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Abstract—For a long time, syntacticians and semanticists 
have been seeking a way to integrate semantic analysis into 
syntactic parsing, or inverse; because they have realized 
that understanding cannot be fully explained simply with 
syntax or semantics. Categorial Grammarians devoted a lot 
to extend the expressiveness of CG, but they missed a point 
what behinds the scene is meanings rather than grammar 
rules. Frame Semantics invented a very good formal 
representation of meanings; however it lacks an apparatus 
of syntactic operation like the one of CG. So, in this paper, 
we integrated them together, so as they could complement 
each other. This theoretical model can explain why some 
grammatical sentences are unacceptable in semantics. 
Besides, we introduced our Parsing System built on this 
theoretical model, which well supports our argument that if 
a semantic category is allowed by the frame, then the 
sentence is acceptable in semantics.   
 
Index Terms—natural language understanding, syntactic 
parsing, semantic analysis, categorial grammar, frame 
semantics 

I.  INTRODUCTION 

Grammar is a set of rules that governs the composition 
of phrases or words to be meaningful and interpretable in 
a given natural language; so, a grammar should explain 
why a sentence is acceptable while others are not. In this 
sense, syntax and semantics shouldn’t be opposite to each 
other. However, due to some reasons, syntacticians and 
semantists they disagree on the matters how meanings are 
represented by linguistic symbols.  

Two representative syntactic theories are Chomskian 
TG Grammar and Categorial Grammar. Both of them 
consider the grammaticality of sentences is universally 
controlled by some symbolic operations. However, some 
linguists could not agree the way of TG Grammar in 
explaining language. For example, TG cannot explain 
why “colorless green idea sleeps furiously” is 
syntactically grammatical, but semantically unreasonable. 
So in the late 1960s, they established a new banner later 
called Cognitive Linguistics. Cognitive linguists deny 
that there is an autonomous language faculty in our minds; 
instead, they understand grammars in terms of 
conceptualizations. Hence, many cognitive semantic 

theories do not pursue formalization mechanisms as most 
of the syntactic do. One of the most famous semantic 
theories is Frame Semantics.  

CG suffer a similar embarrassing situation, though CG 
grammarians had tried to extend it to more expressive 
formalisms; for instance the sudden emerged variants of 
CG in 1970s and 80s, like Generalized CG, Unification 
CG, Combinatory CG, etc. For more references see [15]. 
CGs1 try to explain the deep semantic issues with a set of 
rules that can just operate on syntactic surface. This kind 
of method is too mechanical though smart. In short, CGs 
just like T-G Grammar missed the point that what behind 
the movement of grammars rules are meanings rather 
than symbolic operations. 

The purpose of this study is to compensate this 
deficiency of CG with some conceptions of Frame 
Semantics, and also to complement the shortness of 
Frame Semantics in syntactic formalization with the 
power of CG. This study is meaningful; because, only 
formalized semantic theories can be installed to a 
computer, and only formalisms with stronger capabilities 
of understanding semantic issues are useful when facing 
commands encoded in human’s languages, thus there 
may be hope to achieve the  goal of implementing natural 
language understanding on computers.   

The following sentences share the same construction, 
coordination-reduction that has been intensively studied 
in CCG [13]. Both of them are grammatical; but (2) is 
unreasonable. 

 
(1) Mary planted and Harry cooked the beans. 

 
(2) *Harry cooked and Mary planted the beans. 

 
(2) is unreasonable, because the beans “Mary planted” 
were cooked formerly. According to the common sense, a 
bean cannot grow anymore after it is cooked. So, it is 
weird someone planting cooked beans. We hypothesize 
that there must be an apparatus in our cognitive system, 
which can handle such kind of complicated issues. We 

                                                           
1 CGs is the general name of variants of Categorial Grammar. A good 
introduction of CGs is Mary M. Wood’s work [15].  
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are wondering if it is possible that such apparatus is a 
combination of syntactic parsing and semantic analysis 
working together alternately. Probably this is a 
reasonable way to explain why some grammatical 
sentences are not acceptable in semantics, such as (2). 

We will introduce our methods in section 2 and show 
how these methods work in 3.1; and we will give our 
diagnosis of example (2) in 3.2. 

