
 

 

A Novel Fragments-based Similarity 
Measurement Algorithm for Visual Tracking 

 
Jun Shanga,c 

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China  
Email: newer_shangjun@163.com 

 
Chuanbo Chenb*, Hu Lianga, He Tangb and Mudar Saremb 

b School of Software Engineering, Huazhong University of Science and Technology, Wuhan, China 
c College of Computer, Hubei University of Education, Wuhan, China 

Email: *chuanboc@163.com, 
 
 
 

Abstract—Various adaptive appearance models have been 
proposed to deal with the challenges in tracking objects such 
as occlusions, illumination changes, background clutter, and 
pose variation. In this paper, first, we present a novel 
Fragments-based Similarity Measurement algorithm for 
object tracking in video sequence. Both the target and the 
reference are divided by multiple fragments of the same size. 
Then, we find the similarity of each fragment with the 
overlapped smaller patches by comparing the average 
intensity value of the patches. The accuracy of the tracking 
results can be improved by adjusting the size of the patches. 
Finally we incorporate the global similarity measurement 
using two kinds of distances between them. This method 
encodes the color and the spatial information so that it can 
track non-rigid objects under complex scene. We use this 
coarse-to-fine method to get a balance between the accuracy 
and the computational cost. Extensive experiments are 
conducted to verify the efficiency and the reliability of our 
proposed algorithm in the realistic videos. 
 
Index Terms—Visual tracking, appearance model, similarity 
measure 
 

I. INTRODUCTION 

Visual tacking plays an important role in many 
computer vision fields such as automatic surveillance, 
robotics, and human computer interaction. In real-world 
scenarios, the significant appearance variation remains a 
challenging problem due to factors such as illumination 
changes, background clutter, occlusion, varying 
viewpoints and poses [1]. The aim of tracking is to locate 
the target between consecutive frames that has the most 
similar appearance to the generative model. 

Various adaptive appearance models have been 
proposed to overcome the previous challenges and 
difficulties. Some methods were based on holistic models 
such as templates. A. D. Jepson et al. [2] presented a 
robust and adaptive appearance model to learn a motion-
based tracking of natural objects. The fragment-based 

tracker introduced by A. Adam et al. [3] aimed to solve 
the partial occlusion problem by using a representation 
model based on the histograms of the local patches. In 
their method, the object was tracked by accumulating 
votes in the current frame and by comparing its histogram 
with the corresponding image patch histogram. However, 
these templates were fixed and the tracker might drift 
away from the target. I. Matthews et al. [4] developed a 
template update method which could reduce the drift 
problem by aligning with the first template. R. Chaudhry 
et al. [5] modeled the temporal evolution of the object’s 
appearance using a linear dynamical system to resolve the 
problem of tracking non-rigid objects. In order to deal 
with the pose and the illumination variations, J. Kwon 
and K. M. Lee [6] extended the particle filter and 
decomposed the observation models into multiple basic 
motion and observation models. Nevertheless, these 
holistic models could not well handle the partial 
occlusion. 

The mean shift tracker [7] was a popular method for its 
robustness to scaling, rotation, partial occlusions and 
efficient computation cost. However, it was confused 
when the object had similar color with the reference 
model. Shengfeng He et al. [8] computed a locality 
sensitive histogram and added a floating-point value to 
the corresponding bin for each occurrence of an intensity 
value. Although they considered the contributions of all 
the pixels, the construction of the integral histogram had 
a high computational cost. Y. Wu et al. [9] used a set of 
control points along the contour to describe the shape of 
the object. This was more accurate than other 
representations, but it performed poorly in clutter and it 
was general time-consuming. D. Ross et al. [10] 
constructed a low dimensional subspace by using an 
incremental representation method during the tracking 
process to account the appearance variation, whereas the 
tracker was less effective in handling heavy occlusion or 
non-rigid distortion. L. Cehovin et al. [11] combined the 
target’s global and local appearances by interlacing two 
layers. They removed and added parts to update their 
model through significant appearance changes during the 
tacking. G. Shu et al. [12] proposed a robust part-based 
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tracking-by-detection framework to address the occlusion 
and the changes in appearance. S. Hare et al.[13] 
introduced a new approach to learn the object model as a 
collection of binary basic functions which can be 
evaluated efficiently at the runtime. 

