Both BPMR and HAMR are expected to use

shingled writing.

In comparison with the development and manufacturing

impact of BPMR and HAMR, the current design and man-

ufacturing process for shingled write disks does not change

dramatically. The main burden of their introduction will be on

the user of these devices. Since current disks allow writes at

a random location, a direct drop-in replacement of a current

disk by a shingled write disk is not possible. A possible

solution could use a block translation layer that gives the view

of a traditional disk, but reassigns dynamically logical block

addresses to physical block addresses. This is similar to a

Flash Translation Layer (FTL) used for flash based devices

to mask the peculiarities of the read-erase-write cycle in flash

and present an interface in which individual pages are read

and over-written. More likely is a combination with Non-

Volatile Random Access Memory (NVRAM) such as a flash-

based solid state disk, possibly packaged as a single device,

a “combo-disk”. Using NVRAM as a large cache, only cold

data needs to be stored on the shingled write disk.

Historically, database implementers have circumvented the

file system in order to obtain the performance needed for

transaction support. The work of Sears et al. shows that access

to binary objects stored in a database is better if the object

size is less than 256 KB and access for objects through the

file system is better for objects larger than 1 MB [48]. There

is no reason for us to assume that this difference is going to

change. Databases just do not generate a “normal” load for

which file systems are designed. The development of storage

technology with larger RAM, the introduction of intermediate

Non-Volatile Random Access Memory (NVRAM) such as

flash and in the future Storage Class Memories (SCM) is

pushing many database products towards using disks not at

all or only as an archival medium. Often, the limiting factor

for a database is not the storage capacity of a disk but its I/O

bandwidth, which has not grown at the same rates as capacity.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2247

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.10.2247-2257

We can say colloquially that a database needs actuators, not

platters. As database applications and sizes widely differ, we

assume that a small, but in absolute numbers large group of

databases will still continue to use magnetic disk because of

their attractive GB per dollar ratio. Many other will migrate

towards in-memory and using NVRAM, especially SCM once

they become available.

In this paper, we investigate the design changes necessary

for databases wishing to use a shingled write drive with little

or no support from NVRAM. We argue that databases as

applications will still continue to use the shingled drive as a

raw device and should use specialized data structures in order

to do so. We propose an adaptation of the B+-tree and of

linear hashing to shingled writing. Of course, a database needs

the disk for much more than just storing tables. Other needs

such as the creation and management of temporary tables or

logging are as efficient using shingled write disks as they are

for current disks. In fact, since shingled write disks do not

allow as much fragmentation, we can even expect that writing

and reading large, temporary tables or writing and reading

logs is more efficient in shingled write disks. Because of time

and space constraints, we have to postpone an experimental

evaluation of the proposed data structures for future work.

II. SHINGLED WRITE TECHNOLOGY

With the adoption of NAND flash technology for storage

as Solid State Disks (SSD), the role of magnetic disks is

slowly changing towards a more archival role as the medium

of choice for bulk storage. However, for the near future, the

bulk of stored information will be magnetically recorded on

hard disks because of their high data density and their low cost.

The disk drive industry is striving to maintain the high rate of

annual increase in areal density of 30% and recently of 40%

per year [16]. Further increase (from 500 Gb/in2 to beyond

1Tb/in2) will soon be limited by the super-paramagnetic effect,

which creates a trade-off between the media signal-to-noise

ratio, the writeability of the media by a narrow track head,

and the thermal stability of the media. Chan et al. call this

the media trilemma [8], following the practice at Seagate.

Various approaches to overcome the media trilemma have

been proposed; of these, shingled writing offers a solution

that can be implemented without solving major technological

obstacles. In any case, the current predictions for the evolution

of magnetic drive technology presume shingled writing first

and then in conjunction with other methods of increasing data

density [50].

One possible approach to address the super-paramagnetic

limit is to radically change the makeup of the magnetic layer,

as is done in Bit Patterned Media Recording (BPMR) [43].

BPMR stores individual bits in lithographically defined “mag-

netic islands,” essentially densely stippled protrusions. In

addition to the challenge of manufacturing surfaces with such

islands, writes need to be synchronized with the location of

the islands.

A second approach to increasing density temporarily

changes the receptivity of a standard magnetic layer by “soft-

Fig. 1: Operation of perpendicular magnetic recording. In

contrast to longitudinal recording, the magnetic field has to

enter the recording track twice.

Fig. 2: Corner write head for shingled writes.

ening” the magnetic material, making it easier to magnetize.

This can be done with microwaves (Microwave Assisted Mag-
netic Recording—MAMR, [59]) or by heating the writing area

with a laser (Heat Assisted Magnetic Recording— HAMR [6],

[30], [46], or Thermally Assisted Magnetic Recording [38]). A

temporary softening of the magnetic media allows the use of

smaller magnetic fields, which in turn allows a smaller area

to be magnetized as the softened region can be smaller than

that affected otherwise by the magnetic field.

Both approaches offer significant construction and manu-

facturing challenges and require significant changes in current

magnetic disk design.

While early hard drives used an electromagnet for writing

and reading, separate read heads using Magneto-Resistance

(MR) and Giant Magneto-Resistance (GMR) came into use

starting in 1996 and 2000, respectively. Write heads need to

control the magnetic field whose flux emanates from the head

and needs to return to it without erasing previously written

data. While perpendicular recording (Fig. 1) allows much

more stable magnetization of the magnetic grains (and hence

higher data density), the flux not only has to enter through the

recording media in order to do its desired work, but also has to

return back through the media to the head. In order to protect

2248 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

already stored data, the return flux needs to be sufficiently

diffused, which limits the power that the magnetic field can

have.

A weaker magnetic field allows a good focus of the flux

and protects previously written data well, but lacks strength to

magnetize permanently. A stronger magnetic field magnetizes

permanently, but needs larger track widths to protect adjacent

data. Shingled writing addresses this problem by allowing data

in subsequent, but not prior, tracks to be destroyed during

writes. Shingled writing uses a write head that generates an

asymmetric, wider, but much stronger field that fringes in

one lateral direction, but is shielded in the other direction.

