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Abstract—Detecting human interactions in a public place 
where no physical touch occurs has important applications 
in many surveillance tasks. In this paper, we explore the 
possibilities to automatically detect such distant human 
interactions without recognizing the specific human actions. 
Specifically, we use a highly simplified formulation of the 
interaction in this paper: 1) when a person does not interact 
with others, he always performs a non-interactive action 
that is largely periodical, such as walking, 2) when two 
persons interact with each other, they both perform a same 
short-duration interactive action, such as waving hand, that 
are different from their non-interactive actions. Based on 
this formulation, we develop a new approach to localize the 
subvideos that describes the interactive actions from Kinect 
videos, which provide both the RGB and depth information. 
We then develop a new approach to compare the pose and 
kinematic features in these subvideos (from different people) 
to see whether they describe a same interactive action. 
Without any supervised learning and action recognition, the 
proposed approaches are not limited to a specified set of 
interactive and non-interactive actions. In the experiments, 
we justify the performance of the proposed approaches on 
100 Kinect videos with 10 different interactive actions.  
 
Index Terms—distant human interaction, abnormal detect, 
dynamic time warping 
 

I.  INTRODUCTION 

When people meet in public places, they may interact 
with each other, either with physical touch, such as 
shaking hands and hugging, or without physical touch, 
such as waving hand and nodding. Detecting such 
interactions has important applications in many 
surveillance tasks, such as security monitoring in an 
airport or other public areas. Typically, the human 
interactions without physical touch, which we call 
``distant human interactions", are much more challenging 
because they cannot be determined by simply examining 
the spatial relations between the involved persons. In this 
paper, we explore this problem by using the Kinect 
videos as input, from which human 3D poses can be more 
accurately detected than from the traditional RGB videos, 
with the additional depth information. For the remainder 
of this paper, we simply use “human interaction” to mean 

“distant human interaction” when there is no specific 
indications. 

There are many different kinds of interactions between 
two persons. Other than waving hands and nodding, 
Japanese usually bow to each other when they meet. 
Monks in Asia usually clap to each other. Western 
gentlemen may take off the hat and then nod to each other. 
Considering people from different races, of different 
genders, with different ages, it is difficult to exhaustively 
collect and model all possible interactions and then use 
them to guide the interaction detection. In addition, 
whether a special human action is part of an interaction is 
also dependent on both the temporal and spatial context 
information. For example, a person standing still for a 
long time by himself is not an interaction. However, if 
two persons walk toward each other and then suddenly 
stop and stand still for a while simultaneously, this same 
action of standing still in this context may indicate an 
interaction. Therefore, it is also difficult to achieve the 
interaction detection by only recognizing special actions 
of individual persons. The general goal of this paper is to 
develop an unsupervised approach for detecting human 
interactions without recognizing the special actions 
involved in the interaction. This way, we expect our 
approach can be used to detect any interactions, including 
both seen and unseen ones. 

As an exploratory study, we consider the following 
simplified model for human interaction in this paper. 

• Each person’s action in a video is made up of a 
non-interactive action, when he is not interacting 
with others, and some interactive actions, when he 
is interacting with others. 

• For each person, the non-interactive action is 
largely periodical, such as walking with a fixed 
speed. The interactive actions of a person are 
different from his non-interactive actions in terms 
of pose changes. In addition, we assume that in a 
video, the interactive actions of a person are short-
duration events, compared to the non-interactive 
actions. 

• When two persons interact with each other, they 
perform the same interactive actions, e.g., both of 
them bow to each other, or both of them wave 
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hands to each other. Note that this is a highly 
simplified assumption since in practice two 
persons may perform different actions in 
interacting with each other. 

Based on this model, we focus on addressing the 
following two major problems to justify the feasibility of 
detecting human interactions without recognizing specific 
interactive actions: (P1) temporally partition a video to 
identify subvideos that describe the interactive actions of 
a person, (P2) compare the subvideos of interactive 
actions from different people and match the ones with the 
same underlying interactive action. In (P2), we match the 
subvideos only based on the similarity of their pose and 
kinematic features. In practice, we can easily include the 
temporal coincidence (i.e., the interactive action of two 
involved persons should occur at the same time) and the 
spatial coincidence (the persons who are interacting 
should face each other) to improve the interaction 
detection accuracy. 

