
A Modified Particle Swarm Optimization 
Algorithm for Reliability Redundancy 

Optimization Problem 
 

Yubao Liu 
College of Computer Science and Technology, Jilin University, Changchun, China 

College of Computer Science and Technology, Changchun University, Changchun, China 
Email: liuyb@ccu.edu.cn, lyb_mailbox@126.com 

 
Guihe Qin* 

College of Computer Science and Technology, Jilin University, Changchun, China 
   Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, 

Changchun, China 
Email: qingh@jlu.edu.cn 

 
 
 

Abstract—In this paper, a modified particle swarm 
optimization (MPSO) algorithm is proposed to solve the 
reliability redundancy optimization problem. This 
algorithm modifies the strategy of generating new position 
of particles. For each generation solution, the flight velocity 
of particles is removed. Whereas the new position of each 
particle is generated by using difference strategy.  Moreover, 
an adaptive parameter is used to ensure diversity of feasible 
solutions. Experimental results on four benchmark 
problems demonstrate that the proposed MPSO has better 
robustness, effectiveness and efficiency than other 
algorithms reported in literatures for solving the reliability 
redundancy optimization problem.  
 
Index Terms—nonlinear programming, PSO, reliability 
optimization, redundancy allocation, adaptive mechanism 
 

I.  INTRODUCTION 

The reliability optimization problem is very important 
in industry and has attracted attention in academic field 
and engineering fields. In general, two major ways have 
been used to improve system reliability. The first way is 
by increasing the reliability of components, and the 
second way is by using redundant components in the 
subsystems. In the first way, sometimes it cannot meet 
our requirements even though the currently highest 
reliable components are used. The second way is by 
choosing the components reliability combination and 
redundancy levels to arrive the highest system reliability. 
Whereas the cost, weight, volume will be increased as 
well. So it is necessary that a trade-off is achieved 
between these two options for constrained reliability 
optimization. Such reliability allocation and redundancy 

allocation problem is called as RRAP (reliability 
redundancy allocation problem) [1, 2 , 3].  

RRAP has been proven to be NP-hard problem [2]. So 
far many different optimization technologies have been 
presented to resolve it. Exact optimization methods 
provide exact optimal solution and have been found to be 
suitable for small-size problems. But real world problems 
may have large sizes and involve many constraints. And 
even multiple components are chosen for each subsystem 
to enhance reliability. Because of the computational 
difficulty that increases exponentially in terms of problem 
size, the approaches called heuristics and meta-heuristics 
have been widely researched and applied[6,10].They 
offer feasible solution within reasonable computational 
time. 

There are four reliability-redundancy allocation 
problems of maximizing the system reliability subject to 
multiple nonlinear constraints[7,12]. They are nonlinearly 
mixed-integer programming problems and are formulated 
as following model uniformly [4, 39 , 41]: 

Max  Rs  =  f(r,n) 
s.t.  
gj(r,n)≤bj,j=1,…,m, nj∈positive integer, 0≤rj≤1        (1) 
Where ri is the reliability of subsystem i, and ni is the 

number of components of subsystem i. The f(.) is the 
objective function for the system reliability; the gj(.) is 
the jth constraint function and bj is the jth upper 
limitation of the system; the m is the number of 
subsystems. The goal is to determine the number of 
redundant components and the components’ reliability in 
each subsystem so as to maximize the overall system 
reliability. This problem belongs to the category of 
constrained nonlinear mixed-integer optimization 
problems. 