Recently, sparse representation has been proposed in a 
framework of particle filter for object tracking. X. Mei 
and H. Ling [14] represented the candidate with a sparse 
linear combination for object templates and trivial 
templates. The tracking was implemented by solving the 
l1 minimization problem. To decrease the computation 
cost of the minimization function, an efficient L1 tracker 
with minimum error bounded and occlusion detection 
was proposed by X. Mei et al.[15]. They discarded the 
irrelevant samples during the re-sampling. B. Liu et al. 
[16] introduced dynamic group sparsity into the sparse 
representation to enhance the robustness of the tracker. 
Instead of using fixed dictionary, X. Jia et al. [17] 
updated the dictionary adaptively with dynamic templates 
to reduce the drift problem. Finally, T. Zhang et al. [18] 
formulated the object tracking as a structured multi-task 
sparse learning problem. They considered the correlations 
among the particles and how to make the tracker fast. 

Some of these previous methods used features such as 
color or contour to represent an object independently or 
jointly. However, when the object had similar color 
distribution as the background, the tracker might fail. 
Even though the representation of the contour might be 
more accurate than the color, but it performed poorly in 
the occlusions and the clutter. Although the sparse 
representations were popular in the recent years, but the 
computational cost of the matrix norm was time-
consuming. Therefore, there is a need to get a balance 
between the accuracy and the speed of the tracker. 

In this paper, our proposed method aims to resolve the 
appearance variation problem during tracking the object. 
We have considered a novel model for the similarity 
measurement that denoted by the local fragments 
similarity and the global similarity. The method encodes 
the color and the spatial information so that it can deal 
with the illumination change and the partial occlusion. 
The time complexity is a linear time in the number of the 
patches. The contributions of this work are summarized 
as follows: 

First, the mean color values for the local smaller image 
patches are taken into consideration instead of holistic 
models. As for the similarity measurement of sub-regions, 
we have just used the ratio of the corresponding mean 
value with overlapped patches as the local similarity 
measurement, and this is different from the traditional 
methods that usually adopt the differences between the 
corresponding pixels as a distance metric.  

Second, we have employed two kinds of distance to 
acquire the global similarity measurement based on the 
first step. We argue that these two stages of measurement 
improve the robustness of the tracking. Extensive 
experiments under different scenes have confirmed the 
accuracy and the efficiency of our tracker. 

The rest of the paper is organized as follows: Section II 
gives an overview of our method. In Section III, we 

describe the coupled-layer model for tracking. In section 
IV, we perform extensive experiments and analyze the 
results. Finally, the conclusions are drawn in section V. 

 
Figure 1．Illustrations of our fragments-based similarity measure for 

object tracking. 