One issue in the experiment setting is that the current 
Kinect and its SDK can only track the pose of one human 
in a small range (in practice, a Kinect can well track the 
3D human poses in the range from 1.2 meters to 3.5 
meters) and with good frontal views of each person. It is 
very difficult to use a fixed Kinect to collect a video with 
two or more persons who are walking toward and 
interacting with each other. In practice, this can be easily 
solved by installing multiple Kinects that are facing 
different directions and covering different areas. In the 
ideal case, we can assume that, at any time each person 
can be caught by at least one Kinect with good frontal 
views. With these considerations, in our experiments we 
adopt the following simplified settings for experiments: a) 
we collect Kinect videos only for individual persons 
(with interactive and non-interactive actions), and (b) we 
move the Kinect (in a cart) when the person is moving to 
make sure the person is facing the Kinect and is located 
in the range of the Kinect. This simplified settings do not 
affect the research scope of the above two major 
problems: we study the temporal partitioning of each 
video (now each video only contains one person) for 
subvideos of interactive actions and then compare 
subvideos from different videos (i.e., different persons) to 
identify the matched interactive actions. 

The remainder of the paper is organized as follows. 
Section II briefly overviews the related work. Section III 
describes the proposed algorithm on partitioning a video 
for the subvideos of interactive actions. Section IV 
introduces the similarity measure of subvideo matching 
for identifying same interactive actions from different 
persons. Section V describes the experiment results and 
Section VI concludes the paper. 

II.  RELATED WORKS 

Many methods have been recently proposed to model 
the multiple-people interactive actions in video sequences, 
which are related to the proposed work. However, the 
methods developed in these previous work treat the 
interaction detection as a recognition problem [1]–[3] and 
usually require a set of training samples and a supervised 

learning procedure for recognizing an interactive action. 
Recently, Zhou et al. [4] and Ni et al. [5] use trajectory 
analysis to describe different group activities, which are 
usually based only on the relative loations and motions of 
the involved people without analyzing their body poses 
and pose changes over time. The major difference 
between the proposed work in this paper and these 
previous methods are that we consider the human poses 
for finding the matched interactive actions and do not use 
a supervised learning for recognizing the specific actions. 
In addition, we use Kinect videos for facilitating the pose 
extraction and tracking. 

There are rich literatures on human activity recognition 
from video sequences. Recently, Aggarwal and Ryoo 
conducted a comprehensive review of human activity 
analysis [6], in which various spatial and temporal 
features are used. Ke et al. [7], [8] proposed models for 
action recognition in which the input video sequence is 
treated as a 3D volume and some local volumetric 
features are extracted. In [9], [10], local interest point 
descriptors are detected and used for human activity 
recognition. In [11], [12], the involved activity agents, 
such as persons, are first detected and their relations are 
then modeled for recognizing the underlying human 
activities. There are also many models have been 
developed to describe the identified features and agents 
for human activity recognition. For example, prior work 
has used Hidden Markov Model (HMM) to describe and 
distinguish the dynamics underlying different human 
activities [13]. In [14], Bayesian networks, together with 
Markov chain Monte Carlo algorithm, are used to 
recognize bicycle related activities. In [15], a hierarchical 
probabilistic latent model is developed to represent the 
behavior pattern. In [16], probabilistic analysis, such as 
stochastic-context grammars, is designed for modeling 
human activities in a hierarchical way. Most of these 
methods are focused on recognizing a small set of 
different human actions or activities, while in this paper, 
our goal is to detect distant human interaction by not 
limited to a few specific actions. 

