
Integrating Semantic Analysis into Syntactic
Parsing: Combining Categorial Grammar and

Frame Semantics

Ke Wang and Rongpei Wang
School of Computer Science and Technology

Dalian University of Technology, Dalian 116024, China
wang.coco.ke@gmail.com

Abstract—For a long time, syntacticians and semanticists
have been seeking a way to integrate semantic analysis into
syntactic parsing, or inverse; because they have realized
that understanding cannot be fully explained simply with
syntax or semantics. Categorial Grammarians devoted a lot
to extend the expressiveness of CG, but they missed a point
what behinds the scene is meanings rather than grammar
rules. Frame Semantics invented a very good formal
representation of meanings; however it lacks an apparatus
of syntactic operation like the one of CG. So, in this paper,
we integrated them together, so as they could complement
each other. This theoretical model can explain why some
grammatical sentences are unacceptable in semantics.
Besides, we introduced our Parsing System built on this
theoretical model, which well supports our argument that if
a semantic category is allowed by the frame, then the
sentence is acceptable in semantics.

Index Terms—natural language understanding, syntactic
parsing, semantic analysis, categorial grammar, frame
semantics

I. INTRODUCTION

Grammar is a set of rules that governs the composition
of phrases or words to be meaningful and interpretable in
a given natural language; so, a grammar should explain
why a sentence is acceptable while others are not. In this
sense, syntax and semantics shouldn’t be opposite to each
other. However, due to some reasons, syntacticians and
semantists they disagree on the matters how meanings are
represented by linguistic symbols.

Two representative syntactic theories are Chomskian
TG Grammar and Categorial Grammar. Both of them
consider the grammaticality of sentences is universally
controlled by some symbolic operations. However, some
linguists could not agree the way of TG Grammar in
explaining language. For example, TG cannot explain
why “colorless green idea sleeps furiously” is
syntactically grammatical, but semantically unreasonable.
So in the late 1960s, they established a new banner later
called Cognitive Linguistics. Cognitive linguists deny
that there is an autonomous language faculty in our minds;
instead, they understand grammars in terms of
conceptualizations. Hence, many cognitive semantic

theories do not pursue formalization mechanisms as most
of the syntactic do. One of the most famous semantic
theories is Frame Semantics.

CG suffer a similar embarrassing situation, though CG
grammarians had tried to extend it to more expressive
formalisms; for instance the sudden emerged variants of
CG in 1970s and 80s, like Generalized CG, Unification
CG, Combinatory CG, etc. For more references see [15].
CGs1 try to explain the deep semantic issues with a set of
rules that can just operate on syntactic surface. This kind
of method is too mechanical though smart. In short, CGs
just like T-G Grammar missed the point that what behind
the movement of grammars rules are meanings rather
than symbolic operations.

The purpose of this study is to compensate this
deficiency of CG with some conceptions of Frame
Semantics, and also to complement the shortness of
Frame Semantics in syntactic formalization with the
power of CG. This study is meaningful; because, only
formalized semantic theories can be installed to a
computer, and only formalisms with stronger capabilities
of understanding semantic issues are useful when facing
commands encoded in human’s languages, thus there
may be hope to achieve the goal of implementing natural
language understanding on computers.

The following sentences share the same construction,
coordination-reduction that has been intensively studied
in CCG [13]. Both of them are grammatical; but (2) is
unreasonable.

(1) Mary planted and Harry cooked the beans.

(2) *Harry cooked and Mary planted the beans.

(2) is unreasonable, because the beans “Mary planted”
were cooked formerly. According to the common sense, a
bean cannot grow anymore after it is cooked. So, it is
weird someone planting cooked beans. We hypothesize
that there must be an apparatus in our cognitive system,
which can handle such kind of complicated issues. We

1 CGs is the general name of variants of Categorial Grammar. A good
introduction of CGs is Mary M. Wood’s work [15].

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014 2239

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.9.2239-2245

are wondering if it is possible that such apparatus is a
combination of syntactic parsing and semantic analysis
working together alternately. Probably this is a
reasonable way to explain why some grammatical
sentences are not acceptable in semantics, such as (2).