Figure 2 shows a larger head writing to track n, as used

by Greaves et al. in their simulations [21]. Because of the

larger pole, the strength of the write field can be increased,

a more stable (but harder to write) magnetic medium used,

which together allows a further reduction of the grain size. The

sharp corner-edge field brings a narrower erase band towards

the previous track, enabling an increase in the track density.

Shingled writing overlaps tracks written sequentially, leaving

effectively narrower tracks where the once-wider leading track

has been partially overwritten. Reading from the narrower

remaining tracks is straightforward with current technologies.

Taken together, smaller grain size and increased track density

result in an areal density increase by a factor of at least 2.5 [51]

and possibly higher (3–5) according to our industry sources.

Greaves et al. modeled shingled writing and found a maximum

density of 3 Tb/in2 [21].

While BPMR, HAMR, and MAMR offer daunting chal-

lenges at the level of device engineering, the bulk of the

challenges and opportunity for shingled writing lie at the sys-

tems architecture level. The major, but significant, functional

difference of shingled writing is that in-place overwrites of

data in a track destroy the data in subsequent tracks.

With or without shingled writing, we need to avoid erasing

data on adjacent tracks when writing (inter-track interfer-
ence, and this limits the density of tracks. Two-Dimensional
Magnetic Recording (TDMR) [7], [26], [27], [8] turns this

inter-track interference from an obstacle into an instrument.

Using more sophisticated signal processing [27], [57] and

write encoding, TDMR reads from several adjacent tracks and

decodes the signal from the target track taking account of

inter-track interference. In a traditional disk architecture with a

single read head, reading a single sector with TDMR involves

reading the sectors on adjacent tracks, requiring additional

disk rotations. To avoid this problem, TDMR disks could

use multiple read heads on the same slider, thus restoring

traditional read service times. TDMR presupposes shingled

writing, but shingled writing can be used without TDMR.

While shingled write disks already exist in prototype, much

research and development is still needed to assess the viability

of TDMR.

Shingled writing can be used alone or in conjunction with

other new magnetic recording technologies. Shiroishi and col-

leagues recently proposed a possible transition path to incor-

porate these future technologies [50]. Perpendicular Magnetic

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

Stretch Stretch

Log Access Zone Random Access Zone

Tracks

Fig. 3: Shingled write disk layout with Log Access Zone

(LAZ) and Random Access Zone (RAZ).

Recording (PMR) reaches densities of up to 1 Tb/in2. The next

generation of technologies might use BPMR in conjunction

with HAMR or MAMR and Shingled Write Recording, with

a transitional use of Discrete Track Recording (DTR) as a

predecessor to BPMR. This set of technologies could reach

5 Tb/in2. With TDMR in the mix, they see the possibility

of densities of 10 Tb/in2. The Information Storage Industry

Consortium targets this density for 2015, enabling 7 TB and

more in a single 2.5” disk at a cost of about $3/TB [28], [29].

Whatever the challenges involved in maintaining the road

map, shingled write disks are about to ship. Other approaches

(BPMR, HAMR, MAMR, TDMR) presume this technology

and shingled writing appears to be feasible without major

changes in technology. The influence of flash storage and in

the future of Storage Class Memories (SCM) [29] will push

magnetic recording towards a more archival role. As disks are

a mass-manufactured commodity, we consider it unlikely to

see continuous development of non-shingled write disks, once

this technology has become adopted.

III. RELATED WORK

A. Using Shingled Write Disks

The principal challenges for shingled write disks do not

lie in the design and manufacturing of the drives themselves,

but in their usage as replacements for standard hard drives.

Because shingled write recording destroys information on

tracks in one direction, traditional file systems cannot use shin-

gled write disks without adjustment. A naive solution to the

problem of destructive writes is a read-modify-write operation,

which reads a portion of data from the disk, modifies parts

or all of it, and then rewrites the whole portion back to the

disk. Without several tracks without valid data, the portion that

needs to be read could be a whole disk surface [5].

Kasiraj et al. propose organizing the disk into bands, where

each band stores a single file such as a large multimedia

file [24]. Bands are separated by a guard band of k tracks, so

that a write to the last track in a band does not destroy the data

in the first track of the subsequent band. In general, assigning

a single file to a band is neither necessary nor optimal.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2249

© 2014 ACADEMY PUBLISHER

1.6 1.8 2.0 2.2
L

5

10

15

� Capacity

k�4

k�5

k�6

Fig. 4: Impact of introducing RAZ on the capacity gain L by

shingled writing depending on the size k in tracks of the guard

band.

To solve the problem of the read-modify-write in shingled

writing, we can use some type of remapping between the

addresses of physical blocks and the logical blocks that form

the user interface. Cassuto et al. [5] propose two indirection

methods for shingled write recording. The first method uses

a cache located on disk and organized as a set-associative

cache. A number of bands (Cassuto et al. call them native

regions) map to a single band in the disk cache, which is

itself a band, though possibly smaller. A write goes directly

to the cache region. If the cache region becomes full, it is

garbage-collected, which updates the bands mapped to that

cache region with a read-modify-write. A read first seeks in

the appropriate cache band and if that is unsuccessful, in the

data band. Depending on the cache size ranging from 1% to

10%, Cassuto et al. observed a write overload of 1.5 - 9 and

a total slowdown between 2 and 15. Read performance for

sequential blocks also can suffer notably degradation.

By organizing bands as logs (a layout also proposed by

Amer et al. [2], [3]) with a guard band between the beginning

and the end of the log, Cassuto implements a second cache

level between the set-associative disk cache and the data

stored in fixed position on the shingled disk. At the cost

of higher complexity, this design increases performance. The

performance increase is based in great part by the lower cost

of garbage collection of cache bands.

Amer et al. [2], [3] propose to adapt the design of log-

structured file systems for shingled write disks. They introduce

the notion of a Random Access Zone (Fig. 3) in addition to

Log Access Zones (LAZ). A LAZ consists of bands that store

a log, where head and tail are separated by an additional guard

band. A RAZ consists of a single track band, or with other

words, a single track with several guard tracks on both sides.