The proposed step of identifying subvideos of 
interactive actions from a video shares some similarity to 
the problem of anomaly detection from a video, if we 
treat interactive actions as abnormal actions and the non-
interactive action as a normal action. In [17]–[19], 
supervised learning is adopted to train models for both 
normal and abnormal actions. In [20]–[22], unsupervised 
learning on the annotated training data is used for 
anomaly detection. Mehran et al. [23] analyze the optical 
flow extracted from a video to detect possible interactions 
in a crowd. In [24], Mahadevan et al. propose a model for 
anomaly detection in crowded scenes by using a dynamic 
saliency measurement. Cui et al. [25] propose to detect 
the abnormal action of a group of people by using 
interaction energy potential. Different from the proposed 
method, all these models only consider the relative 
location and location changes of the people without 
considering their detailed poses. 
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III.  VIDEO PARTITIONING FOR SUBVIDEOS OF 
INTERACTIVE ACTIONS 

In this section, we develop an algorithm to temporally 
partition an input video to localize subvideos that 
describe interactive actions. As introduce above, there is 
only one person present in a video, which consists of a 
largely periodical non-interactive action and short-
duration interactive actions. We focus on analyzing the 
human pose and kinematic features for distinguishing 
these two kinds of actions. Therefore, with an input 
Kinect video, we first apply the recently released Kinect 
SDK [26] to locate the person and his pose. Specifically, 
the Kinect SDK can track the 3D position of 20 human-
body joints over time, as shown in Fig. 1. Prior research 
has shown that different human actions can be well 
described by the body-joint angles and the temporal 
change of these angles. In this section, we use the 
following 21 joint angles for video partitioning: 

• 11 upper-body joint angles: one for neck, two for 
elbows (left and right), two for wrists (left and 
right), six for shoulders (left and right). For each 
shoulder, we compute the three angles between the 
shoulder-elbow line and the sagittal plane, the 
coronal plane and the transverse plane, 
respectively [27]. 

• 10 lower-body joint angles: two for knees (left and 
right), two for ankles (left and right), three for hip 
left, and three for hip right. For either hip left or 
hip right, we compute the three angles between the 
its connection line to the knee and the sagittal 
plane, the coronal plane and the transverse plane, 
respectively [27]. 

For example, by computing a shoulder angle at each 
frame, we construct a 1D time-varying signal for this 
angle as shown in Fig. 2(a). In this paper, we denote these 
angles as 1 2( ) { ( ), ( ),..., ( )}Kf t f t f t f t=  with K  = 21 
being the number of considered angles and t  = 0, 1, · · · , 

1T −  being the index of the frames in the video. In the 
following, we use 1t  : 2t  to represent a video segment 

starting from frame t1 and ending at frame 2t − 1, and use 

1 2( : )if t t  to represent the subsequence of ( )if t  on the 

video segment 1 2:t t , for 1 2t t< . 

 
Figure 1. Example of kinect 20 joints skeleton, color, depth 

information 

A.  Period-Length Estimation 
As discussed in Section I, each video is dominated by a 

largely periodical non-interactive action, such as walking. 
Therefore, the angle signals ( )f t  is largely periodical 
without considering the short-duration subvideos of 

interactions. We first estimate the period length of the 
non-interactive action in a video by analyzing the 
dominating frequency of ( )f t . 

 
Figure 2. An illustration of period-length estimation. (a) The 1D signal 
of a right shoulder angle. (b) Frequency response (magnitude) of the 

signal shown in (a). (c) Combined frequency response (magnitude) from 
all K angle signals and the estimated frequency *u . 

Specifically, we first use FFT (Fast Fourier Transform) 
to compute the frequency response of each angle signal 

( )if t , i = 1, 2, · · · ,K 
1 2

0
( ) ( ) , 0,1,..., 1,

tN j u
N

i i
t

F u f t e u N
π− −

=

= = −∑        (1) 

where j = 1−  and N T>  is the length of FFT. The 
angle signal ( )if t  is zero-padded to length N  to avoid 
the aliasing in the frequency response. In our 
implementation, we pick N  to be a power of 2 to make 
FFT more efficient. 