We assume that semantic frames are like functions, 
and semantic categories2 (usually labeled with semantic 
roles) are like arguments. Thus, a semantic frame can 
apply to semantic categories if these semantic categories 
are consistent with the semantic frame. In other words, 
whether a sentence is acceptable depends basically on if 
the arguments are allowed by the predicate verb. For 
instance, in λx.plant(x:=bean) if variable “x” can be 
unified or replaced with “bean”, i.e. if “bean” is allowed 
by “plant”, then the given sentence is consistent, and thus 
acceptable in semantics.  We consider this problem in this 
way, because it is widely accepted that predicate verbs 
play a very important role in assigning constraints to 
noun phrases that they govern (Levin 1993; Fillmore 
1968, 1982). In section 3.3, we’ll discuss about why such 
a way of resolving semantic issues is computationally 
feasible (decidable). Decidability problem is very critical 
for computing applications in that only “decidable 
sentences” can actually be “understood” by machines. 

To verify our hypothesis, we built a Parsing System, 
which can judge the syntactic properties and semantic 
properties of a sentence simultaneously, see section 4. 
The whole grammar system is composed of a type 
hierarchy (classification of verbs and taxonomy of 
utterances), a lexicon and a set of grammar rules. It at 
present includes about 50 rules, more than 600 verbs, and 
hundreds of nouns. The limit of the grammar system at 
present is that it can only process clausal sentences. 
However, it is very hopeful to extend it to a wider 
coverage by adding a probability based preprocessor, 
which is, for example, capable of cutting complex 
sentences into simple clauses.  

II.  METHODS USED IN THIS PAPER 

A.  Syntactic Rules of CGs 
Categorial Grammar originates from the ideas in work 

of Ajdukiewicz [1] and Bar-Hillel [2] (hence AB-CG). 
Joachim Lambek [11] introduced a syntactic calculus 
along with various rules for the combination of functions, 
which mainly include Application, Associativity, 
Composition, and Raising. CG is distinguished from 
other formal grammars by its syntactic categories and 
inference rules. The syntactic categories SyC is defined 
as follows: 

 
Atomic categories: NP, S, …∈SyC 

                                                           
2 It is hard to give a formal definition of semantic category, like the 
definition of syntactic categories given in CGs, see section2.1; because 
semantic categories could be intertwined with syntactic components, see 
section 4.2.  

Complex categories: if X, Y∈SyC, then X/Y, X\Y∈SyC. 
Complex categories X/Y or X\Y are functors with an 
argument Y and a result X, for example S\NP/NP in (3). 
For another, NP/NP would be the type of determiner that 
it looks forward for a noun to produce a noun phrase; S\S 
would be the type of adverb that it looks backward for 
sentence to produce a sentence, as illustrated in (4) and 
(5): 

 
(3) He   sells     tomatoes. 
     NP S\NP/NP    NP 
           _______S\NP_____ 
_______S________ 

 
(4) I      bought     a red book  yesterday. 
     NP  S/NP\NP         NP            S\S 
     ____S/NP___ 
               ______ S______   
                             _______S_______ 

 
Application and Composition are the most frequently 
used rules of CG. “The rule of forward application states 
that if a constituent with category X/Y is immediately 
followed by a constituent with category Y, they can be 
combined to form a constituent with category X. 
Analogously, backward application allows a constituent 
X\Y that is immediately preceded by a constituent with 
category Y to combine with this to form a new 
constituent of category X” [8].  
 
• Forward application 
  X/Y Y →X 
• Backward application 
  X\Y Y →X 

 
“Composition allows two functor categories to combine 
into another functor” (ibid). 

 
• Forward composition 
  X/Y Y/Z →X/Z 
• Backward composition 
  Y\Z X\Y →X\Z 

 
For example, in (5), the article “a” asks for a noun phrase 
to be its argument, so does the adjective “red”; therefore 
they are composed together. Some more sophisticated 
examples can be found in Mark Steedman’s work [14]. 