We will introduce our methods in section 2 and show
how these methods work in 3.1; and we will give our
diagnosis of example (2) in 3.2.

We assume that semantic frames are like functions,
and semantic categories2 (usually labeled with semantic
roles) are like arguments. Thus, a semantic frame can
apply to semantic categories if these semantic categories
are consistent with the semantic frame. In other words,
whether a sentence is acceptable depends basically on if
the arguments are allowed by the predicate verb. For
instance, in λx.plant(x:=bean) if variable “x” can be
unified or replaced with “bean”, i.e. if “bean” is allowed
by “plant”, then the given sentence is consistent, and thus
acceptable in semantics. We consider this problem in this
way, because it is widely accepted that predicate verbs
play a very important role in assigning constraints to
noun phrases that they govern (Levin 1993; Fillmore
1968, 1982). In section 3.3, we’ll discuss about why such
a way of resolving semantic issues is computationally
feasible (decidable). Decidability problem is very critical
for computing applications in that only “decidable
sentences” can actually be “understood” by machines.

To verify our hypothesis, we built a Parsing System,
which can judge the syntactic properties and semantic
properties of a sentence simultaneously, see section 4.
The whole grammar system is composed of a type
hierarchy (classification of verbs and taxonomy of
utterances), a lexicon and a set of grammar rules. It at
present includes about 50 rules, more than 600 verbs, and
hundreds of nouns. The limit of the grammar system at
present is that it can only process clausal sentences.
However, it is very hopeful to extend it to a wider
coverage by adding a probability based preprocessor,
which is, for example, capable of cutting complex
sentences into simple clauses.

II. METHODS USED IN THIS PAPER

A. Syntactic Rules of CGs
Categorial Grammar originates from the ideas in work

of Ajdukiewicz [1] and Bar-Hillel [2] (hence AB-CG).
Joachim Lambek [11] introduced a syntactic calculus
along with various rules for the combination of functions,
which mainly include Application, Associativity,
Composition, and Raising. CG is distinguished from
other formal grammars by its syntactic categories and
inference rules. The syntactic categories SyC is defined
as follows:

Atomic categories: NP, S, …∈SyC

2 It is hard to give a formal definition of semantic category, like the
definition of syntactic categories given in CGs, see section2.1; because
semantic categories could be intertwined with syntactic components, see
section 4.2.

Complex categories: if X, Y∈SyC, then X/Y, X\Y∈SyC.
Complex categories X/Y or X\Y are functors with an
argument Y and a result X, for example S\NP/NP in (3).
For another, NP/NP would be the type of determiner that
it looks forward for a noun to produce a noun phrase; S\S
would be the type of adverb that it looks backward for
sentence to produce a sentence, as illustrated in (4) and
(5):

(3) He sells tomatoes.
 NP S\NP/NP NP
 _______S\NP_____
_______S________

(4) I bought a red book yesterday.
 NP S/NP\NP NP S\S
 ____S/NP___
 ______ S______
 _______S_______

Application and Composition are the most frequently
used rules of CG. “The rule of forward application states
that if a constituent with category X/Y is immediately
followed by a constituent with category Y, they can be
combined to form a constituent with category X.
Analogously, backward application allows a constituent
X\Y that is immediately preceded by a constituent with
category Y to combine with this to form a new
constituent of category X” [8].

• Forward application
 X/Y Y →X
• Backward application
 X\Y Y →X

“Composition allows two functor categories to combine
into another functor” (ibid).

• Forward composition
 X/Y Y/Z →X/Z
• Backward composition
 Y\Z X\Y →X\Z

For example, in (5), the article “a” asks for a noun phrase
to be its argument, so does the adjective “red”; therefore
they are composed together. Some more sophisticated
examples can be found in Mark Steedman’s work [14].