For solving the system reliability optimization 
problems, many researchers had paid great effort and 
presented many efficient methods. Prasad and Kuo 
presented implicit enumeration [9], and F.S. Hiller etc. 
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presented dynamic programming [5] and branch-and-
bound [11] to solve the reliability-redundancy allocation 
problem. But they are high time-consuming when the 
problem size is larger. With the development of artificial 
intelligence, some meta-heuristics methods have been 
proposed. Hsieh [8] used a linear programming approach 
to solve the RRP-MCC with nonlinear constraints. Coit 
and Smith[18] presented a genetic algorithm (GA) to 
solve the Reliability-Redundancy problem. Hsieh et al. 
[14] used genetic algorithm to solve reliability design 
problems of series systems, series-parallel systems and 
complex (bridge) systems. You and Chen [15] proposed a 
greedy genetic algorithm for series–parallel redundant 
reliability problems. Ta_Cheng Chen [16] used an 
immune algorithm-based approach to solve the RRP-
MCC problem of series system, series–parallel system, 
and complex (bridge) systems and overspeed protection 
system. Hsieh and You [17] presented an immune based 
two-phase approach to solve the reliability-redundancy 
allocation problem. First, an immune algorithm (IA) is 
used to get preliminary solutions. Second, the quality of 
solutions was improved by a procedure to obtain the last 
solutions. The result showed that the solutions are 
superior to those best solutions of other approaches in the 
literature.  Liang  and  Chen[13] proposed  a  variable  
neighborhood  search (VNS)  with  an  adaptive  penalty  
function. This method  improved  the  performance  and  
the  solution  quality  were  as good as others. Zavala et 
al.[21] proposed  a  particle swarm  optimization  (PSO)  
approach  named PESDRO to  solve  a  bi-objective  
redundant reliability  problem; And the reliability 
redundant problems of series system, parallel system and 
K-out-of-N  system  are  resolved.  Zou et al. [19, 20] 
used global harmony search algorithm to solve RRAP. 
Leandro dos Santos Coelho [22] presents a PSO approach 
based on Gaussian distribution and chaotic sequence 
(PSO-GC) to solve the reliability–redundancy allocation 
problems of complex (bridge) system and overspeed 
protection system. The PSO-GC has got better solutions 
than the classical PSO. Harish Garg and S.P. Sharma [38] 
used PSO to solve multi-objective reliability redundancy 
allocation problem of a series system. Agarwal and 
Sharma[26] applied ant colony optimization(ACO) 
algorithm with an adaptive penalty function to 
redundancy allocation problem.  Nabil Nahas et al. [25] 
coupled ant colony optimization algorithm with degraded 
ceiling local search method for redundancy allocation of 
series–parallel systems. Mohamed Ouzineb[24] presented 
tabu search(TS) approach to solve the redundancy 
allocation problem for multi-state series–parallel systems. 
Afonso et al.[29] used imperialist competitive algorithm 
(ICA) to resolve RRAP.                                                                                           

Recently some hybrid meta-heuristic methods have 
been proposed to solve the reliability redundant allocation 
problems. Nima Safaei et al.[28] presented an Annealing-
based PSO (APSO) method. Even though APSO didn’t 
obtain the better solution than other well-known meta-
heuristic method, it applied Metropolis-Hastings strategy 
and affected the performance of the basic PSO. Wang and 
Li [27] presented a coevolutionary differential evolution 

with harmony search algorithm (CDEHS) to solve the 
reliability-redundancy optimization problem. The method 
divided the problem into two parts: the continuous part 
and the integer part. The continuous part evolved by 
differential evolution algorithm, and the integer part 
evolved by harmony search approach. Thus two 
populations evolve simultaneously and cooperatively to 
get the solutions. Shi-Ming Chen et al. [23] proposed 
SAABC algorithm coupled simulated annealing 
algorithm (SA) with artificial bee colony (ABC) 
algorithm. The SAABC outperformed ABC and GABC 
in terms of convergence speed and accuracy. 

The paper is organized as follows. Section Ⅱ provides 
the general procedure of the basic particle swarm 
optimization(PSO) algorithm. In Section Ⅲ, a modified 
particle swarm optimization (MPSO) algorithm is 
proposed, and the procedure of the MPSO is described in 
details. The simulation results and comparisons are 
provided in SectionⅣ. Finally, the conclusion of the 
paper is summarized and the future work is directed in 
SectionⅤ.                                  