 
(5)   a           red        book 
    NP/NP   NP/NP     NP 
    ____NP/NP___ 

             ______NP_____  
 

B.  Semantic Representation of Frame Semantics  
Frame semantics is the development of Charles 

Fillmore’s Case Grammar [6]. The basic idea is that one 
cannot understand meaning without world knowledge. A 
semantic frame is defined as a structure describing the 
relationships among concepts evoked by words (mostly, 
by verbs). For example, in an exchange frame, the 
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concepts of SELLER, BUYER, and GOODS would be 
evoked by verbs, e.g. sell, buy, etc. In a sentence, 
semantic structures that are composed of these concepts 
are usually represented by the syntactic relations of 
semantic roles over predicates, as in (6) and (7), compare 
them to (3) and (5) respectively:  

 
(6)    He             sells         tomatoes. 
     SELLER <exchange>   GOODS 

 
(7)     I            bought        a red book  yesterday. 
     BUYER <exchange>     GOODS       TIME 

 
The assignment of semantic roles to categories depends 
on the meanings of both verbs and the  categories. For 
example, in (8), “tomatoes” is assigned PATIENT, 
instead of GOODS; because, the predicate “cooked” 
evoked frame <cook> and all the concepts related to 
<cook>, such as Agent and Patient. In (9), “tomatoes” is 
assigned THEME, because its state does not change after 
it is moved to the “truck”3. 

 
(8)   He         cooked     tomatoes. 
     AGENT   <cook>    PATIENT 

 
(9)   He        loaded   truck    with tomatoes. 
    AGENT    <fill>   GOAL      THEME 

C.  Combining CG Rules and Semantic Frames 
It is widely agreed that it is mainly the predicate verb 

of a sentence that bears the responsibility of evoking 
semantic frames. Thus, the predicates in (3) and (6) can 
be rewritten as (10), which means frame <exchange> has 
two arguments, SELLER, and GOODS 

 
(10) <exchange>\SELLER/GOODS 

 
Through applying (10) to (6), we can extract semantic 
frame <exchange>, as shown in (11): 

 
(11) He                            sells                             tomatoes. 
     SELLER   <exchange>\SELLER/GOODS    GOODS 
                 _______<exchange>\SELLER____________ 

     _______<exchange>__________ 
 

Semantic frames can also be composed to form a 
complex frame.  

 
(12)    John       said       [ he       sold    tomatoes]CONTENT 
     INFORMER  X        SELLER Y      GOOD    
                            X’                      Y’ 

 

                                                           
3  The main difference between PATIENT and THEME is that 
PATIENT undergoes the action and its state changes, whereas THEME 
does not. For more explanations about semantic role labeling, please 
refer to Fillmore’s paper about Case Grammar [6] 
 

 

Here, we replace the verb’s meaning with X and Y. X’ 
represents the semantic frame of the main clause, and Y’ 
represents the semantic frame of the complement clause:  

 
• X’=X\INFORMER/CONTENT 
• Y’=Y\SELLER/GOODS 

 
The two semantic frames are composed in the way of 
(13): 

 
(13) X’/Y’ Y’ →X’ 

 
Where, X’/Y’ means, the semantic frame X’ asks for Y’ 
to be its argument. We write it in a more conventional 
form, X’(Y’). Note that the composition of two semantic 
frames into a complex frame needs to convert each 
semantic frame into a more complex form. In the 
following of this paper, we will continue to use X and Y 
to represent the lexical meanings of verbs, and X’ and Y’ 
to represent the frames. 

III. EXAMPLES 

A.  Insertion  
In Bar-Hillel’s paper [2], there is a tough problem that 

CGs cannot resolve neatly until today, as shown in (14): 
 

(14) Paul, strangely enough, refuses to talk. 
          Z              X                     Y           W 

 
Literally, it means “it is strangely enough that Paul 

refuses to talk”. Apparently, (14) is a complex 
construction composed of two semantic frames. We just 
need to make them go back to their places. In Curry’s 
work [5], he presented a combinator C, which is used for 
switching the first two arguments of a function. Here, we 
use it to reorder the disturbed arguments’ position. 
Example (14) can be transformed into (15) without 
causing any changes of meanings.  

 
(15)  Strangely enough, Paul refuses to talk. 
reorder:          X                Z        Y      W 
rewrite:     X’ (X’=X)            Y’=Y\Z/W 
convert:        X’/Y’                  [Y\Z/W]Y’ 

compose:    X’/Y’  [Y\Z/W]Y’   →  X’/[Y\Z/W] 
 
where, rewrite, convert, and compose are the operators 
that have been introduced in section 2. (16) and (17) are 
similar examples: 

 
(16) He, frankly speaking, is not good enough. 
 