(5) a red book
 NP/NP NP/NP NP
 ____NP/NP___

 ______NP_____

B. Semantic Representation of Frame Semantics
Frame semantics is the development of Charles

Fillmore’s Case Grammar [6]. The basic idea is that one
cannot understand meaning without world knowledge. A
semantic frame is defined as a structure describing the
relationships among concepts evoked by words (mostly,
by verbs). For example, in an exchange frame, the

2240 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

concepts of SELLER, BUYER, and GOODS would be
evoked by verbs, e.g. sell, buy, etc. In a sentence,
semantic structures that are composed of these concepts
are usually represented by the syntactic relations of
semantic roles over predicates, as in (6) and (7), compare
them to (3) and (5) respectively:

(6) He sells tomatoes.
 SELLER <exchange> GOODS

(7) I bought a red book yesterday.
 BUYER <exchange> GOODS TIME

The assignment of semantic roles to categories depends
on the meanings of both verbs and the categories. For
example, in (8), “tomatoes” is assigned PATIENT,
instead of GOODS; because, the predicate “cooked”
evoked frame <cook> and all the concepts related to
<cook>, such as Agent and Patient. In (9), “tomatoes” is
assigned THEME, because its state does not change after
it is moved to the “truck”3.

(8) He cooked tomatoes.
 AGENT <cook> PATIENT

(9) He loaded truck with tomatoes.
 AGENT <fill> GOAL THEME

C. Combining CG Rules and Semantic Frames
It is widely agreed that it is mainly the predicate verb

of a sentence that bears the responsibility of evoking
semantic frames. Thus, the predicates in (3) and (6) can
be rewritten as (10), which means frame <exchange> has
two arguments, SELLER, and GOODS

(10) <exchange>\SELLER/GOODS

Through applying (10) to (6), we can extract semantic
frame <exchange>, as shown in (11):

(11) He sells tomatoes.
 SELLER <exchange>\SELLER/GOODS GOODS
 _______<exchange>\SELLER____________

 _______<exchange>__________

Semantic frames can also be composed to form a
complex frame.

(12) John said [he sold tomatoes]CONTENT
 INFORMER X SELLER Y GOOD
 X’ Y’

3 The main difference between PATIENT and THEME is that
PATIENT undergoes the action and its state changes, whereas THEME
does not. For more explanations about semantic role labeling, please
refer to Fillmore’s paper about Case Grammar [6]

Here, we replace the verb’s meaning with X and Y. X’
represents the semantic frame of the main clause, and Y’
represents the semantic frame of the complement clause:

• X’=X\INFORMER/CONTENT
• Y’=Y\SELLER/GOODS

The two semantic frames are composed in the way of
(13):

(13) X’/Y’ Y’ →X’

Where, X’/Y’ means, the semantic frame X’ asks for Y’
to be its argument. We write it in a more conventional
form, X’(Y’). Note that the composition of two semantic
frames into a complex frame needs to convert each
semantic frame into a more complex form. In the
following of this paper, we will continue to use X and Y
to represent the lexical meanings of verbs, and X’ and Y’
to represent the frames.

III. EXAMPLES

A. Insertion
In Bar-Hillel’s paper [2], there is a tough problem that

CGs cannot resolve neatly until today, as shown in (14):

(14) Paul, strangely enough, refuses to talk.
 Z X Y W

Literally, it means “it is strangely enough that Paul

refuses to talk”. Apparently, (14) is a complex
construction composed of two semantic frames. We just
need to make them go back to their places. In Curry’s
work [5], he presented a combinator C, which is used for
switching the first two arguments of a function. Here, we
use it to reorder the disturbed arguments’ position.
Example (14) can be transformed into (15) without
causing any changes of meanings.

(15) Strangely enough, Paul refuses to talk.
reorder: X Z Y W
rewrite: X’ (X’=X) Y’=Y\Z/W
convert: X’/Y’ [Y\Z/W]Y’

compose: X’/Y’ [Y\Z/W]Y’ → X’/[Y\Z/W]

where, rewrite, convert, and compose are the operators
that have been introduced in section 2. (16) and (17) are
similar examples:

(16) He, frankly speaking, is not good enough.

(17) He, I guess, must be angry.

B. Coordination-reductions
The examples (1) and (2) mentioned at the beginning

of this paper share the same construction, coordination-
reduction. The omitted parts […] did not disappear;

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014 2241

© 2014 ACADEMY PUBLISHER

actually they exist in deep semantic layers, as shown in
(1)’ and (2)’:

(1)’Mary planted […] and Harry cooked the beans.

(2)’* Harry cooked […] and Mary planted the beans.