From the frequency magnitude ( )iF u

, 0,1,..., 1u N= − , we find the local maximum at *u �

other than the zero frequency as the frequency of the non-
interactive action, as shown in Fig. 2(b). This way, the 
period length of the non-interactive action can be 

estimated by *c
NT
u

= . However, this estimation of the 

period length is vulnerable to noise when using only one 
angle signal. Given that all K angle signals collectively 
describe a non-interactive action, they should have the 
same *u . In this paper, we combine the frequency 
response of all K angle signals to improve the robustness 
of period-length estimation. Specifically, we calculate a 

combined frequency magnitude 
1

( )K
ii

F u
=∑

, 0,1,..., 1u N= −  and then find the local maximum at  
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Figure 3. An illustration of period-based video partitioning and the identification of the subvideos of interactive actions. 

Top: A sequence of video frames. Bottom: Video partitioning shown on one angle signal and the identified subvideos of interactive actions, where red 
vertical lines indicate the divider frames. 

 
*u  and estimate the period length as before. As shown in 

Fig. 2(c), the combined frequency response contains 
much less noise, which simplify the period-length 
estimation. 

B.  Period-based Video Partitioning 
In this section, we partition the video in terms of the 

identified period of the non-interactive action. As 
illustrated in Fig. 3, we expect each video segment after 
this partitioning to represent one period of the non-
interactive action or a short-duration of an interactive 
action. This way, we can analyze the pose and kinematic 
features of each video segment to determine whether it 
describes a non-interactive or an interactive action. One 
major issue of this video partitioning is that the non-
interactive action is not perfectly periodical. For example, 
when a person walks without interacting with others, his 
walking speed may still vary from one period to another. 
In another word, the period-length estimated in the 
previous section is the most typical one for the considered 
non-interactive action, but does not mean that all the 
periods of the non-interactive action bear this same 
period length perfectly. 

In this paper, we address this problem by allowing the 
period length of the non-interactive action to vary over 
time. Considering an angle signal 

( ), 0,1,..., 1if t t T= − , we first take its first M 
consecutive, non-overlapping subsequences 
{ ( : (( 1) 1))}i c cf mT m T+ − ,m = 0, 1, · · · ,M − 1 and 
then take one most representative subsequence as the 
typical period of this angle signal. Here the most 
representative subsequence is defined to be the one with 
the smallest Euclidean distance to the other M − 1 
subsequences. We refer to this most representative 
length-Tc subsequence as a template Ti. In the following, 
we partition the angle signal ( ), 0,1,..., 1if t t T= −  by 

finding the video segments to match the template iT . In 
this video partitioning, we allow the length of each video 
segment to be different from cT . In addition, while we 
construct the template for each angle separately, we 
finally combine the matching cost from different angles 
to construct a unified video partitioning. 

We first define the matching cost between the template 
(a length- cT  subsequence) iT  and any subsequence 

1 2( : )if t t  whose length 2 1( )t t−  may not equal to cT . 
By allowing the small change of the period length in the 
non-interactive action, we uniformly sample cT  points 

between 1t  and 2 1t −  and then interpolate ( )if t  at these 

cT  sampled points. We then compute the Euclidean 

distance between this interpolated length- cT  

subsequence and the template iT  as the desired matching 

cost 1 2( , ( : ))i iC T f t t . By combining the matching cost 
over all K angles, we define the cost of a video segment 

1 2:t t  as 

1 2 1 2
1

( : ) ( , ( : ))
K

i i
i

w t t C T f t t
=

= ∑                (2) 

For a complete video partitioning with divider frames 0 < 

1 2 Lt t t T< < < ≤ , which leads to L consecutive 

video segments 1:l lt t + , 00,1,..., 1; 0l L t= − = , we 
define a video-partitioning cost as 

         
1

1 2 1
0

( ; , , , ) ( : )
L

L l l
l

W L t t t w t t
−

+
=

=∑               (3) 

subject to the constraints: 
              0 1 20 Lt t t t T= < < < < ≤                   (4) 

             1(1 ) (1 )c l l cT t t Tε ε+− ≤ − ≤ +                  (5) 

                         (1 )L ct T Tε> − −                            (6) 

where (5) allows the period-length to vary around cT  by 
a small percentage of ε  and (6) drops a possible 
incomplete period of non-interactive action at the end of 
the video in the video partitioning. Our goal is to find the 
optimal L and a set of divider frame indices 