(17) He, I guess, must be angry. 
 

B.  Coordination-reductions 
The examples (1) and (2) mentioned at the beginning 

of this paper share the same construction, coordination-
reduction. The omitted parts […] did not disappear; 
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actually they exist in deep semantic layers, as shown in 
(1)’ and (2)’: 

 
(1)’Mary planted […] and Harry cooked the beans. 
 
(2)’* Harry cooked […] and Mary planted the beans. 
 

To give a further explanation on why (2) is not 
acceptable in semantics, we need to evoke our world 
knowledge. We may share the common sense that a 
cooked bean cannot grow anymore, so it’s meaningless to 
plant cooked beans. The reasoning processes with such 
world knowledge can be represented as (18): 

 
(18) Harry cooked and Mary planted the beans. 
                     Y                            X 
       Mary planted the beans   Harry cooked […]. 
reorder:        X                                      Y 
rewrite: X\AGENT1/THEME   Y\AGENT2/PATIENT  
convert:       X’/Y’                      [Y\AGENT2/PATIENT]Y’ 

compose:  X’/Y’ [Y\AGENT2/PATIENT]Y’ → X’/[Y\AGENT2 /PATIENT] 
 

Technically, this composition can be reduced to the 
unification of […]PATIENT and THEME, see (19).  If 
[…]PATIENT is consistent with X’, then, it can replace the 
variable THEME in X’. Apparently, it is not, so 
[…]PATIENT  cannot replace THEME. Hence, the sentence 
is not acceptable in semantics.  

 

(19) λPATIENT.Y’(PATIENT:=[…])=[…]PATIENT 

       λTHEME.X’(THEME:=[…]PATIENT) 
 

C.  Discussion 
How do we know that such way talked above is 

resolvable? Or how do we decide that THEME can be 
replaced with […]PATIENT, in (19)? In Kfoury’s work [9], 
he proved that an instance Δ of unification problem U (β-
unification) has a solution iff M is β-strongly 
normalizable, (where M is a lambda term, from which Δ 
can be transformed); and that M is β-strongly 
normalizable iff M is typable in the lean fragment of the 
system of intersection types. We hypothesize that 
semantic frames are the lean fragments of the system of 
intersection types, and if verbs that bear the meanings of 
semantic frames are typable in such system, then 
semantic consistency problems like the one of (19) is 
decidable. Linguistically, being typable in the system of 
semantic frame means that verbs, such as “cook” and 
“plant” in (1) and (2), are of completely different types. 
That is to say, the arguments that <cook> and <plant> ask 
for are of completely different types. So, verb types will 
help explain why the change of “the beans” caused by 
“cook” is unacceptable in frame <plant>. 

IV. PARSING SYSTEM 

The grammar system is implemented in ALE [3] a 
programming language based on the logic of typed 
feature structure [4]. During constructing this grammar 

system we encountered three difficulties. The first is that 
the structures of syntactic and semantic components are 
both independent of each other and intertwined together. 
On one hand, the independency will guarantee the 
generality of the grammar system. On the other hand this 
is quite a dilemma, for there is not yet such a parsing 
method that can skip one while parsing the other. This 
means we must find a method that can parse the syntactic 
and semantic structures simultaneously. The second is 
labeling categories with types. This is not as easy as it 
looks; because a semantic category could be as complex 
as a clause; though sometimes they are just bare words. 
As for the simple categories, we defined a set of lexical 
rules that can change them directly into intended forms. 
As for complex categories, we employed Application 
Rules of CG in the way of like (28). The third is to 
describe the four operators with typed feature structures 
(we omitted reorder for it is very easy). For the rewrite 
operator, we defined a set of structures (they are called 
Macros in ALE) to separate the inflections from the verb; 
as in (21) and (25). The four operators are like steps, by 
which we dig gradually from surface into the core. In this 
sense, the whole parsing process is basically bottom up. 