To give a further explanation on why (2) is not
acceptable in semantics, we need to evoke our world
knowledge. We may share the common sense that a
cooked bean cannot grow anymore, so it’s meaningless to
plant cooked beans. The reasoning processes with such
world knowledge can be represented as (18):

(18) Harry cooked and Mary planted the beans.
 Y X
 Mary planted the beans Harry cooked […].
reorder: X Y
rewrite: X\AGENT1/THEME Y\AGENT2/PATIENT
convert: X’/Y’ [Y\AGENT2/PATIENT]Y’

compose: X’/Y’ [Y\AGENT2/PATIENT]Y’ → X’/[Y\AGENT2 /PATIENT]

Technically, this composition can be reduced to the
unification of […]PATIENT and THEME, see (19). If
[…]PATIENT is consistent with X’, then, it can replace the
variable THEME in X’. Apparently, it is not, so
[…]PATIENT cannot replace THEME. Hence, the sentence
is not acceptable in semantics.

(19) λPATIENT.Y’(PATIENT:=[…])=[…]PATIENT

 λTHEME.X’(THEME:=[…]PATIENT)

C. Discussion
How do we know that such way talked above is

resolvable? Or how do we decide that THEME can be
replaced with […]PATIENT, in (19)? In Kfoury’s work [9],
he proved that an instance Δ of unification problem U (β-
unification) has a solution iff M is β-strongly
normalizable, (where M is a lambda term, from which Δ
can be transformed); and that M is β-strongly
normalizable iff M is typable in the lean fragment of the
system of intersection types. We hypothesize that
semantic frames are the lean fragments of the system of
intersection types, and if verbs that bear the meanings of
semantic frames are typable in such system, then
semantic consistency problems like the one of (19) is
decidable. Linguistically, being typable in the system of
semantic frame means that verbs, such as “cook” and
“plant” in (1) and (2), are of completely different types.
That is to say, the arguments that <cook> and <plant> ask
for are of completely different types. So, verb types will
help explain why the change of “the beans” caused by
“cook” is unacceptable in frame <plant>.

IV. PARSING SYSTEM

The grammar system is implemented in ALE [3] a
programming language based on the logic of typed
feature structure [4]. During constructing this grammar

system we encountered three difficulties. The first is that
the structures of syntactic and semantic components are
both independent of each other and intertwined together.
On one hand, the independency will guarantee the
generality of the grammar system. On the other hand this
is quite a dilemma, for there is not yet such a parsing
method that can skip one while parsing the other. This
means we must find a method that can parse the syntactic
and semantic structures simultaneously. The second is
labeling categories with types. This is not as easy as it
looks; because a semantic category could be as complex
as a clause; though sometimes they are just bare words.
As for the simple categories, we defined a set of lexical
rules that can change them directly into intended forms.
As for complex categories, we employed Application
Rules of CG in the way of like (28). The third is to
describe the four operators with typed feature structures
(we omitted reorder for it is very easy). For the rewrite
operator, we defined a set of structures (they are called
Macros in ALE) to separate the inflections from the verb;
as in (21) and (25). The four operators are like steps, by
which we dig gradually from surface into the core. In this
sense, the whole parsing process is basically bottom up.

A. Typed Feature Structure
A typed feature structure is a directed graph possibly

with cycles. The nodes on the graph are labeled with
types; and the edges between nodes are labeled with
features, see Figure 1. A typed feature structure could be
represented either by a graph, like (a), or by an AVM,
like (b). The squares with numbers in (b) mean that the
types are same. This is very useful in describing some
linguistic phenomena, like anaphora and reduction. It will
appear again in section 4.4.

q q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−

F
a

F

a

Figure 1. The graphic and AVM representation of

typed feature structure

More intensive studies about typed feature structures
can be found in Carpenter’s book [4] and Penn’s doctoral
thesis [12]. Typed feature structure is widely used in
many grammar representations, for example Lexical
Functional Grammar and Head-driven Phrase Structure
Grammar.
 The only operation in the logic of typed feature
structure is Unification. Whether two feature structures
can be unified together depends on if their types are
consistent to each other. Carpenter in his book named
“the logic of typed feature structures” gives a definition
of Type Consistency: “A set T of types is said to be
consistent or bounded if they share a common subtype or
upper bound σ such that σ ⊑ τ for every τ ⊑ T [4].
 In the above, we used λ-calculus to explain some
semantic issues. Typed feature structure can take its place

2242 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

in that the type is like a function and the features are like
arguments; and the replacement of variables with values
in λ-calculus can be represented by the unification of
features values and some other types. The constraints of
the argument assigned by the predicate are also well
described in the logic of typed feature structures.
Different types are discriminated by their features, and all
the features must be valued by some other types, i.e.,
types constrain their features’ values.