1 20 Lt t t T< < < < ≤  to minimize the partitioning 
cost (3), in which the factor 1

L
 is introduced to avoid a 

bias to produce fewer, longer video segments. In the 
following, we describe a dynamic-programming approach 
to solve this optimization problem. 
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We first compute the upper-bound and lower-bound of 
L by 

                      max (1 ) c

TL
Tε

⎢ ⎥
= ⎢ ⎥−⎣ ⎦

                          (7) 

                      min (1 ) c

TL
Tε

⎡ ⎤
= ⎢ ⎥+⎢ ⎥

                          (8) 

We construct a T  × maxL  graph with a 2D table of nodes 

Ψ(t, l), t = 1, · · · , T ; l = 1, 2, · · · , maxL  as shown in Fig. 
4, where the node Ψ(t, l) indicates the case of selecting 
frame t as the l-th divider frame, i.e., lt  = t. We then 
construct forwarding edges to connect the nodes between 
two neighboring columns and use them to represent a 
video segment. For example, an edge from Ψ( 1t , l) to 

Ψ( 2t , l + 1) indicates that the subsequence 1 2:t t  is taken 
as the (l + 1)-th video segment in the resulting video 
partitioning, where l = 1, 2, · · · , maxL . We simply use 

the cost 1 2( : )w t t  defined in (2) as the weight of this 
edge. We construct the edges only if the corresponding 
video segment 1 2:t t  satisfy the above three constraints. 

In this graph, we represent the video segment 10 : t  by 
introducing an entering node Ψ0 to represent that the first 
video segment starts from frame 0 0t = . We construct 

forwarding edge from Ψ0 to the Ψ( 1t , 1) (a subset of 

nodes in the first column of Ψ), when 0 1:t t  satisfies the 
above three constraints. Similarly, the edge weight 
between Ψ0 and Ψ( 1t , 1) is defined using the cost 

1(0 : )w t . 
 

 
Figure 4. An illustration of the proposed video partitioning algorithm. 

 
In the above table, we can see that partitioning the 

video at frames 1 20 Lt t t T< < < < ≤  can be 
represented by a path starting from the entering node, 
traversing nodes Ψ( 1t , l), l = 1, 2, · · · ,L sequentially, and 

finally ending at Ψ( Lt ,L) in the L-th column of the graph. 
Using dynamic programming, we can easily find the 
shortest path (the path with the minimum total weights) 
between Ψ0 and any node Ψ( Lt ,L) in this graph. This 

shortest path length, which we denote as 0W  ( Lt ,L) (i.e., 
the minimum total edge weights along the path) equals to 

1
10

( : )L
l ll

w t t−

+=∑ , which differs from the desired cost 

1 2( ; , , )LW L t t t  only by a factor of 1
L

. In addition, 

we still need to consider the constraint (6) to make sure 
the dropped subsequence at the end of the video can not 
constitute a complete period. 

To address this problem, we focus on all the nodes 
Ψ( Lt , L) that satisfy two conditions:  

(C1) (1 )L ct T Tε> − − , and (C2) min maxL L L< < . 
These nodes have no outgoing edges in the constructed 
graph and we refer to them as exiting nodes, as indicated 
by the nodes in the red box in Fig. 4. We use dynamic 
programming to compute the shortest path between the 
entering node Ψ0 and each exiting node Ψ( Lt ,L), and 

then compute their average path length 0 ( , )LW t L
L

. 

Finally among all the exiting nodes, we identify the one 

with the minimum value of 0 ( , )LW t L
L

 and it is easy to 

verify that the shortest path between the entering node 
and this identified exiting node describes the desired 
video partitioning that minimizes the cost (3) subject to 
the above three constraints. Figure 3 shows the result of 
video partitioning on an angle signal. 