II.   THE PARTICLE SWARM OPTIMIZATION  

Particle Swarm Optimization[30] is an evolution 
algorithm based on swarm intelligence. It is inspired by 
feeding behavior of birds. When a flock of birds are 
seeking the food randomly, every bird just tracks its 
limited numbers of neighbors. So the overall result is that 
the entire birds are controlled by a center. PSO algorithm 
is used to solve the optimization problem[31,32], the 
solution is corresponding to the position of the bird in the 
search space(the bird is called “Particle” ). Each particle 
has its own position and velocity to determine the 
direction and distance of flight, and has a fitness value 
computed by optimization function. The fitness value is 
used to evaluate the current particle. 

Firstly PSO algorithm initializes a group of particles 
randomly. Then the optimal solution is obtained by 
iterations. The particles use the formula (1) and (2) to 
update their position and velocity in every generation 
population. The particle i can be expressed in D 
dimensional vector, the position is denoted by Xi = 
(xi1,xi2, … ,xiD), and the velocity is denoted by Vi = 
(vi1,vi2,…,viD). The formula (1) and (2) are described as 
follows: 

 
vid

t+1 = vid
t  + a1×rnd1

t × (pbestid
t – xid

t)  
+ a2×rnd2

t×(gbestid
t – xid

t)                        (2) 
 

xid
t+1 = xid

t  + vid
t+1                                                                              (3) 

 
Where, the pbest denotes the ith iteration personal 

extreme value point of the particle i. The gbest is the ith 
iteration global optimal value of the whole particles. The 
parameters a1 and a2 are accelerating coefficient, usually 
a1 = a2 = 2. The parameters rnd1 and rnd2 are random 
number, and rnd1 and rnd2 are between 0 and 1. In order 
to prevent particles fly out of the search space, every vid is 
limited by [-vdmax, vdmax]. 
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The basic PSO algorithm can be described as follows: 
Step 1: Initialization. 
The initial particles population is generated randomly. 

The position xi and velocity vi of every particle are 
generated randomly. The pbest of each particle is set to 
its current position, and calculate the corresponding 
personal extreme value. The global optimal value gbest is 
the best one in all personal extreme value. 

Step 2: Evaluating all particles. For each particle, the 
following operations are performed: 

    Step 2.1: Updating position and velocity according 
to formula (2) and (3). 

    Step 2.2: computing the fitness value F(xi) of 
particle i. 

    Step 2.3:if F(xi) is superior to F(pbesti), updating 
pbesti. 

    Step 2.4:if F(xi) is superior to F(gbest), updating 
gbest. 

Step 3: Stopping criterion. 
        If the stopping criterion is met, go back to Steps 4. 

Otherwise, go back to Steps 2. 
  Step 4: outputting gbest, the process is finished. 

III.    A MODIFIED PSO ALGORITHM 

PSO is a very good  algorithm for a lot of optimization 
problems. But it has shortcoming such as the solution has 
low precision and easy divergence. In order to improve 
the accuracy of solution for more complex optimization 
problems, we propose an efficient algorithm named 
modified PSO algorithm(MPSO) to get better feasible 
solutions.  

In the basic PSO algorithm, the new position of each 
particle i is generated by formula (2) and (3). It has low 
global search ability. So the algorithm is not easy to get 
the best solution. We proposed a new strategy for 
updating position of the particles. It applied formula (4) 
to get new position. 

 
xid

t+1 =xid
t  +   λ1(pbestid

t - xid
t) +  λ2(gbestd

t - xid
t)   (4) 

 
Where, λ1 and λ2 are the adjustment coefficients.  
 
λ1  =  αsin((2πt)/T)                                                  (5) 
 
The parameter λ1 is adaptive. It can ensure the diversity 

of the feasible solution, and prevents the premature 
convergence. The t is the current iteration count. The T is 
the total iteration number.  

The parameter λ2 is fixed value. It is usually the real 
number between 0 and 1.  The λ2 can make a solution to 
converge forward the global optimal solution with a fixed 
step length.  

The main procedure of MPSO is shown in Table I: 
 
 
 
 
 
 

TABLE I.   