II.  OVERVIEW OF OUR METHOD 

The goal of our visual tracking algorithm is to find the 
most similar region between two consecutive frames. Let 
R and T denote the reference in the current frame and the 
target in the next frame respectively. The purpose of our 
tracker is to locate the target that is the most similar to the 
reference. In practice, such solution is implemented by 
dividing both R and T with multiple fragments of the 
same size. As Fig.1 shows, both the reference and the 
target are divided by the same layout with equal smaller 
patches. The red rectangle on the left is the first fragment 
in the object with corresponding green rectangle in the 
target. The yellow rectangle denotes the patches 
overlapped with half of the red one. The dashed line in 
the current frame denotes the searched region around the 
reference. In our method, we seek for the target in the 
next frame. This searching for the target includes fifteen 
or ten pixels to the left or the right of the reference area 
and fifteen or ten pixels to the above or the below of the 
reference area. First, we calculate the similarity of the 
corresponding patches by the ratio of the mean intensity 
value. The adjacent patches are overlapped so that each 
patch contributes several components to the final 
measurement. Then, we obtain the global similarity by 
using two kinds of distance metrics. In order to deal with 
the problem of scale variation, we shrink or enlarge the 
target model by ten percent and compute the similarity 
with the reference under three scales. Finally, we search 
for the rectangular area with the maximum value of the 
measurements to denote the object. This method encodes 
both the color and the spatial information so that it can 
deal with the partial occlusions. Furthermore, the mean 
value is compared within a sub region instead of using 
the pixel directly. Thus, it can diminish the effect of the 
noise to some extent. In addition, the combination of the 
local and the global similarity measurements makes these 
measurements robust to track multiple people. 
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III. FRAGMENTS-BASED SIMILARITY FOR TRACKING 

Images taken under different cases make the object 
takes on drastic appearances. Various previous tracking 
methods aimed to diminish this effect. Aforementioned 
methods used features such as color and contour to 
describe the object independently or jointly. In this 
section, we have described our model based on a novel 
fragment and integral similarity measurement. One 
important assumption for our model is that the object can 
be characterized by the distribution of the local patches 
without knowing all of its property. It is important to 
mention that we have used a coupled-layer model to 
search for the object instead of a singular holistic model. 
Also, we have divided the object and the reference into 
many fragments with the same size. Then, a local 
similarity metric is calculated by the ratio of the average 
of the intensity values within each patch between the 
corresponding areas. Finally, we have calculated an 
integral similarity with two kinds of distances. The region 
with the maximum value denotes the target. 

A.  Fragments Similarity Metric 
We have used the chromatic color space directly to 

diminish the effect of the lost information. Let R and T 
represent the detected reference object and the target 
respectively, we divide them into w*h fragments F1, 
F2, . . .,Fw*h with the same size. To encode the spatial 
layout of the target and make it robust against noise, we 
arrange two overlapped adjacent fragments denoted by 
Fi’. Each Fi’ is represented by the average intensity of the 
pixels as it is written in the following Equation (1): 

  ∑
∈

=
',

/)),(),,(),,((),,(
iFyx

iiii Nyxbyxgyxrbgr           (1) 

Where the triple ),,( iii bgr represents the ith fragment, 

),( yxr , ),( yxg , and ),( yxb  are the intensity values 
of the three channels at ),( yx , and Ni is the total number 
of pixels within Fi’. Next, we calculate the mean value of 
three channels as a descriptor of the patch. This can be 
expressed in the following equation (2): 

                         3/)( iiii bgrA ++=                        (2) 

Here, we have used only the arithmetic mean value for 
its simplicity and efficiency. Then, we get the fragments 
similarity by the ratio of the corresponding sub-areas. Let 
Atar and Aref denote the overlapped patches of the object 
and the reference respectively. If Atar is smaller than Aref, 
then the similarity metric between them is given by the 
following equation (3): 

                          ref
i

tar
i

patch
i AAs /=                         (3) 

However, in order to ensure that the metric value is 
bounded by zero and one, the similarity given by 
equation (3) will be Aref / Atar if Aref is smaller than Atar. In 
this way, our method is different from the traditional Sum 
of Squared Differences (SSD) in that it uses the ration 
rather than the intensity differences between the pixels. 
We argue that it is a feasible method for the measurement. 
For example, suppose at time t-1, t, t+1, Ai has three 

different intensity values denoted by 100, 150, 200 
respectively, we usually hold that the difference between 
100 and 150 is as same as the difference between150 and 
200, which is 50. Therefore, they have equal distances. 
But by using our new measurement, the similarity 
between 100 and 150 is 2/3, which is smaller than the 
similarity between 150 and 200 with 3/4. Furthermore, 
we use the mean value of the overlapped sub-regions 
instead of singular pixel to improve the ability against the 
noise. The template tracker requires strict pixel-wise 
alignment between the target region and the reference 
template. This performs well in handing rigid objects, 
while have a poor discriminative power for the non-rigid 
objects. Also, we avoid using popular color histogram 
because it makes an inefficient representation when there 
are several homogeneous sub regions. However, our 
method combines the local variations of the appearance 
and the spatial information by overlapped patches, thus 
integrating the advantage of both of them. 