This enables in-place change of blocks in the RAZ. Since the

guard tracks protecting a single RAZ track cannot be used to

store data, the use of RAZs diminishes the usable capacity of a

shingled write disk. We define the capacity gain as the ratio of

disk capacity with shingled writing and disk capacity without

shingled writing and denote it by L. Tagawa and Williams

project a capacity gain of α = 2.3 [51]. Devoting a percentage

for RAZ decreases L. Fig. 3 gives the relation between L and

the percent of capacity devoted to RAZ for various width k of

guard bands. It shows that reserving a small portion such as

1% of a platter surface to RAZ does not decrease the capacity

gain by much. Of course, introducing bands and using logs

within the bands introduces additional guard tracks that lowers

the overall capacity gain further, (see below, Fig. 9).

B. Data Structures Tailored to Storage Architectures

Many data structures were developed for RAM only or for

the classical memory hierarchy consisting of virtual memory

and disk. The performance characteristics of other storage

media frequently requires adjustments or even redesign of data

structures. The same is true for shingled write disks.

Tapes consists of several parallel tracks on which blocks

of data are written consecutively. They exhibit relatively large

random access times compared to disk drives. Even though

there is work on how to best use tape as a storage device

(HPTFS [58]), it does not apply to the append only structure

of shingled write disk, as metadata on tape can be updated

in place. Write Once Read Many (WORM) devices such

as optical disks did not allow changing any information

written. Indirection is used heavily in the development of file

systems and data structures [12], [13], [15], [36], [41], [42],

[52]. Shingled write disks differ in offering the possibility to

overwrite and reuse written space.

Flash memory can only be written in complete pages. A

page needs to be erased before it can be written again. This

operation clears all pages in an erase block consisting of

typically 64 or 128 4KB-pages. Each erase-write operation is

slightly destructive and frequently erased pages start to display

high read bit-error rates and become eventually flagged as

unusable. Most flash memory use a Flash Translation Layer

(FTL) in order to achieve “wear leveling” (all pages have about

the same number of writes) and to mask failed pages [14].

Additionally, writes are often considerably slower than read

operations. A number of flash specific file systems exist (for

example [10], [22], [34], [54]. Data structures for use with

flash memory can be of two kinds, they can be “flash-aware”

but used in conjunction with FTL, or they can be built on

“raw” flash memory taking care of wear leveling themselves.

For example, Wu et al. [56] uses a buffer structure in RAM

in order to implement a B-tree. Kang et al. [23] propose the

μ-tree, a variant of the B-tree, that allows any update (even

if it should percolate to the root) by writing a single page,

which contains a path from the root to the node changed. As

information of several nodes has to fit in the same page, the

height of a μ tree can be higher than that of the equivalent

B+-tree, but the performance is not noticeably slower. Li et

al. [33] propose the FD-tree that is a variant of the B-tree that

stores the nodes below the root in continuous runs. We assume

that the future will bring a large scale migration of databases

to using flash and later storage class memory. Databases that

use flash profit if their are being made “flash-aware” as is done

with the Flash-based DBMS [31], with FlashDB [39], et cet.

2250 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

A variety of groups has proposed to build databases using

the principles of log-structured file systems [25], [40]. The

great advantage of log-structured file systems [44], [45], [49]

is the speed of writes as all writes are bundled and directed to

the end of a log. The disadvantage is the cleaning necessary to

reclaim the space occupied by stale data and the potential for

ineffective in order reads (for example when scanning a table).

Even a database that stores data in logs still uses a traditional

disk with its capacity of in-place updates and existing imple-

mentations cannot simply be ported to shingled write disks.

For example, the design of Graefe’s write-optimized B-trees

[17] stores data in logs but still uses in-place updates of index

nodes. In this paper, we follow his strategy for write-optimized

B-trees to design a B+-tree for shingled write disks.

IV. LAYOUT FOR SHINGLED WRITE DISKS

Implementers of databases have traditionally shunned access

to storage systems through the operating system and have

preferred to use direct access for performance reasons [48].

The interface offered by most storage devices is primitive,

modeling the disk as an array of Logical Block Addresses

(LBA). Internally, an LBA is translated to a Physical Block

Address (PBA). This translation also serves to mask faulty

blocks, which are mapped to spare blocks on a track or

possibly even to a spare track. We feel that the introduction

of shingled writing presents a rare opportunity to change the

system-disk interface. However, changes in a standard are dif-

ficult and cannot anticipate or support all usage patterns. The

industry will aim at least for an efficient implementation of the

current interface in order to facilitate a “drop-in” substitute,

which could consist of a shingled drive coupled with a large

flash-based cache. Clearly, any database implementation can

profit from the performance and durability of NVRAM such

as flash or SCM, whether it is provided in a “combo-disk” or

separately. The limited number of erase-write cycles of flash

might however limit the life-expectancy of a combo-disk.

While the standard interface between system and shingled

write disk might be changed so that the system can be aware of

the layout of tracks, we do have to assume this capacity in what

follows. It becomes necessary to reconstruct the track layout

in a disk to define RAZ and LAZ and define the minimal

guard band between tail and head of a log in LAZ. Modern

disk use zoning (zoned constant angular velocity) to vary the

number of blocks in a track. A track in a zone closer to the

center is shorter and cannot store as much data as a track in a

zone on the outside. Even for traditional disks, it is possible to

extract the layout from current disks through observation and

timing of disk commands [1], [47], [55]. This task becomes

considerably simpler for shingled write disks as we can make

use of the destructive nature of a block write on the adjacent

tracks in one direction. After extracting the layout of the tracks

and zones, the shingled write disk is no longer a black box

for the system but a gray box, allowing as often more efficient

use of the disk [4].

Modern disks mask block faults. While most of these faults

are caused by minute defects in the magnetic layer of the

surface created during manufacturing, some faults can appear

during the life time of a disk, for example through repeated

head crashes. Masking is done by allocating from the start

a certain number of spare blocks in each track and even a

certain number of spare tracks evenly distributed throughout

the disk. There is no reason to assume that this practice will

not be continued for shingled write disks. If we start using a

new shingled write disk, we reconstruct the layout including

remapped tracks and blocks. If during the life-time of the disk,

a block becomes faulty and is remapped to another block on

the same track, then this remapping does not disturb our RAZ

/ LAZ layout. It can happen that a track runs out of spare

blocks. In this case, the track needs to be moved to a nearby

spare track. In a shingled write disk, this cannot be done by

just copying the track to its new location, but involves moving

data from all tracks in-between. While more involved than in

traditional disk, this move does not disturb the partition of the

disk in various RAZ, LAZ, or the separation of tail and head

of a log. We conclude that masking new block errors does not

create problems for our proposal.