PSEUDOCODE  OF  MPSO 

Line Pseudocode  of  MPSO 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Begin 
        Initialize a random population x 
     For t = 1 to T 

    For i = 1 to M  
        For j = 1 to D 

                    xid
t+1 = xid

t  +   λ1(pbestid
t - xid

t)  
+  λ2(gbestd

t - xid
t) 

          EndFor 
        If F(xi

t+1) < F(pbesti) 
            Updating pbesti 
        EndIf 
        If F(xi

t+1) < F(gbest) 
            Updating gbest 
        EndIf 
   EndFor 

EndFor  
Output the gbest 

End 
 

IV.   SIMULATIONS AND COMPARISONS 

In this section, we implement the simulations based on 
four benchmark problems to test the performances of the 
proposed MPSO for reliability-redundancy optimization 
problems. And we compared the MPSO with some other 
typical algorithms from the literatures.  

A penalty function method is used to handle constrains, 
it is described as follows: 

                 (6) 
                              
Where F(x) represents penalty function, f(x) represents 

objective function. gj(x), (j = 1, 2, …, p) represents the jth 
constraint, and λ is a large positive constant which 
imposes penalty on unfeasible solutions, and it is named 
as penalty coefficient. 

A.  Series System 
The series system [33] is shown as Figure 1: 
 
 
 

 
Figure 1. Series system 

 
 

This problem is formulated as follows: 

mi1Zn,1ri0

W))4/nexp(nw)n,r(g
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∑

∑

∑

∏

，

     (7) 

Where m is the number of subsystems, ni is the number 
of components of subsystem i, Ri ( ni ) is the reliability of 
subsystem i, f(r,n)  is the reliability of the system; The wi 
is the weight of each component in subsystem i, vi is the 

1 2 3 4 5 

∑
=

λ+−=
p

1j
j )}x(g,0max{)x(f)x(Fmin
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volume of each component in subsystem i; The  ri  is the 
reliability of each component in subsystem i; The item 
αi(-1000/lnri)βi is the cost of each component in 
subsystem i, the parameters αi and βi is the constant 
value(usually assume that have been given),1000 is the 

task time of the components(it is commonly expressed in 
Tm); The V is the upper limit of total volume of the 
system, C is the upper limit of total cost of the system, W 
is the upper limit of total weight of the system. The 
parameters for this problem are listed in TableII: 

TABLE II.   
THE PARAMETERS OF SERIES SYSTEM AND COMPLEX (BRIDGE) SYSTEM.  

Subsystem i 105αi βi wivi
2 wi V C W 

1 2.33 1.5 1 7 110 175 200 
2 1.450 1.5 2 8    
3 0.541 1.5 3 8    
4 8.050 1.5 4 6    
5 1.950 1.5 2 9    

The proposed algorithm runs 50 times for this problem 
independently, and the statistical results are computed 

and compared with other methods in other literatures. The 
list is as follows: 

TABLE III.   
BEST RESULTS COMPARISON ON SERIES SYSTEM 

Parameter Hikita  et al. [34] Kuo et al.[40] Chen 
[16] 

Xu et al. [12] This paper 

f(r,n) 0.931363 0.9275 0.931678 0.931677 0.9316823879 
n1 3 3 3 3 3 
n2 2 3 2 2 2 
n3 2 2 2 2 2 
n4 3 3 3 3 3 
n5 3 2 3 3 3 
r1 0.777143 0.77960 0.779266 0.77939 0.7793996871 
r2 0.867541 0.80065 0.872513 0.87183 0.8718379458 
r3 0.896696 0.90227 0.902634 0.90288 0.9028848599 
r4 0.717739 0.71044 0.710648 0.71139 0.7114027590 
r5 0.793889 0.85947 0.788406 0.78779 0.7877970932 

MPI(%) 0.4653 5.769 0.0064 0.0079 - 
Slack(g1) 27 27 27 27 27 
Slack(g2) 0.000000 0.000010 0.001559 0.013773 0.0000000073 
Slack(g3) 7.518918 10.57248 7.518918 7.518918 7.5189182412 

                             Note: (1) the bold values denote the best values of those obtained by all the algorithms. 
                               (2) MPI (%) = (f − fother)/ (1 − fother ). 
                             (3)Slack is the unused resources. 