B.  Global  Similarity Measurement 
After getting the local similarity measurements Si , we 

now search for the target in the next frame. To this end, 
we pick M rectangles with the same size of the reference 
around it denoted by Rj (j=1,…M). Each rectangular 
region is calculated for the fragments similarity according 
to the first stage, and then the integral similarity is 
calculated in two kinds of distances: the cosine distance 
and the Euclidean distance. 

Let N denote the number of the overlapped patches. 
Note that it is larger than the number of the fragments. In 
our experiments the patches are overlapped with half of 
the fragments, so we can denote that N equals to (2row-
1)*(2col-1), where row and col are the rows and the 
columns of the fragments respectively. As it will be seen 
in section IV, the different sizes of row and col have 
impact on the tracking results. We seek a balance of 
efficiency and accuracy between them by adjusting the 
parameters in our experiments. Then, we can represent 
the candidate as a vector ],...,[ 21

patch
n

patchpatch sssV =  and 
the reference as another vector ]1,...1,1['=V with the same 
dimension as V . Note that we have used this horizontal 
constant vector to represent the reference. Let rect

jS denote 
jth rectangle of the candidates (j=1,...,M). Next, we use 
two kinds of distance metrics as the similarity 
measurement for the two vectors. 

Our first method is the Cosine distance presented in 
the following equation (4): 

Ns

s
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And our second method is the Euclidean distance 
presented in the following equation (5): 
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Given these two kinds of distance measurements, we 
can formalize the visual tracking as a search region over 
the maximum metric. The region with the maximum 
metric denotes the target in the consecutive frames. Note 
that the time complexity is O(N) and O(M) for the first 
stage and the second stage respectively, so the 
computation cost of the algorithm is O(N*M). 

C.  Adaptive Scale Space 
The scale of an object usually changes during the 

tracking. If we use fixed rectangle to denote the object, it 
may drift away from the true position when the size of the 
object changes. To avoid this drift problem, we use 
different sizes as templates. In our method, we compare 
the candidates with three scales. The larger one is 1.1 
times size of the reference and the smaller one is 0.9 
times size of the reference. According to the above 
analysis, the time complexity will be O(3N*M) in this 
case. Then, we calculate the similarity under these three 
scales respectively. Given these scales, we can formalize 
the visual tracking as a search region over the scale space 
that maximizes the similarity of the rectangular region at 
time t. 

Consequently, in Algorithm 1 which is shown below, 
we present a detailed description of our fragments-based 
similarity measurement algorithm for object tracking. 

Algorithm 1: Fragments-based tracking 

Input: Frame I(k), fragments width w, fragments height h. 
Output: The mean value for the object, the mean value 
for the reference, the fragments similarity, and the global 
similarity (i. e.  ,,, patch

i
ref
i

tar
i sAA rect

jS ). 
1. Sample a set of candidate rectangles around the 

object. 
2. For each candidate rectangle do 
3.   For each overlapped patches do 

(a) Calculate the mean value of three channels by 
using equation (1) and (2) for the object and 
the reference respectively (i. e. tar

iA , ref
iA ). 

        (b) Calculate the fragments similarity patch
is by 

using equation (3). 
4.   end for 
5. Calculate the global similarity rect

jS  under three 
scales by using equation (4) and (5) for the Cosine 
distance and the Euclidean distance respectively. 

6. end for 
7. Search for the maximum metric to locate the object. 