B. Intertwined Syntactic and Semantic Structures
The structure of a sentence is like a double helix, as

shown in Figure 2. Syntactic and semantic components
are intertwined together. This addresses ourselves to a
question: how do we define syntactic and semantic
components? Generally speaking, firstly semantic
components are more independent. Even the dependents
(the thicken parts) were omitted, the meaning of those
sentences would not change much. Secondly, semantic
components are more stationary. As shown in (a) and (b),
when the sentence is transformed, the semantic
components do not need to move; while, the dependents
have to move with their “governors”.

Figure 2. An example of intertwined syntactic and semantic structures

For example, in (a) of Figure 2, AGENT and THEME
are dependent on <plant>, so they are the syntactic
components or dependents of <plant>; while “plant” is
the semantic component of <plant> or the governor of
AGENT and THEME; so it is more stationary. When the
sentence is changed into a passive form, as in (b),
AGENT and THEME are moved, “plant” is still in the
middle. For another example, in THEME “the” and
“Harry cooked” are dependent on “beans”; so they are the
syntactic components of THEME and “beans” is the
semantic component. When THEME is moved to the
front, as shown in (b), “the” and “Harry cooked” have to
move, but the position of “beans” relative to “the” and
“Harry cooked” is not changed.

C. Labeling Categories with “types”
(20), (22), (23) and (24) are to label categories with

semantic roles. It is assumed that what semantic role a
category is to have depends on the category’s lexical
meaning and on the category’s syntactic environment. In
(20), as long as “marry” is predefined as a subtype of
“agent_element”, it is unifiable with the “node”
[agent_element].

(20)

[] ⎥
⎦

⎤
⎢
⎣

⎡
→→

maryMEANING
wordagent

elementagentmary
:

_
_

(21)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→

plantMEANING
didTENSE

modalitytense
SYNTAX

wordplant

planted

:
:

_
:

_

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

plantMEANING
didTENSE

modalitytense
SYNTAX

wordplant

SEM

themeTHEME
agentAGENT

frameplant
SYN

plant

:
:

_
:

_

:

:
:

_
:⎯⎯ →⎯rewrite

(22)

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→→

beanMEANING
sSYNTAX

wordtheme
elementthemebeans

:
:

_
_

(23)

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→→

beanMEANING
sSYNTAX

wordtheme
elementpatientbeans

:
:

_
_

(24)

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
→→

harryMEANING
modalitySYNTAX

wordagent
elementagentharry

:
:

_
_

(25)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

cookMEANING
didTENSE

modalitytense
SYNTAX

wordcooke

SEM

patientPATIENT
agentAGENT

framecook
SYN

cook

:
:

_
:

_

:

:
:

_
:⎯⎯ →⎯rewrite

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
→

cookMEANING
didTENSE

modalitytense
SYNTAX

wordcooke

cooked

:
:

_
:

_

(26)

[]ivedemonstratthe →

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014 2243

© 2014 ACADEMY PUBLISHER

(21) and (25) are approximations of the operator
rewrite, as introduced in section 2. Because “semantic
frame” is a very abstract concept, so the modalities and
tenses that have been attached to a verb should be
interpreted in some other ways. After a predicate verb
becomes an abstract “frame_word”, i.e. it will be able to
bear the responsibility for evoking some semantic frame.
(26) is to label “the” with a type called “demonstrative”
in linguistics. The purpose of doing this is to make a
referent clearer. But in the coming-up stage, as shown in
(28), they will be composed together so that they will be
treated as a whole.