It can be seen from Table III, that the best results 
reported by Hikita et al. , Hsieh et al. , Chen and Xu et al. 
were 0.931363, 0.9275, 0.931678 and 0.9316823879 for 
the series system respectively. The result obtained by 
MPSO is better than the above four best solution, and the 
corresponding improvements made by the presented 
method are 0.4653%, 5.769% , 0.0064% and 0.0079% 
respectively.  

B.  Series-parallel System 
The Series-parallel system [34] is shown as Figure 2: 

 

 
 
 
 
 

Figure 2.  Series-parallel system 
This problem is formulated as follows: 

)R))R1)(R1(1(1)(RR1(1)n,r(fMax 54321 −−−−−−=       (8) 
The constraints are the same as series system. The 

parameters for this problem are listed in Table IV: 

TABLE IV.   
THE PARAMETERS OF SERIES-PARALLEL SYSTEM. [34] 

Subsystem i 105αi βi wivi
2 wi V C W 

1 2.500 1.5 2 3.5 180 175 100 
2 1.450 1.5 4 4.0    
3 0.541 1.5 5 4.0    
4 0.541 1.5 8 3.5    
5 2.100 1.5 4 4.5    

The proposed algorithm runs 50 times for this problem 
independently. Then the statistical results are calculated  

   

and compared. The list is as follows: 
 
 

1 2 

3 

4 
5 
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TABLE V.   
BEST RESULTS COMPARISON ON SERIES PARALLEL SYSTEM 

Parameter Hikitaet al.[34] Hsieh et al. [14] Chen[16] This paper 
f(r,n) 0.99996875 0.99997418 0.99997658 0.9999766491 

n1 3 2 2 2 
n2 3 2 2 2 
n3 1 2 2 2 
n4 2 2 2 2 
n5 3 4 4 4 
r1 0.838193 0.785452 0.812485 0.8196547522 
r2 0.855065 0.842998 0.843155 0.8449752789 
r3 0.878859 0.885333 0.897385 0.8955087772 
r4 0.911402 0.917958 0.894516 0.8955091117 
r5 0.850355 0.870318 0.870590 0.8684491638 

MPI (%) 25.2771 9.5627 0.2950 - 
Slack(g1) 53 40 40 40 
Slack(g2) 0.000000 1.194440 0.002627 0.0000000084 
Slack(g3) 7.110849 1.609289 1.609829 1.6092889667 

 
Note: (1) the bold values denote the best values of those obtained by all the algorithms. 

(2) MPI (%) = (f − fother)/ (1 − fother ). 
(3)Slack is the unused resources. 

 
It can be seen from TableV, that the best results 

reported by Hikita et al., Hsieh et al. and Chen were 
0.99996875, 0.99997418 and 0.99997658 for the series–
parallel system respectively. The result obtained by 
MPSO is better than the above three best solution, and the 
corresponding improvements made by the presented 
method are 25.2771%, 9.5627% and 0.2950% 
respectively. 

C.  Complex (bridge) System 
The complex (bridge) system[35] is shown as Figure 

3: 
 
  
 
 

 
              
 
 
 

Figure 3.  Complex (bridge) system 
This problem is formulated as follows: 

5432154325431

542153214321

5325414321

RRRRR2RRRRRRRR
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RRRRRRRRRR)n,r(fMax

+−−
−−−

+++=
      (9) 

The constraints are the same as series system. The 
parameters for this problem are listed in TableII: 

The presented algorithm runs 50 times for this problem 
independently, and the statistical results are calculated 
and compared. The list is as follows: 

TABLE VI.   
 BEST RESULTS COMPARISON ON COMPLEX (BRIDGE) SYSTEM 

Parameter Hikita. 
et al.[34] 

Hsieh et al.  
[14] 