IV. EXPERIMENTAL RESULT 

We have tested the effectiveness of our method by 
using a number of video sequences with different 
environments. In our experiment in this paper, we have 
used MATLAB2012a as programming tool and assumed 
that the initial position of the object has been known. Our 
tracker was implemented in MATLAB on a Pentium(R) 
Dual-Core E5700 3.00GHz with 4GB RAM. We have 
divided the object into four different sizes and recorded 

the tracking time. A tracking success rate is used for the 

evaluation criteria. Let )(
)(

gt

gt

RRarea
RRarea
∪
∩

denote the overlap 

ratio, where Rt and Rg are the bounding boxes of the 
tracker and the ground-truth, respectively. We argue that 
the tracking result of the current frame is a success when 
the overlap ration is larger than 0.5. The comparison of 
different sizes of the patches and the tracking time are 
shown in Table I. 

A. Illumination and Pose Change 
In the first experiment we have used the walking 

sequences in an outdoor environment with illumination 
and poses changes. The whole image size is 640*480, 
while the image size of the tracking person is about 
64*100. We have divided the person image into four 
images of sizes 8*10, 16*10, 32*20, and 32*50. Next, we 
have picked 15*15=225 rectangles around the object (i. e. 
the person) and calculate the similarity by two kinds of 
distances. As we can see from table I, in the case of the 
four images (i. e., 8*10, 16*10, 32*20, and 32*50), the 
accuracy in the Euclidean distance are 61%, 71%, 66%, 
and 76% respectively. While, the accuracy in the Cosine 
distance are 60%, 63%, 61%, and 66% respectively. Thus, 
according to these experimental results, the Euclidean 
distance measure performs better than the Cosine distance. 
The tracking results with Euclidean distance are shown in 
Fig.2. Also, from the result presented in Table I, we note 
that when the object is divided by the bigger sizes of 
patches, the accuracy is higher than the others. For the 
pose variations, bigger sizes of patches make one part of 
the person drop into the same regions at a higher 
probability than smaller sizes, and this improves the 
tracking accuracy. Meanwhile, as we can see from table I, 
in the case of the four images (i. e., 8*10, 16*10, 32*20, 
and 32*50), the average tracking seconds per frame (TPF) 
values are 1.09, 0.58, 0.20, and 0.12 respectively. Thus, 
the TPF values presented in table I show that the bigger 
sizes of the patches need less computational times than 
the smaller sizes. Fig. 5(a) shows the detailed comparison 
for the walking person. 

B. Clutter 
In the second experiment, we have captured the soccer 

clip with cluttered background. The full image size is 
640*360 and we have tracked the face of the player that 
raises the trophy with image size of 80*80. The face area 
is divided into four images of sizes 8*8, 10*10, 20*20, 
and 40*40. In this sequence, 10*10=100 rectangles 
around the target are compared with the template. From 
the results presented in table I, we can see that in the case 
of the four images (i. e. 8*8, 10*10, 20*20, 40*40), the 
accuracy in the Euclidean distance are 65%, 67%, 62%, 
and 61% respectively. While the accuracy in the Cosine 
distance are 64%, 68%, 62%, and 62% respectively. We 
have found that in this case the effects of the two kinds of 
distance measurement (i. e. the Euclidean and the Cosine 
distances) are nearly the same. This is because we have 
used square patches. The tracking results are shown in 
Fig.3. Also, in this experiment we can note that under 
complex background, our tracker can locate the correct 
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player. We have used the mean intensity value to 
decrease the effect of the noise. Furthermore, as we can 
see from table I, in the case of the four images (i. e. 8*8, 
10*10, 20*20, 40*40) the average tracking seconds per 
frame (TPF) values are 1.33, 0.87, 0.27, and 0.11 
respectively. The smaller scale we use, the more numbers 
of fragments we need. Thus occupies more computational 
time. However, this indicates that the increment of the 
average tracking time is slower than the increment of the 
number for the searched fragments. Fig. 5(b) shows the 
detailed comparison for the soccer sequence. 