D. Semantic and Syntactic Parsing
The only one operation in the logic of typed feature

structure is Unification. This is very similar to the
unification operation in PROLOG except that it is
constrained by “type consistency”. In order to parse the
semantic structures of utterances, we need to translate the
Application rules of Categorial Grammar into
Unification operation. We replace “/” and “\”in categorial
grammar with “⊔” the unification operation in the logic
of typed feature structure4. In order to make it tidier, in
the following examples, we don’t copy the whole
structure; instead, we use the number on the upper right
corner of each product, as shown in the followings.

(27)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎯⎯ →⎯

cookMEANING
didTENSE

litytense_moda
SYNTAX

wordcook

SEM

elementpatientMEANING
wordpatient

PATIENT

harryMEANING
modalitySYNTAX

wordagent
AGENT

framecook

SYN

cook

convert

:
:

:

_

:

_:
_

:

:
:

_
:

_

:

(28)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒

beanMEANING
wordtheme

SEM

factCLUE
theDEMON

modifier
SYN

theme

:
_

:

:
::

4 The operations of Categorial Grammar are intrinsically different from
Unification of the logic of Typed Feature Structures [4]. However, from
an angle both of them could be considered as apparatuses to combine
small parts into bigger ones.

(29)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

plantMEANING
didTENSE

modalitytense
SYNTAX

wordplant

SEM

beanMEANING
sSYNTAX

wordtheme
SEM

factCLUE
theDEMON

modifier
SYN

theme

THEME

maryMEANING
wordagent

SEM

modifierSYN

agent

AGENT

frameplant

SYN

plant

:
:

_
:

_

:

:
:

_
:

:
::

:

:
_

:

::

_

:

1 92
10

⎯⎯ →⎯convert

(27) and (29) are to approximate the operator
“convert”, see section 2. Convert is to change a frame
word into a more complex frame according to its
surroundings. (27) is constructed by unifying “harry” and
“cooked”. (29) is constructed by unifying “mary”,
“planted” and “the beans”. (28) is to make the noun
phrase as a whole category. The features “SYN” and
“SEM” in the above examples are to describe the
intertwined syntactic and semantic structures.
(30)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

plantMEANING
didTENSE

modalitytense
SYNTAX

wordplant

SEM

beanMEANING
sSYNTAX

wordtheme
SEM

cookMEANING
didTENSE

litytense_moda
SYNTAX

wordcook

SEM

beanMEANING
wordpatient

PATIENT

harryMEANING
modalitySYNTAX

wordagent
AGENT

framecook

SYN

cook

CLUE

theDEMON

modifier

SYN

theme

THEME

maryMEANING
wordagent

SEM

modifierSYN

agent

AGENT

frameplant

SYN

plant

:
:

_
:

_

:

:
:

_
:

:
:

:

_

:

:
_

:

:
:

_
:

_

:

:

:

:
:

:
_

:

::

_

:

⎯⎯⎯ →⎯compose

2244 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

(30) is to approximate operator “compose”. Whether
they can be composed together depends on if the two
frames are compatible to each other; or more exactly if
<cook> is compatible to <plant>. Recall we reduced this
problem to the replacement of “the beans” in <plant>
with the “beans” in <cook>. In here, we use an equation
(the squares with numbers) to describe the replacement
(refer to Figure 1). Apparently, the beans are of two types,
so they are not compatible. Therefore, “the beans” in
<plant> cannot be replaced with the “beans” in <cook>;
i.e. the whole sentence is semantically unacceptable.

V. FURTHER DISCUSSION

In this paper, we demonstrated the deficiencies of CG
and FS, and how to complement them with each other.

One of the deficiencies of CG is that the syntactic
categories are too superficial. For example, all noun
phrases are represented as NP, no matter if their
meanings have undergone changes. That’s why “the
beans” Mary cooked cannot be distinguished from the
“beans” Harry planted, as shown in (10) and (11). For
another example, as shown in (5), both determiner and
adjective are represented as NP/NP. But, FS distinguishes
categories meticulously. Therefore, we replace the part of
speech with semantic roles so that nuance of meanings
can be represented.