Chen [16] Coelho [22] This paper 

f(r,n) 0.9997894 0.99987916 0.99988921 0.99988957 0.9998896376 
n1 3 3 3 3 3 
n2 3 3 3 3 3 
n3 2 3 3 2 2 
n4 3 3 3 4 4 
n5 2 1 1 1 1 
r1 0.814483 0.814090 0.812485 0.826678 0.8280816704 
r2 0.821383 0.864614 0.867661 0.857172 0.8578118137 
r3 0.896151 0.890291 0.861221 0.914629 0.9142411461 
r4 0.713091 0.701190 0.713852 0.648918 0.6481547109 
r5 0.814091 0.734731 0.756699 0.715290 0.7040665038 

MPI (%) 47.5962 8.6706 0.3860 0.0612 - 
Slack(g1) 18 18 18 5 5 
Slack(g2) 1.854075 0.376347 0.001494 0.000339 0.0000000087 
Slack(g3) 4.264770 4.264770 4.264770 1.560466 1.5604662888 

Note: (1) the bold values denote the best values of those obtained by all the algorithms. 
(2) MPI (%) = (f − fother)/ (1 − fother ). 
(3)Slack is the unused resources.  

It can be seen from Table VI, that the best results 
reported by Hikita et al., Hsieh et al., Chen and Coelho 
were 0.9997894, 0.99987916, 0.99988921 and 
0.99988957 for the complex (bridge) system respectively. 

The result obtained by MPSO is better than the above 
four best solution, and the corresponding improvements 
made by the presented method are 47.5962%, 8.6706%, 
0.3860% and 0.0612% respectively.  

1 2 

3

5

4 

2128 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER



D.  Overspeed Protection System 
The problem is used to overspeed protection of a gas 

turbine. When the overspeed occurs, the system will be 
cut off. The overspeed protection system [36] is shown as 
Figure 4: 

 
 
 
 
 
 
 
 

Figure  4.  The overspeed protection system of a gas turbine 
The control system can be viewed as an N-stage (N=4) 

mixed series-parallel systems. The model is formulated as 
follows: 
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Here i)rln/T()r(C iii
β−α= , T is the task time of 

the components, the parameters αi and βi is the same as 
series system. 

The parameters for this problem are listed in Table VII: 

TABLE VII.   
THE PARAMETERS OF OVERSPEED PROTECTION SYSTEM.  

Subsystem i 105

αi 
βi vi wi V C W T 

1 1 1.5 1 6 250 400 500 1000
2 2.3 1.5 2 6     
3 0.3 1.5 3 8     
4 2.3 1.5 2 7     

The proposed algorithm runs 50 times for this problem  
Independently, and the statistical results are calculated  

and compared. The list is as follows: 

TABLE VIII.     
BEST RESULTS COMPARISON ON OVERSPEED PROTECTION SYSTEM 

Parameter Yokota et al.  [35] Dhingra[36] Chen[16] Coelho [22] This paper 
f(r,n) 0.999468 0.99961 0.999942 0.999953 0.9999546747 

n1 3 6 5 5 5 
n2 6 6 5 6 6 
n3 3 3 5 4 4 
n4 5 5 5 5 5 
r1 0.965993 0.81604 0.903800 0.902231 0.9016123483 
r2 0.760592 0.80309 0.874992 0.856325 0.8499199719 
r3 0.972646 0.98364 0.919898 0.9481450 0.9481399512 
r4 0.804660 0.80373 0.890609 0.883156 0.8882260306 

MPI (%) 91.4802 88.3781 21.8529 3.5632 - 
Slack(g1) 92 65 50 55 55 
Slack(g2) 70.733576 0.064 0.002152 0.975465 0.0000001522 
Slack(g3) 127.583189 4.348 28.803701 24.801882 24.8018827221 

Note: (1) the bold values denote the best values of those obtained by all the algorithms. 
(2) MPI (%) = (f − fother)/ (1 − fother ). 
(3)Slack is the unused resources. 

It can be seen from Table VIII, that the best results 
reported by Yokota et al., Dhingra, Chen and Coelho 
were 0.999468, 0.99961, 0.999942 and 0.999953 for the 
overspeed protection system respectively. The result is 
better than the above four best solution, and the 
corresponding improvements made by the presented 

method are 91.4802%, 88.3781%, 21.8529% and 
3.5632% respectively. 