C.  Identifying Subvideos of Interactive Actions 
In this section, we examine the pose and kinematic 

features of the video segments obtained in the previous 
section and classify each of them as either Seg-I which 
represents an interactive action, or Seg-N which 
represents the non-interactive action. This process is 
divided into two steps. First, for each angle i , we check 
the matching cost 1( , ( : ))i i l lC T f t t +  for each video 
segment. We compute the mean and variance of the L 
matching costs (for L video segments) for this angle i . If 
the matching cost 1( , ( : ))i i l lC T f t t +  is located two-time 
standard deviation away from the mean, we add one vote 
to video segment 1:l lt t +  to be classified as Seg-I. We 
repeat this voting process for all the video segments over 
all K  angles. If the total votes to a video segment is 
larger than a pre-set threshold vT , we label this segment 
by Seg-I. We then temporally smooth the labeling results 
by using a very simple rule: Given that each video 
segment has two neighboring video segments (excluding 
the first and the last ones in the video), we further label a 
video segment by Seg-I if its two neighbors have been 
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labeled by Seg-I. Finally, we set label Seg-N to all the 
video segments that are not labeled as Seg-I. After this 
smoothing, we identify one or more subvideos of 
interactive actions by aggregating the consecutive video 
segments that are labeled by Seg-I. While in practice, a 
person may perform more than one interaction in a video. 
In this paper, as an exploratory study, we assume in each 
video the person can only perform interaction no more 
than once. As a result, we only need to pick one subvideo 
of interaction action. In our experiment, for each video 
we simply pick the longest subvideo labeled by Seg-I as 
the detected interaction action. 

IV.  SUBVIDEO MATCHING 

In this section, we compare the subvideos identified in 
the previous section to see whether they describe the 
same interactive action. We achieve this by defining a 
matching distance between two subvideos based on their 
angle signals. To better distinguish the short-duration 
non-interactive actions, we take the 11 upper-body joint-
angle signals as used in the video matching and combine 
them with the following seven angles and four relative 
distances: 

• Seven additional angles: one angle at head by 
connecting to two wrists, one angle at hip center 
by connecting to two wrists, one angle at head by 
connecting to two ankles, one angle at hip center 
by connecting to two ankles, one angle at hip 
center by connecting to the head and the center of 
two knees, one angle between left forearm 
(connecting wrist and elbow) and the line 
connecting hip left and hip right, and one angle 
between right forearm and the line connecting hip 
left and hip right. 

• Four relative distances: one for the distance 
between two wrists, two for the distance between 
the wrist (left and right) and the head, and one for 
the distance (projected to the depth axis) between 
the head and the center of two knees. All these 
four distances are normalized by the distance 
between the center of two shoulders and hip center. 

Denote these 22 signals extracted from the considered 
two subvideos as ( )g t , t = 1, 2, · · · , gT  and ( )h s , s = 

1, 2, · · · , hT , respectively. We define their matching 
distance as follows: 

• For each frame t in the i -th angle signal ( )ig t , 

find the closest matched frame s in ( )ih s , with 
the minimum distance  

2( ( ), ( )) ( ( ) ( ))
m

i i i i
m

d g t h s g t h s
Δ=−

= + Δ − + Δ∑  (9) 

We take the summation of such minimum 
distances over all the gT  frames and 11 upper-

body angles in ( )g t  and denote it as 1D . In (9), 
m ≥  0 defines a local neighborhood for 
comparing the two angle signals at given frames. 

• Similarly, for each frame s in the i -th angle signal 
( )ih s , find the closest matched frame t in ( )ig t , 

with the minimum distance as defined in (9).We 
then take the summation of such minimum 
distances over all the hT  frames and 11 upper-

body angles in ( )h s  and denote it as 2D . 
• We finally define the matching distance between 

these two subvideos as 1 2D D+ . 
In practice, we can use this matching distance to 

decide whether two subvideos describe the same 
interactive action or not. 