V. B+ TREE STRUCTURE FOR SHINGLED WRITE DISK

A database table supports a variety of operations such as

scanning, fast access, whether by primary or secondary key,

and often range queries by the primary key. The “work horse”

for the implementation of database tables is the B-tree in its

many variants such as the well-known B+-tree [9]. A page

pool in RAM contains recently accessed disk blocks. To allow

transactional guarantees, we assume traditional write-ahead

logging of content changes and structural changes in the tree.

We also assume frequent checkpointing where dirty pages

from the pool are written back to the shingled write disk.

Efficient implementations on shingled write disks can make

sparing use of data units that can be updated in place, either in

the RAZ, in the flash memory of a combo-disk, or in NVRAM

belonging to the system. We assume here that our system has

no NVRAM and uses only a shingled write disk for permanent

storage. This is appropriate for some, but certainly not for all

database applications.

A. Layout

A Random Access Zone (RAZ) consists of single track

followed by a guard band of k tracks. We can overwrite

its block in place without destroying any data because the

destruction is limited to the tracks in the guard band and

these do not store any data. A track contains 1MB or more of

information, depending on the location of the track. Zoning

allocates fewer blocks to an inside track than to an outside

track, but maintains a constant bit density. We store the upper

layers of the B-tree (“the index”) in RAZ, while we store the

lower part of the tree and at least all the leaf nodes in the Log

Access Zone (LAZ) Figure5. We recall that a block update in

LAZ consists in fetching the page into the page pool in RAM,

updating it, and eventually writing it back at the end of the

log in LAZ.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2251

© 2014 ACADEMY PUBLISHER

Level 1 Node Level 1 Node Level 1 Node Level 1 Node

Root Node

Leaf Nodes

…
RAZ

LAZ

Fig. 5: Assignments of index nodes to RAZ and leaf nodes to the log in LAZ.

TABLE I: Page Utility for B-tree nodes on shingled write disk after [18]

Page Size Records / page Node utility Access time Utility / time Access time Utility / time Access time Utility / time
Configuration: 6000 rot 2 MB track 8000 rot 2.5 MB track 10000 rot 2.5 MB track

4 KB 140 7 11.02 ms 0.647 9.76 ms 0.730 9.01 ms 0.791
16 KB 560 9 11.08 ms 0.823 9.80 ms 0.932 9.04 ms 1.010
64 KB 2240 11 11.31 ms 0.984 9.94 ms 1.120 9.15 ms 1.216

128 KB 4480 12 11.62 ms 1.044 10.12 ms 1.198 9.30 ms 1.304
256 KB 8960 13 12.20 ms 1.076 10.48 ms 1.253 9.58 ms 1.370
512 KB 17920 14 13.23 ms 1.068 11.13 ms 1.270 10.10 ms 1.399

1 MB 35840 15 14.81 ms 1.022 12.19 ms 1.241 10.95 ms 1.381
2 MB 76680 16 16.00 ms 1.008 13.38 ms 1.206 11.90 ms 1.355

50 100 150 200
a

50

100

150

200

250

300
Size

Efficiency 1

Efficiency 2

100 200 300 400 500 600 700
a

200

400

600

800

1000

Size

Efficiency 1 Efficiency 2

Fig. 6: Log size and read efficiencies after cleaning depending

on cleaning size a for a log of 240 (left) and 720 (right) nodes.

50 100 150 200

50

100

150

200

order

cl
ea

n 240

Log Length

100 200 300 400 500 600 700

100

200

300

400

500

600

700

order

cl
ea

n 720

Log Length

Fig. 7: Contour graph of log length for 240 and 720 nodes.

(Black represents 240 (left) and 720 (right).)

B. Node Size

Graefe [18] has updated Gray’s five minute rule [19], [20] in

2007. Gray and Graefe defined the utility of a B-tree node as

the binary logarithm of the number of records in a node. They

determine the optimal size of a B-tree index node by the ratio

of utility over access time. As nodes become larger, the access

time changes by an increase in the transfer time as the disk has

to rotate longer under the head until the complete head is read.

If we extrapolate the access times of current standard disks

50 100 150 200

50

100

150

200

order

cl
ea

n 240

Efficiency

100 200 300 400 500 600 700

100

200

300

400

500

600

700

order

cl
ea

n 720

Efficiency

Fig. 8: Contour graph of efficiency for 240 and 720 nodes.

(Black is low.)

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

k�4, L�1, 2, 50, Κ � 150�

k�4, L�1,2,50, Κ � 200�

k�4, L�1,2,50, Κ � 110�
gain

Μ
, 0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

k�6, L�1, 2, 50, Κ � 150�

k�6, L�1,2,50, Κ � 200�

k�6, L�1,2,50, Κ � 110�

gain

Μ

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

k�8, L�1, 2, 50, Κ � 150�

k�8, L�1,2,50, Κ � 200�

k�8, L�1,2,50, Κ � 110�

gain

Μ
, 0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

k�10, L�1, 2, 50, Κ � 150�

k�10, L�1,2,50, Κ � 200�

k�10, L�1,2,50, Κ � 110�

gain

Μ

Fig. 9: Overall capacity gain using shingled writing.

2252 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

to shingled write disks with higher density, the transfer time

becomes shorter. Graefe concluded in 2007 that B-tree nodes

of 256 KB are nearly optimal. We repeated his calculations

and they show that the optimal size for shingled write disks

is 256 KB, 512 KB, or 1 MB depending on our assumption

on rotational latency (6000, 8000, and 10000 rotations/minute)

and average track length (2 MB to 2.5 MB), Table I. A block

size of 256 KB still remains close to optimal.

If we use Gray’s and Graefe’s assumption [19], [20] on the

fan-out of B+ trees, then we have 35 – 45 tracks worth of data

per stretch of LAZ. The actual space needed is higher, as the

log contains stale nodes. To regain space, a cleaning operation

reads nodes from the head of the log and writes active nodes

to the tail of the log. Reads and writes are of consecutive

blocks and therefore very efficient compared to accessing

random blocks. On average, a cleaning operation needs to

recover as much or more space as is lost to updating. A large

operation can write nodes in order and place consecutive nodes

in adjoining blocks.