Besides, CG is order-dependent. Some very common
linguistic phenomena are still challenges to CGs; for
example, omission and insertion. But these are not
problems to FS. Unlike CG, in FS, a semantic frame is a
set of concepts that are related in a way of “gestalt”. For
example, in (1)’ and (2)’, omitted constituents are
regained and they are represented as […].

FS does not pursue formal mechanism; so it cannot
explain how smaller frames are composed together. But
this is not a problem to CG, for syntactic categories can
be composed through syntactic rules, such as Application
and Composition introduced in section II. Being inspired
by this notion of CG, we proposed four operators:
reorder, rewrite, convert and compose. Reorder makes a
disturbed sentence change back to its order. Rewrite
defines the evoking process as shown in (18), (21) and
(25). Convert defines how simple frames change into
composite forms. Compose defines how a simple frame is
integrated into a composite one.

From some aspects, semantic frames can be considered
as conceptualized experiences. Since we can describe
such conceptual experiences with linguistic symbols,
there must be a mapping between them. Such mapping
might be meaningful in that what a machine can do is
simply operating on symbols, but what we expect it to do
is far more than that.

ACKNOWLEDGMENT

REFERENCES

[1] Kazimierz Ajdukiewicz. ‘Syntactic Connecxion’ in S.
McCall (ed.), Polish Logic, Oxford, 1976. [Die
Syntaktische Konnexitat. Studia Philosophica Vol. 1, pp.
1-27, 1935].

[2] Yehoshua Bar-Hillel. A Quasi-arithmetical Notation for
Syntactic Description. Language, Vol. 29, 1953.

[3] Bob Carpenter and Gerald Penn. The Attribute Logic
Engine: User’s Guide. It can be obtained from
www.cs.toronto.edu/~gpenn/ale.html

[4] Bob Carpenter. The Logic of Typed Feature Structures,
Cambridge University Press, 1992.

[5] Haskell Curry. The Combinatory Foundations of
Mathematical Logic. The Journal of Symbolic Logic, Vol.
7, Number 2, 1942.

[6] Charles J. Fillmore. The Case for Case. In Bach and Harms
(ed.): Universals in Linguistic Theory. New York: Holt,
Rinehart, and Winston, 1968.

[7] Charles J. Fillmore. Frame semantics. In The Linguistic
Society of Korea, eds. Linguistics in the Morning Calm.
Seoul: Hanshin, 1982.

[8] Julia Hockenmaier and Mark Steedman. CCGbank: User’s
Manual. Technical Report MS-CIS-05-09. Department of
Computer and Information Science. University of
Pennsylvania, Philadelphia, 2005.

[9] A.J. Kfoury. Beta-Reduction as Unification. It can be
obtained from http://types.bu.edu/index.php?p=reports”.

[10] Beth Levin. English Verb Classes and Alternations: A
Preliminary Investigation. The University of Chicago Press,
Chicago and London, 1993.

[11] Joachim Lambek. The Mathematics of Sentence Structure.
The American Mathematical Monthly, Vol. 65, No. 3,
1958.

[12] Gerald Penn. The Algebraic Structure of Attributed Type
Signatures. Doctoral Thesis, Carnegie Mellon University.
Pittsburgh PA, 2000.

[13] Mark Steedman. Combinatory Grammars and Parasitic
Gaps. Natural Language and Linguistic Theory, Vol. 5, pp.
403-439, 1987.

[14] Mark Steedman. The Syntactic Process. The MIT Press,
Cambridge, Massachusetts, London, England, 2000.

[15] Mary M. Wood. Categorial Grammars. Routledge, USA
and Canada, 1993.

Ke Wang received her BA and MA in
computational linguistics from Dalian
Maritime University, China, in July of
1999 and April of 2005 respectively. She
now is a Ph.D Candidate of Dalian
University of Technology, working in
the area of Intentions of Speech. Her
research interest is seeking the interface
between natural language and artificial
language with methods of mathematics,

formal logics, and so on. She is also an enthusiast of cognitive
science, psychology and neurobiology, anything that potentially
may uncover the secret of human’s understanding mechanism.

I am grateful to Prof. Penn for his helps during
constructing the parsing system. I am also thankful to
many anonymous reviewers for their valuable advises.

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014 2245

© 2014 ACADEMY PUBLISHER