IV.  EXPERIMENTS 

For the experiment, we collect a set of Kinect videos. 
In each video, one person performs a non-interactive 
action and a short-duration of an interactive action, as 
mentioned above. In our experiments, the non-interactive 
action is always walking, but the walking speed may be 
different for different people and vary over time for the 
same person. We consider 10 different actions that are 
used for greeting each other by people from different 
countries, including (A1) bowing; (A2) nodding; (A3) 
pressing right hand on the left side of the chest; (A4) 
raising right hand to salute; (A5) waving right hand over 
head; (A6) waving right hand at a location to the right of 
the shoulder; (A7) clapping hands; (A8) raising two 
hands in front of the chest with two thumbs up; (A9) 
taking off the hat and putting it back on the head again; 
and (A10) flying kiss. For each person performing each 
interactive action, we ask him to perform twice and 
record them into two videos, respectively. Currently, we 
have five different human subjects and in total we collect 
5 × 10 × 2 = 100 Kinect videos. For performance 
evaluation, we construct ground truth annotations for 
each video, which include the type of interactive action 
(one of the above 10) and the starting and ending frames 
of the interactive action. For all our experiments, we set 
the threshold vT  = 2 to the voting results as discussed in 
Section III-C. We set ε  = 20% for the allowed period-
length variation as discussed in Section III-A. We choose 
m = 1 for defining the neighborhood in Section IV. 

We first evaluate the performance of the proposed 
algorithm on identifying subvideos of interactive actions. 
For each video, denote the starting and ending frames of 
the identified subvideo to be 1t  and 2t , respectively. Let 
the annotated ground-truth starting and ending frames to 
be 1̂t  and 2̂t , respectively. We compute their overlap 
using the Jaccard coefficient 

1 2 1 2

1 2 1 2

ˆ ˆ( : ) ( : )
ˆ ˆ( : ) ( : )

t t t t
t t t t

∩

∪
 

where | · | calculates the length of a subsequence. If this 
coefficient is larger than a preset threshold dT , we count 
that the identified subvideo is correct. Table I shows the  
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TABLE I 

THE PERFORMANCE OF THE PROPOSED ALGORITHM ON IDENTIFYING SUBVIDEOS OF INTERACTIVE ACTIONS. THE VALUES 
OTHER THAN THE RIGHTMOST COLUMN AND THE BOTTOM ROW SHOW THE NUMBER OUT OF THE 10 VIDEOS (2 FOR EACH OF 5 

PERSONS) FOR EACH ACTION IN ON WHICH WE CORRECTLY IDENTIFY THE SUBVIDEO OF INTERACTIVE ACTION UNDER 
DIFFERENT THRESHOLD TD. THE BOTTOM ROW SHOWS THE AVERAGE JARRCARD COEFFICIENTS AND THE RIGHTMOST 

COLUMN SHOWS THE STATISTICS OVER ALL 100 VIDEOS. 
Action A1 A2 A3 A4 A5 A6 A7 A8 A9 A19 Total 

 
dT  = 0.4 9 7 10 9 10 10 10 10 10 10 95 

dT  = 0.5 8 5 10 9 9 10 10 10 9 10 90 

dT  = 0.6 6 5 8 7 7 8 10 9 7 8 75 

Aver. Jac 0.589 0.456 0.717 0.659 0.687 0.749 0.742 0.720 0.727 0.759 0.681 
 

quantitative results of this experiment. We can see that 
the proposed algorithm can identify subvideos correctly 
on 90 out of 100 videos under threshold dT  = 0.5. 

We then evaluate the performance of the proposed 
algorithm on subvideo matching.We first take the ground 
truth annotated subvideos for testing the subvideo 
matching. In this paper, we use an evaluation strategy 
based on the confusion matrix. We know that one 
subvideo is identified from each video and we have 10 
videos in our video dataset that describe each type of 
interactive action. For each subvideo, we take it as a 
query and compute its matching distance to all the 100 
subvideos (including itself), from which we select the top 
10 subvideos with the smallest distance to the query. For 
each set of the 10 queries that describe the same type of 
interactive action, we then get 10 × 10 = 100 such top 
subvideos (a same subvideo may appear more than once 
in these 100 subvideos). We then divide these 100 
subvideos into 10 groups in terms of their ground-truth 
type of the interactive action. The size of each group is 
then an element of a confusion matrix as shown in Table 
II. For example, at the crossing of row “A4” and column 
“A10”, we have a number “5”. This indicates that 5 out of 
the 100 top subvideos resulting from the queries with 
action type “A4” actually describes the action type “A10”. 
Clearly, the larger the numbers along the diagonal of this 
table, the better the performance of the subvideo 
matching, and the maximum possible value for each 
diagonal element is 100. 