Storing nodes in logical order allows a logical read of nodes

in a single read operation and enables read-ahead of blocks.

While a log-structured table optimizes write operations, a

series of updates will destroy the order in which active nodes

are stored. To measure the efficiency of range queries, we

introduce the notion of scan efficiency.

We count the number of times that the next node in logical

order is physically located next to it in the track (Efficiency

1) and the number of times that the two following nodes in

logical order are the two next nodes in the track (Efficiency 2).

We simulated the behavior of the log with 240 and 720 nodes.

We used two different types of operations, (log) cleaning, and

(log) ordering. The first operation reads from the beginning of

the log consecutively until it has encountered a certain value

(the cleaning amount) of current nodes, which it then orders

and writes at the end of the log. The second operation operates

on a range of node numbers that walks through the set of nodes

and when it reaches their end starts over at the beginning. All

nodes are ordered according to their logical value and written

to the end of the log. We introduced this operation because

we observed that we needed to clean a large amount of nodes

in order to obtain good read efficiency for scans (Fig. 6).

We simulated updating 40 nodes before starting an ordering

and a cleaning operation with various amounts of nodes

ordered or cleaned. Our results show that cleaning operations

need to be moderately large to limit the storage overhead of

the log (Fig. 6, 7). Ordering operations can have detrimental

effects on the efficiency of scans and have at best the same

effect as increasing the amount of nodes cleaned, thus they are

a bad idea that should be abandoned in favor of increasing the

cleaning amount (Fig. 8). The absolute size of the log is not

important for either limiting the storage overhead of the log or

for obtaining good read behaviour for scans. We calculate the

storage overhead of our scheme. We assume an organization

of L RAZ tracks with corresponding LAZ. If the node fan-out

of the B+-tree is μ , the LAZ contains a log with data filling

μL tracks. Depending on the frequency of cleaning, the actual

size of the log is larger by a factor of κ. Additionally, we have

one guard band per RAZ and LAZ and two additional guard

bands, one which separates the beginning and end of the log

and one at the end of the assembly, each consisting of k tracks.

This gives us a total storage need of L+ μκL+(L+ 2)k for

storing L+μL worth of data. If we assume a storage capacity

increase of 2.4 due to the introduction of shingled writing, we

obtain the capacity gain g for B+-trees as

2.4(L+1)μ
(1+μκ)L+(L+2)k

We display the capacity gains in Fig. 9. We can see that L has

little influence, the size of the guard band has some, but the

greatest influence is that of efficient log cleaning resulting in

smaller logs.

Taking our data together, it seems best to organize the B+-

table in ensembles consisting of one track of RAZ for lowest

level index nodes and associated LAZ storing the node leafs

in a LAZ. Higher levels of the index nodes should be stored in

RAZ, but not necessarily next to a LAZ. The speed and extent

of log cleaning offers a trade-off between better use of capacity

and faster execution of range queries and scans on one hand

and more frequent and involved cleaning operations on the

other hand. The frequency and clustering of write operations

will determine whether aggressive cleaning is possible.

C. Node Structure

We assume a standard B+-tree structure, where the records

are maintained in the leaf nodes. We also assume standard

optimization techniques such as suffix and prefix compression

to increase the number of entries in an index node. Many

current variants of B+ trees (such as Blink-trees [32] or Π-

trees [37]) use sibling links between nodes of the same level.

These links enable fast traversal of the table, but are also useful

for key range locking [53]. Key range locking needs to find

the next key, which might be in a neighboring node that needs

to be accessed, a process known as “crawling”.

If we try to maintain sibling links in an index or leaf node

located in LAZ, then an update will ripple through all leaf

nodes and index nodes, as moving one nodes forces link

updates, which in turn force the nodes containing the links to

be updated. We follow Graefe’s lead [17] in using fence keys,

that define the range of keys that can be inserted into the node

in the future. A fence slightly increases the information that a

node contains, but also eliminates the need for crawling at the

lower levels of the tree. Fences also make prefix compression

easier. On the downside, the lack of forward links creates the

necessity to cache the next higher index node in order to find

the next node, for example during a scan.

D. Page Updates

An update proceeds as usual by travelling from the root to

the index node where the record should be inserted or which

contains the pointer to the leaf node that needs to change. In

Fig. 10 top, we show a three level B+-tree with the upper two

levels in RAZ. An update to a leaf node acquires a latch (a

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2253

© 2014 ACADEMY PUBLISHER

Fig. 10: Example of a split operation in the B+-tree.

short-term low-cost lock whose holder guarantees the absence

of deadlock) on the page and its parent index node. An update

reads the page and writes the new page at the end of the log

in LAZ. If there should be a crash at this moment, the update

would be lost but for the write-ahead log. In our example

(Fig. 10), we assume that the new page has to split and that we

generate two different new pages. The next step is to change

the parent index node in-place to point to the new page(s)

(Second panel, Fig. 10). The index node itself might overflow

because of the insertion of the additional entry. If this is the

case, then the transaction creates an additional index node and

sets the links in the second index node to point to the successor

and the link in the old index node to point to the new one

(Fig. 10, third panel). At this point, the transaction can free

the latches and the tree is in a consistent state as all index

nodes are reachable through the parent node.

Next, the transaction causes an update operation for the par-

ent node to be scheduled. This update operation is independent

of the transaction, that caused the change to the leaf node. The

operation inserts the new link into the parent. If this leads to

a split, then we proceed just as before with the lowest level

index nodes (Fig. 10, bottom). This scheme based on the Π-

trees of Lomet and Salzberg only updates small parts of the

B+-trees. In place of trying left- and right-rotation in order to

avoid splits of index nodes, we can follow Lomet’s example

once more and run node consolidation procedures.

Assume now that the lowest layer of index nodes is stored

in LAZ. In this case the index node referring to the leaf page

cannot be updated in place. We therefore have to latch the

parent in RAZ, the index node, and the leaf node. If we have

to split the index node, then we write the two new index nodes

in LAZ together with the two new leaf nodes. If we also need

to split the parent, then we proceed with the parent as before,

i.e. we use the sibling pointer in the parent to postpone a

potential split of the parent’s parent. The complexity of this

operation is an additional argument against storing the index

in LAZ.