The statistical results comparison of four benchmark 
problems are listed in TableIX, including the best 
results(Best), the worst results(Worst), the mean results 
(Mean)and standard deviation(SD). 

TABLE IX.   
STATISTICAL RESULTS COMPARISON ON SERIES SYSTEM 

Algorithm Best Worst Mean SD 
ABC[37] 0.931682 NA 0.930580 8.14E-04 
IA[17] 0.931682340 NA 0.931682222 1.3E-14 
MPSO 0.9316823879 0.9315359727 0.9316621658 3.84E-05 

 
 

 

Gas Turbine 

Air Fuel Mixture 

V1 

Mechanical 
and 

electrical 
overspeed 
detection 

V2 V3 V4
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TABLE X.   
STATISTICAL RESULTS COMPARISON ON SERIES PARALLEL SYSTEM 

Algorithm Best Worst Mean SD 
ABC[37] 0.99997731 NA 0.99997517 2.89E-06 

CDEHS[29] 0.99997665 0.99996475 0.99997365 4.3E-06 
MPSO 0.9999766491 0.9999765280 0.9999766174 3.87E-08 

TABLE XI.   
STATISTICAL RESULTS COMPARISON ON COMPLEX (BRIDGE) SYSTEM 

Algorithm Best Worst Mean SD 
ABC[37] 0.99988962 NA 0.99988362 1.03E-05 
PSO [22] 0.99988957 0.99987750 0.99988594 6.9E-07 

EGHS[20] 0.99988960 0.99982887 0.99988263 1.6E-05 
CDEHS[29] 0.99988964 0.99988931 0.99988940 1.9E-07 

MPSO 0.9998896376 0.9998881138 0.9998891423 4.31E-07 

TABLE XII.   
STATISTICAL RESULTS COMPARISON ON OVERSPEED PROTECTION SYSTEM 

Algorithm Best Worst Mean SD 
GA[35] 0.999468 0.989207 0.9954507 NA 
IA[16] 0.999942 NA NA NA 

ABC[37] 0.9999550 NA 0.9999487 9.24E-06 
PSO [22] 0.999953 0.999638 0.999907 1.1E-05 

EGHS[20] 0.99995463 0.99985315 0.99993588 2.2E-05 
CDEHS[29] 0.999955 0.999825 0.999926 2.9E-05 

MPSO 0.9999546747 0.9999545194 0.9999546497 4.23E-08 
It can be clearly seen from Table IX that the algorithm 

proposed in this paper have best value in terms of the best 
results and better value in terms of the mean results.  

From Table X, it can be seen that the MPSO can get 
best value about the best results and the worst results, and 
get better value about the average results. 

Through the comparison in Table XI, we can see that 
the MPSO can find better value than ABC, PSO and 
EGHS in terms of performance indexes, and get the same 
good value as CDEHS on the best results. 

In Table XII, it is obvious that the MPSO has been got 
the best value of all the performance indexes. Moreover 
this method has small standard deviation for solving four 
benchmark problems. These demonstrate that the 
DEABM is effective and robust for solving reliability 
redundancy allocation. 

V.   CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a modified particle swarm 
optimization (MPSO) algorithm to solve the reliability–
redundancy optimization problems. The MPSO modifies 
the strategy of generating new position of particles. For 
each generation solution, the flight velocity of particles is 
removed. Whereas the new position of each particle is 
generated by using difference strategy. In addition, an 
adaptive parameter λ1 is used in MPSO. It can ensure 
diversity of feasible solutions to avoid premature 
convergence. Simulation experiments based on four 
benchmark problems and compared with some algorithms 
in literatures. The results showed that the MPSO 
algorithm was effective, efficient and performed better on 
finding better feasible solutions than the other methods in 
the literatures. The future work is to improve the 
performance of the algorithm further and applied it to 
solve more complex constrained optimization problems. 
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