C. Partial Occlusion 
In the third experiment a challenge pedestrian 

sequence with partial occlusion is used. The full image 
size is 352*288 and the image of the person is about 
30*60 . We have divided the object into four images of 
sizes 4*10, 6*10, 6*12, and 10*12. The tracking results 
are shown in Fig.4. In this experiment, 100 rectangles are 
used around the walking woman. As we can see from 
table I, in the case of the four images (i. e., 4*10, 6*10, 
6*12, and 10*12), the accuracy in the Euclidean distance 
are 63%, 61%, 62%, and 66% respectively. While, the 
accuracy in the Cosine distance are 58%, 59%, 57%, and 
60% respectively. This shows that the results of the 
Euclidean distance measure are better than the results of 
the Cosine distance. We note that by exploiting a 
moderate number of regions, the relative spatial 
information is maintained, and thus the partial occlusion 
is well resolved. When the woman passes through the 
white car and blue car, our tracker can locate her 
correctly. Tracking drift usually occurs when the target is 
heavily occluded. From these results, we can see that our 
method has the ability to recover tracking drift since only 
some sub-regions have influence on the results. Also, as 
we can see from table I, in the case of the four images (i. 
e., 4*10, 6*10, 6*12, and 10*12), the average tracking 
seconds per frame (TPF) values are 0.58, 0.39, 0.33, and 
0.22 respectively. Therefore, the TPF values presented in 
table I show that the speed of this tracker with the bigger 
sizes of the patches is higher than the smaller sizes of the 
patches. Fig. 5(c) shows the detailed comparison for the 
pedestrian. 

 

 
Figure 2. Tracking results of the outdoor walking person. Frames 20, 46, 

80 and 85 are displayed 

 
Figure 3. Tracking results of the player’s header. Frames 5, 15, 50 and 

65 are displayed 

 
Figure 4. Tracking results of the pedestrian with partial occlusion. 

Frames 125, 158, 180 and 225 are displayed 

 
(a) 

 
(b) 

 
(c) 

Figure 5.  Detailed comparisons of the three video sequences. The x-
axis shows the number of the fragments. 
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TABLE I.  
COMPARISON WITH PATCH SIZES AND ACCURACY 

Video 
Clip Scale 

Accuracy 
(%) TPF Scale 

Accuracy 
(%) TPF

Cos Eu Cos Eu

Waking 
person 
(150 

frames) 

8*10 60 61 1.09 16*10 63 71 0.58

32*20 61 66 0.20 32*50 66 76
* 0.12

Soccer 
sequence 

(250 
frames) 

8*8 64 65 1.33 10*10 68* 67 0.87

20*20 62 62 0.27 40*40 62 61 0.11

Pedestrian 
(400 

frames) 

4*10 58 63 0.58 6*10 59 61 0.39

6*12 57 62 0.33 10*12 60 66
* 0.22

TPF denotes the average tracking time per frame. Cos denotes Cosine 
distance. Eu denotes Euclidean distance.  The (.)* denotes the best result for 
each sequence. 

V. CONCLUSIONS 

In this paper, we have proposed a novel coarse-to-fine 
fragments-based similarity measurement for object 
tracking. Both the target and the template are divided by 
smaller sub-areas with the same size. The local similarity 
is calculated by ratio of the mean intensity value with 
overlapped patches. Finally, we get the global similarity 
by using two different kinds of distance metric. In this 
method, we have considered both the spatial and the 
intensity information, so it can deal with pose variation, 
clutter and partial occlusion. 

Since the appearance of the object varies during 
tracking, our method is sensitive to parameters such as 
the size of the patches, the number of the searched 
rectangles, and the initial actual position of the object. 
Finally, we have implemented extensive experiments to 
improve the accuracy and the efficiency of our method by 
adjusting the parameters manually. In the future, we will 
make efforts to improve the robustness for better adaptive 
parameters. 
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