Just like in a Π-tree, any operation involves at most one

RAZ level in the B+ tree. The operations are atomic and can

succeed or fail independently of success or failure of another

atomic transaction. Thus, only these actions need to be made

recoverabe. Limiting the size of atomic transformations of the

tree should result in improving concurrency.

E. Node Consolidation

Node consolidation is an option that tries to save space

avoiding index nodes with low load by moving its entries to

a left or a right neighbour and delete the under-utilized node.

This can be done also at the level of leaf nodes. Necessary

conditions for consolidation are that the neighbour shares

the same parent node and that the neighbour can absorb the

combined load. To maintain the atomicity of consolidation,

the process needs to latch the node, its neighbour, and its

parent. The latches are released only after the restructuring

succeeds. Any operation that changes a node can discover an

underutilized node and schedule a node consolidation.

F. Enabling Snapshot and Higher Read Concurrency

The ability to take a snapshot of a running system is impor-

tant for debugging systems. For databases, it offers additional

concurrency opportunities for transactions doing only reads.

To take a snapshot, we make a virtual copy of the upper

hierarchy of the B+-tree that is stored in RAZ. All the index

nodes in LAZ and all the leaf nodes, i.e. all nodes to which the

index nodes in RAZ can point, are protected from overwrites

because of the append-only nature of the log. Changes to

the upper index nodes are relatively rare events. However, if

a transaction needs to modify an upper index, for example

because it is the parent of a leaf node that needs to split, we can

maintain the snapshot by making a copy of that upper index

node. We recall that in our scheme, splits that perculate above

one level in RAZ are performed as an independent transaction

and scheduled lazily. These tree maintenance operations can

be scheduled to run after the snapshot is no longer needed, or

they can run concurrently by safeguarding the node.

The same append-only log structure allows also additional

types of transaction control for writes, as only the update to

2254 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

nodes in RAZ (or to their copies in the page pool) changes the

state of the B+-tree. The investigation of these opportunities

has to be left for future work.

VI. LINEAR HASHING FOR SHINGLED WRITE DISK

Linear Hashing (LH) [35] is an extensible hashing scheme

that offers single step access to a record given its key. LH

calculates the page (the bucket in LH language) where the

record resides using a variable hash function and a file state.

In more detail, LH places all records in buckets numbered

from 0 to N−1 with N being the number of buckets. The file

state determines and is determined by N. It is written as (l,s)
where N = 2l + s and l = log2(N) is the highest power of two

fitting into N. LH uses a family of hash functions defined by

hi(c) = c (mod 2i). Given a record with key c, the bucket a(c)
where the record resides is given by

a(c) =
{

hl(c) if s≤ hl+1c < 2l

hl+1(c) else

Bucket k with s ≤ k < 2l have bucket level l, the remaining

bucket level l + 1. An LH-file adjusts to changes in the size

of the file by splitting and merging buckets if the load factor

(number of records divided by N) reaches thresholds. A split

is always of the bucket s and a merger always merges buckets

N−1 and s−1.

If an LH-file is stored in RAM, then the buckets tend to

be small and the focus of implementation is on allowing

concurrent addresses, as was done by the still up-to-date work

of Ellis [11]. To store an LH file on disk, one should use

a two layer implementation. A first layer of LH determines

the disk block, a second layer of LH organizes the records

in the disk block. For the lower layer, we use c >> l in the

first-level buckets with bucket level l and c >> (l + 1) for

those with bucket level l + 1, i.e. the key shifted by the file

level as the key. A record access loads the bucket from disk

into RAM (if it is not already in cached in RAM) and then

uses the second level of LH to identify the record quickly in

RAM. If we use Ellis’ implementation, the first-level bucket

contains the relative addresses of the buckets and each bucket

is implemented as a short linear list [11]. As usual, access

times is dominated by the time to fetch from disk. On a current

disk, a first-level bucket is stored in a single block and updated

in place. (It is possible that blocks overflow and we need to

store parts of the block in an overflow bucket.)

An easy adaptation to shingled write disk is to store the LH-

file completely in RAZ. At the risk of additional disk fetches

or using more space in RAM for disk caching, we can pack the

data in an LH-file more densely in LAZ. For this we need to

introduce a block translation layer stored in RAM. As outlined

before, we use a two-level implementation where the first level

determines the disk bucket and the second level determines the

location of the record within the disk bucket. When we update,

merge, or split a block, we fetch the blocks involved, create

the updated blocks and write them in a LAZ. We also maintain

the addresses of the blocks in a RAM-dictionary. Thus, after

calculating the bucket number, we consult the dictionary to

find where the disk block is stored. We then fetch the block

and use the lower level LH organization to access the record.

This implementation offers a trade-off between RAM usage

and memory bandwidth usage. If we use various buckets to

store the same first-level bucket, then the size of the dictionary

is smaller, but we need to transfer larger units between disk

and memory. Tuning the bucket size depends on local load and

architecture, but can be approximated by comparing the costs

of adding bandwidth and RAM. If the database shuts down

orderly, we write the dictionary in a RAZ. In order to avoid

writing the dictionary to RAZ after each bucket update, we

maintain a table sequence number that is augmented with every

action that changes the contents on disk. We then store the

sequence data and bucket number and level at the beginning

of each first-order bucket. As long as we know in which LAZ

the LH-file is stored, we can then reconstruct the translation

dictionary and the file state of the first level LH-structure by

scanning the LAZ.

Our second design gives the same access time for shingled

write disks as for current disks at the cost of maintaining a

translation table in memory. If the table is only rarely accessed

so that it should not be kept in memory, then our design adds

one disk access to the dictionary on RAZ for each read and

two disk accesses for each write (since we now have to update

the dictionary in RAZ).

VII. CONCLUSIONS

While shingled write disks are only about to appear on

the market (2013), their introduction will be disruptive for

database table implementations. Just as other storage tech-

nologies introduced in the past, they require an adaptation of

data structures if a new technology is going to be used at its

fullest potential. We have shown how to adapt two of the most

important data structures used to implement database tables —

B+-trees and linear hash files — without adding significantly

to access times. To do so, we gave up some of the additional

storage space gained by shingled writing. An evaluation of our

proposed data structures through simulation needs to be post-

poned for future work. The use of a combination of NVRAM

(such as flash or SCM) alleviates the design challenges, but

needs to be investigated. Finally, the log structure imposed

by shingled writing can be used for version based transaction

control.