Table III shows the confusion matrix of the subvideo 
matching based on the subvideos identified by the 
proposed algorithm. Comparing the diagonal numbers of 
this table with these in Table II which has an average 
matching rate of 87.5% , we can see that for many types 
of interactive actions, the use of the subvideos identified 
by the proposed algorithm performs as well as the use of 
the ground-truth subvideos identified manually. By taking 
the average of the diagonal elements, we can get an 
average matching rate of 82.1% for this experiment. Be 
reminded again that the proposed subvideo matching 
developed in this paper is only based on the pose and 
kinematic features. In practice, we can easily include the 
temporal coincidence (i.e., the interactive action of two 
involved persons should occur at the same time) and the 
spatial coincidence (the persons who are interacting 
should face each other) to further improve the interaction-
detection accuracy. 
 

TABLE II 
THE CONFUSION MATRIX OF THE SUBVIDEO MATCHING 

BASED ON THE GROUND-TRUTH SUBVIDEOS MANUALLY 
IDENTIFIED FROM THE 100 COLLECTED VIDEOS. NOTE THAT 

THE MAXIMUM POSSIBLE VALUE FOR EACH DIAGONAL 
ELEMENT IS 100. 

Action A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 96 3 0 0 0 0 1 0 0 0 

A2 0 100 0 0 0 0 0 0 0 0 

A3 0 0 100 0 0 0 0 0 0 0 

A4 0 0 0 94 0 5 0 0 0 1 

A5 0 0 0 6 76 0 0 0 10 8 

A6 0 0 0 35 0 64 0 0 0 1 

A7 1 0 0 0 0 0 72 27 0 0 

A8 0 0 0 0 0 0 1 99 0 0 

A9 0 0 0 0 0 4 0 0 88 8 

A10 0 0 0 0 7 2 1 0 4 86 

 
TABLE III 

THE CONFUSION MATRIX OF THE SUBVIDEO MATCHING 
BASED ON 100 SUBVIDEOS IDENTIFIED BY THE PROPOSED 

ALGORITHM. NOTE THAT THE MAXIMUM POSSIBLE VALUE 
FOR EACH DIAGONAL ELEMENT IS 100. 

Action A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 83 16 0 0 0 0 1 0 0 0 

A2 18 82 0 0 0 0 0 0 0 0 

A3 0 0 96 3 0 1 0 0 0 0 

A4 0 0 0 82 0 16 0 0 1 1 

A5 0 0 0 6 69 0 0 0 26 5 

A6 0 0 0 5 0 80 0 0 0 15 

A7 1 0 0 0 0 0 80 20 0 0 

A8 4 0 0 0 0 0 7 89 0 0 

A9 0 0 0 0 0 11 0 0 82 7 

A10 0 0 0 0 0 1 8 0 13 78 

VI.  CONCLUSIONS 

In this paper, we introduced a new approach for 
detecting human interaction, using Kinect videos as input. 
Different from many previous works based on action 
recognition, the proposed approach is unsupervised. We 
temporally distinguished human actions in a video into a 
largely periodical non-interactive action and an 
interactive action. We developed algorithms to estimate 
the period-length of the non-interactive action, partition 
the video in terms of the estimated period, and then 
identify the short-duration subvideo of the interactive 
action. We finally developed an algorithm to compare the 
pose and kinematic features of the identified subvideos to 
seek identical interactive actions, which can be used to 
decide whether a human interaction occurs. We collected 
100 Kinect videos from different people with different 
interactive actions to test the performance of the proposed 
algorithms. We found that the proposed algorithms 
identify subvideos of interactive actions with good 
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overlaps to the ground-truth annotation and the proposed 
algorithms can produce a 82.1% correct matching rate in 
the confusion matrix. 
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