A.  Typed Feature Structure 
A typed feature structure is a directed graph possibly 

with cycles. The nodes on the graph are labeled with 
types; and the edges between nodes are labeled with 
features, see Figure 1. A typed feature structure could be 
represented either by a graph, like (a), or by an AVM, 
like (b). The squares with numbers in (b) mean that the 
types are same. This is very useful in describing some 
linguistic phenomena, like anaphora and reduction. It will 
appear again in section 4.4. 
 

q q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−

F
a

F

a

 
Figure 1. The graphic and AVM representation of  

typed feature structure 
 

More intensive studies about typed feature structures 
can be found in Carpenter’s book [4] and Penn’s doctoral 
thesis [12]. Typed feature structure is widely used in 
many grammar representations, for example Lexical 
Functional Grammar and Head-driven Phrase Structure 
Grammar.  
    The only operation in the logic of typed feature 
structure is Unification. Whether two feature structures 
can be unified together depends on if their types are 
consistent to each other. Carpenter in his book named 
“the logic of typed feature structures” gives a definition 
of Type Consistency: “A set T of types is said to be 
consistent or bounded if they share a common subtype or 
upper bound σ such that σ ⊑ τ for every τ ⊑ T [4].  
    In the above, we used λ-calculus to explain some 
semantic issues. Typed feature structure can take its place 
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in that the type is like a function and the features are like 
arguments; and the replacement of variables with values 
in λ-calculus can be represented by the unification of 
features values and some other types. The constraints of 
the argument assigned by the predicate are also well 
described in the logic of typed feature structures. 
Different types are discriminated by their features, and all 
the features must be valued by some other types, i.e., 
types constrain their features’ values. 

B.  Intertwined Syntactic and Semantic Structures 
The structure of a sentence is like a double helix, as 

shown in Figure 2. Syntactic and semantic components 
are intertwined together. This addresses ourselves to a 
question: how do we define syntactic and semantic 
components? Generally speaking, firstly semantic 
components are more independent. Even the dependents 
(the thicken parts) were omitted, the meaning of those 
sentences would not change much.  Secondly, semantic 
components are more stationary. As shown in (a) and (b), 
when the sentence is transformed, the semantic 
components do not need to move; while, the dependents 
have to move with their “governors”. 
 

 
 

Figure 2. An example of intertwined syntactic and semantic structures 
 

For example, in (a) of Figure 2, AGENT and THEME 
are dependent on <plant>, so they are the syntactic 
components or dependents of <plant>; while “plant” is 
the  semantic component of <plant> or the governor of 
AGENT and THEME; so it is more stationary. When the 
sentence is changed into a passive form, as in (b), 
AGENT and THEME are moved, “plant” is still in the 
middle. For another example, in THEME “the” and 
“Harry cooked” are dependent on “beans”; so they are the 
syntactic components of THEME and “beans” is the 
semantic component. When THEME is moved to the 
front, as shown in (b), “the” and “Harry cooked” have to 
move, but the position of “beans” relative to “the” and 
“Harry cooked” is not changed.     

C.  Labeling Categories with “types” 
(20), (22), (23) and (24) are to label categories with 

semantic roles. It is assumed that what semantic role a 
category is to have depends on the category’s lexical 
meaning and on the category’s syntactic environment. In 
(20), as long as “marry” is predefined as a subtype of 
“agent_element”, it is unifiable with the “node” 
[agent_element].   
 
(20) 
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
→→

maryMEANING
wordagent

elementagentmary
:

_
_

  
 
 
(21)   
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→

plantMEANING
didTENSE

modalitytense
SYNTAX

wordplant

planted

:
:

_
:

_

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

plantMEANING
didTENSE

modalitytense
SYNTAX

wordplant

SEM

themeTHEME
agentAGENT

frameplant
SYN

plant

:
:

_
:

_

:

:
:

_
:⎯⎯ →⎯rewrite

  
 
(22)   
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→→

beanMEANING
sSYNTAX

wordtheme
elementthemebeans

:
:

_
_

 
 

(23)   
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→→

beanMEANING
sSYNTAX

wordtheme
elementpatientbeans

:
:

_
_

 
 
(24)  
 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→→

harryMEANING
modalitySYNTAX

wordagent
elementagentharry

:
:

_
_

 
 
(25)   
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

cookMEANING
didTENSE

modalitytense
SYNTAX

wordcooke

SEM

patientPATIENT
agentAGENT

framecook
SYN

cook

:
:

_
:

_

:

:
:

_
:⎯⎯ →⎯rewrite

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
→

cookMEANING
didTENSE

modalitytense
SYNTAX

wordcooke

cooked

:
:

_
:

_

  
 
(26)   
 

[ ]ivedemonstratthe →  
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(21) and (25) are approximations of the operator 
rewrite, as introduced in section 2. Because “semantic 
frame” is a very abstract concept, so the modalities and 
tenses that have been attached to a verb should be 
interpreted in some other ways. After a predicate verb 
becomes an abstract “frame_word”, i.e. it will be able to 
bear the responsibility for evoking some semantic frame. 
(26) is to label “the” with a type called “demonstrative” 
in linguistics. The purpose of doing this is to make a 
referent clearer. But in the coming-up stage, as shown in 
(28), they will be composed together so that they will be 
treated as a whole. 