REFERENCES

[1] M. Aboutabl, A. Agrawala, and J.-D. Decotignie, “Temporally de-
terminate disk access (extended abstract): an experimental approach,”
in Proceedings of the 1998 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems, ser.
SIGMETRICS ’98/PERFORMANCE ’98, 1998, pp. 280–281.

[2] A. Amer, J. Holliday, D. Long, E. Miller, J. Paris, and T. Schwarz, “Data
management and layout for shingled magnetic recording,” Magnetics,
IEEE Transactions on, vol. 47, no. 10, pp. 3691–3697, 2011.

[3] A. Amer, D. Long, E. Miller, J. Paris, and T. Schwarz, “Design issues for
a shingled write disk system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–12.

[4] A. Arpaci-Dusseau, R. Arpaci-Dusseau, L. Bairavasundaram, T. Denehy,
F. Popovici, V. Prabhakaran, and M. Sivathanu, “Semantically-smart disk
systems: past, present, and future,” ACM SIGMETRICS Performance
Evaluation Review, vol. 33, no. 4, pp. 29–35, 2006.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2255

© 2014 ACADEMY PUBLISHER

[5] Y. Cassuto, M. Sanvido, C. Guyot, D. Hall, and Z. Bandic, “Indirection
systems for shingled-recording disk drives,” in Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010,
pp. 1–14.

[6] W. A. Challenger, C. Peng, A. Itagi, D. Karns, Y. Peng, X. Yang,
X. Zhu, N. Gokemeijer, Y. Hsia, G. Yu, R. E. Rottmayer, M. Seigler, and
E. C. Gage, “The road to HAMR,” in Asia-Pacific Magnetic Recording
Conference (APMCR ’09), 2009.

[7] K. S. Chan, J. Miles, E. Hwang, B. V. K. Vijayakumar, J. G. Zhu,
W. C. Lin, and R. Negi, “TDMR platform simulations and experiments,”
accepted by IEEE Transactions on Magnetics, 2009.

[8] K. Chan, R. Radhakrishnan, K. Eason, M. Elidrissi, J. Miles, B. Vasic,
and A. Krishnan, “Channel models and detectors for two-dimensional
magnetic recording,” Magnetics, IEEE Transactions on, vol. 46, no. 3,
pp. 804–811, 2010.

[9] D. Comer, “Ubiquitous B-tree,” ACM Comput. Surv., vol. 11, no. 2, pp.
121–137, Jun. 1979.

[10] H. Dai, M. Neufeld, and R. Han, “ELF: An efficient log-structured flash
file system for micro sensor nodes,” in ACM Conference on Embedded
Networked Sensor Systems, 2004.

[11] C. Ellis, “Concurrency in linear hashing,” ACM Transactions on
Database Systems (TODS), vol. 12, no. 2, pp. 195–217, 1987.

[12] R. Finlayson and D. Cheriton, “Log files: an extended file service
exploiting write-once storage,” in SOSP ’87: Proceedings of the eleventh
ACM Symposium on Operating systems principles, 1987, pp. 139–148.

[13] J. Gait, “The optical file cabinet,” Computer, vol. 39, no. 1, pp. 2 – 9,
June 1988.

[14] E. Gal and S. Toledo, “Algorithms and data structures for flash mem-
ories,” ACM Computing Surveys (CSUR), vol. 37, no. 2, pp. 138–163,
2005.

[15] S. Garfinkel, “A file system for write-once media,” MIT Media Lab,
Tech. Rep., October 1986.

[16] G. Gibson and G. Ganger, “Principles of operation for shingled disk
devices,” Tech. Rep. CMUPDL-11-107, Carnegie Mellon University,
Tech. Rep., 2011.

[17] G. Graefe, “Write-optimized B-trees,” in Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30. VLDB
Endowment, 2004, pp. 672–683.

[18] ——, “The five-minute rule twenty years later, and how flash memory
changes the rules,” in Proceedings of the 3rd international workshop on
Data management on new hardware. ACM, 2007, p. 6.

[19] J. Gray and G. Graefe, “The five-minute rule ten years later, and other
computer storage rules of thumb,” ACM Sigmod Record, vol. 26, no. 4,
pp. 63–68, 1997.

[20] J. Gray and F. Putzolu, “The 5 minute rule for trading memory for disc
accesses and the 10 byte rule for trading memory for cpu time,” in ACM
SIGMOD Record, vol. 16, no. 3, 1987, pp. 395–398.

[21] S. Greaves, Y. Kanai, and H. Muraoka, “Shingled recording for 2–3
Tbit/in2,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3823–
3829, October 2009.

[22] W. Josephson, L. Bongo, K. Li, and D. Flynn, “DFS: A file system for
virtualized flash storage,” ACM Transactions on Storage (TOS), vol. 6,
no. 3, p. 14, 2010.

[23] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim, “μ-tree: an ordered index
structure for NAND flash memory,” in EMSOFT ’07: Proceedings of
the 7th ACM & IEEE international conference on Embedded software,
2007, pp. 144–153.

[24] P. Kasiraj, R. New, J. de Souza, and M. Williams, “System and method
for writing data to dedicated bands of a hard disk drive,” United States
Patent 7490212.

[25] J. Kohl, C. Staelin, and M. Stonebraker, “Highlight: Using a log-
structured file system for tertiary storage management,” in Usenix
Conference, 1993.

[26] A. R. Krishnan, R. Radhakrishnan, and B. Vasic, “LDPC decoding
strategies for two-dimensional magnetic recording,” in IEEE Global
Communications Conference, 2009.

[27] A. R. Krishnan, R. Radhakrishnan, B. Vasic, A. Kavcik, W. Ryan, and
F. Erden, “Two-dimensional magnetic recording: Read channel modeling
and detection,” in IEEE International Magnetics Conference, May 2009.

[28] M. H. Kryder and C. S. Kim, “After hard drives – what comes next?”
IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3406–3413,
October 2009.

[29] M. Kryder, “After hard drives – what comes next?” in Proceedings of
the IEEE International Magnetics Conference, 2009.

[30] M. Kryder, E. Gage, T. McDaniel, W. Challener, R. Rottmayer, G. Ju, Y.-
T. Hsia, and M. Erden, “Heat assisted magnetic recording,” Proceedings
of the IEEE, vol. 96, no. 11, pp. 1810–1835, Nov. 2008.

[31] S.-W. Lee and B. Moon, “Design of flash-based DBMS: an in-page
logging approach,” in SIGMOD ’07: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, 2007, pp.
55–66.

[32] P. Lehman et al., “Efficient locking for concurrent operations on b-
trees,” ACM Transactions on Database Systems (TODS), vol. 6, no. 4,
pp. 650–670, 1981.

[33] Y. Li, B. He, Q. Luo, and K. Yi, “Tree indexing on flash disks,” in ICDE
’09: Proceedings of the 2009 IEEE International Conference on Data
Engineering, 2009, pp. 1303–1306.

[34] S. Lim and K. Park, “An efficient NAND flash file system for flash
memory storage,” Computers, IEEE Transactions on, vol. 55, no. 7, pp.
906–912, 2006.

[35] W. Litwin, “Linear hashing: A new tool for file and table addressing,”
in Sixth International Conference on Very Large Data Bases, October.
IEEE Computer Society, 1980, pp. 212–223.

[36] D. Lomet and B. Salzberg, “Access methods for multiversion data,” ACM
SIGMOD Record, vol. 18, no. 2, pp. 315–324, 1989.

[37] ——, “Concurrency and recovery for index trees,” The VLDB Journal,
vol. 6, no. 3, pp. 224–240, Aug. 1997.

[38] K. Matsumoto, A. Inomata, and S. Hasegawa, “Thermally assisted
magnetic recording,” Fujitsu Scientific and Technical Journal, vol. 42,
no. 1, pp. 158 – 167, January 2006.

[39] S. Nath and A. Kansal, “FlashDB: dynamic self-tuning database for nand
flash,” in IPSN ’07: Proceedings of the 6th international conference on
Information processing in sensor networks, 2007, pp. 410–419.

[40] K. Norvag and K. Bratbergsengen, “Write optimized object-oriented
database systems,” in Computer Science Society, 1997. Proceedings.,
XVII International Conference of the Chilean. IEEE, 1997, pp. 164–
173.

[41] S. Quinlan, “A cached WORM file system,” Software – Practice and
Experience, vol. 21, no. 12, December 1991.

[42] P. Rathmann, “Dynamic data structures on optical disks,” in Proceedings
of the First International Conference on Data Engineering, 1984, pp.
175–180.

[43] H. Richter, A. Dobin, O. Heinonen, K. Gao, R. Veerdonk, R. Lynch,
J. Xue, D. Weller, P. Asselin, M. Erden, and R. Brockie, “Recording
on bit-patterned media at densities of 1 tb/in and beyond,” IEEE
Transactions on Magnetics, vol. 42, no. 10, pp. 2255–2260, Oct. 2006.

[44] M. Rosenblum, “The design and implementation of a log-structured file
system,” Ph.D. dissertation, UC Berkeley, 1992.

[45] M. Rosenblum and J. Ousterhout, “The design and implementation of
a log-structured file system,” Operating Systems Review, vol. 25, no. 5,
pp. 1–15, October 1991.

[46] R. E. Rottmeyer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld,
Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfiled, K. Pelhos,
P. Chubing, T. Rausch, M. A. Seigler, D. Weller, and Y. Xiaomin, “Heat-
assisted magnetic recording,” IEEE Transactions on Magnetics, vol. 42,
no. 10, pp. 2417 – 2421, October 2006.

[47] J. Schindler and G. R. Ganger, “Automated disk drive characterization
(poster session),” SIGMETRICS Perform. Eval. Rev., vol. 28, no. 1, pp.
112–113, Jun. 2000.

[48] R. Sears, C. van Ingen, and J. Gray, “To blob or not to blob: Large object
storage in a database or a filesystem?” Microsoft Research Technical
Report MSR-TR-2006-45, 2006.

[49] M. Selzer, K. Bostic, M. McKusick, and C. Staelin, “An implementation
of a log-structured file system for UNIX,” in Winter Usenix Conference,
1993.

[50] Y. Shiroishi, K. Fukuda, I. Tagawa, S. Takenoiri, H. Tanaka, and
N. Yoshikawa, “Future options for HDD storage,” IEEE Transactions
on Magnetics, vol. 45, no. 10, October 2009.

[51] I. Tagawa and M. Williams, “High density data-storage using shingle-
write,” in Proceedings of the IEEE International Magnetics Conference,
2009.

[52] J. S. Vitter, “An efficient I/O interface for optical disks,” ACM Trans.
Database Syst., vol. 10, no. 2, pp. 129–162, 1985.

[53] G. Weikum and G. Vossen, Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery.
Morgan Kaufmann Pub, 2002.

[54] D. Woodhouse, “JFFS: The journalling flash file system,” in Ottawa
Linux Symposium, vol. 2001, 2001.

2256 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

[55] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes, “On-
line extraction of scsi disk drive parameters,” in Proceedings of the
1995 ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems, ser. SIGMETRICS ’95/PERFOR-
MANCE ’95, 1995, pp. 146–156.

[56] C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An efficient B-tree layer
implementation for flash-memory storage systems,” ACM Trans. Embed.
Comput. Syst., vol. 6, no. 3, p. 19, 2007.

[57] Y. Wu, J. O’Sullivan, N. Singla, and R. Indeck, “Iterative detection
and decoding for separable two-dimensional intersymbol interference,”
Magnetics, IEEE Transactions on, vol. 39, no. 4, pp. 2115–2120, July
2003.

[58] X. Zhang, D. Du, J. Hughes, and R. Kavuri, “HPTFS: A high perfor-
mance tape file system,” in 26th IEEE Symposium on Massive Storage
Systems and Technology, 2006.

[59] J.-G. Zhu, X. Zhu, and Y. Tang, “Microwave assisted magnetic record-
ing,” IEEE Transactions on Magnetics, vol. 44, no. 1, pp. 125–131, Jan.
2008.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2257

© 2014 ACADEMY PUBLISHER