D. Semantic and Syntactic Parsing 
The only one operation in the logic of typed feature 

structure is Unification. This is very similar to the 
unification operation in PROLOG except that it is 
constrained by “type consistency”. In order to parse the 
semantic structures of utterances, we need to translate the 
Application rules of Categorial Grammar into 
Unification operation. We replace “/” and “\”in categorial 
grammar with “⊔” the unification operation in the logic 
of typed feature structure4. In order to make it tidier, in 
the following examples, we don’t copy the whole 
structure; instead, we use the number on the upper right 
corner of each product, as shown in the followings.  
 
(27)   
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4 The operations of Categorial Grammar are intrinsically different from 
Unification of the logic of Typed Feature Structures [4]. However, from 
an angle both of them could be considered as apparatuses to combine 
small parts into bigger ones. 
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(27) and (29) are to approximate the operator 
“convert”, see section 2. Convert is to change a frame 
word into a more complex frame according to its 
surroundings. (27) is constructed by unifying “harry” and 
“cooked”. (29) is constructed by unifying “mary”, 
“planted” and “the beans”. (28) is to make the noun 
phrase as a whole category. The features “SYN” and 
“SEM” in the above examples are to describe the 
intertwined syntactic and semantic structures. 
(30)   
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(30) is to approximate operator “compose”.  Whether 
they can be composed together depends on if the two 
frames are compatible to each other; or more exactly if 
<cook> is compatible to <plant>. Recall we reduced this 
problem to the replacement of “the beans” in <plant> 
with the “beans” in <cook>. In here, we use an equation 
(the squares with numbers) to describe the replacement 
(refer to Figure 1). Apparently, the beans are of two types, 
so they are not compatible. Therefore, “the beans” in 
<plant> cannot be replaced with the “beans” in <cook>; 
i.e. the whole sentence is semantically unacceptable. 

V. FURTHER DISCUSSION 

In this paper, we demonstrated the deficiencies of CG 
and FS, and how to complement them with each other. 

One of the deficiencies of CG is that the syntactic 
categories are too superficial. For example, all noun 
phrases are represented as NP, no matter if their 
meanings have undergone changes. That’s why “the 
beans” Mary cooked cannot be distinguished from the 
“beans” Harry planted, as shown in (10) and (11). For 
another example, as shown in (5), both determiner and 
adjective are represented as NP/NP. But, FS distinguishes 
categories meticulously. Therefore, we replace the part of 
speech with semantic roles so that nuance of meanings 
can be represented.  

Besides, CG is order-dependent. Some very common 
linguistic phenomena are still challenges to CGs; for 
example, omission and insertion. But these are not 
problems to FS. Unlike CG, in FS, a semantic frame is a 
set of concepts that are related in a way of “gestalt”. For 
example, in (1)’ and (2)’, omitted constituents are 
regained and they are represented as […].   

FS does not pursue formal mechanism; so it cannot 
explain how smaller frames are composed together. But 
this is not a problem to CG, for syntactic categories can 
be composed through syntactic rules, such as Application 
and Composition introduced in section II. Being inspired 
by this notion of CG, we proposed four operators: 
reorder, rewrite, convert and compose. Reorder makes a 
disturbed sentence change back to its order. Rewrite 
defines the evoking process as shown in (18), (21) and 
(25). Convert defines how simple frames change into 
composite forms. Compose defines how a simple frame is 
integrated into a composite one.  

From some aspects, semantic frames can be considered 
as conceptualized experiences. Since we can describe 
such conceptual experiences with linguistic symbols, 
there must be a mapping between them. Such mapping 
might be meaningful in that what a machine can do is 
simply operating on symbols, but what we expect it to do 
is far more than that.  
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