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Abstract—According to the problem of speech signal 
denoising, we propose a novel method in this paper, which 
combines empirical mode decomposition (EMD), wavelet 
threshold denoising and independent component analysis 
with reference (ICA-R). Because there is only one mixed 
recording, it is a single-channel independent component 
analysis (SCICA) problem in fact, which is hard to solve by 
traditional ICA methods. EMD is exploited to expand the 
single-channel received signal into several intrinsic mode 
functions (IMFs) in advance, therefore traditional ICA of 
multi-dimension becomes applicable. First, the received 
signal is segmented to reduce the processing delay. Secondly, 
wavelet thresholding is applied to the noise-dominated IMFs. 
Finally, fast ICA-R is introduced to extract the object 
speech component from the processed IMFs, whose 
reference signal is constructed by assembling the high-order 
IMFs. The simulations are carried out under different noise 
levels and the performance of the proposed method is 
compared with EMD, wavelet thresholding, EMD-wavelet 
and EMD-ICA approaches. Simulation results indicate that 
the proposed method exhibit superior denoising 
performance especially when signal-to-noise ratio is low, 
with a half shorter running time. 
  
Index Terms—speech signal denoising, EMD, wavelet, 
independent component analysis; SCICA; fast ICA-R 
 

I.  INTRODUCTION 

Speech signal denoising is a classic problem in signal 
processing.  Assuming we observe a noisy such that 

 ( ) ( ) ( )x t s t n tσ= + . (1) 

where ( )s t is the original speech signal, ( )n t is Gaussian 
white noise whose statistical distribution obeys N(0,1), 
σ is the variance. Our goal is to obtain a denoised 
estimation ( )ŝ t , using only the statistical properties of 

( )x t  . 
To settle such problem, linear filters such as the Wiener 

filtering are frequently used because they are easy to 
implement. However, these linear methods are not 
effective when σ is unknown [1]. According to this, 
other approaches have been proposed, especially those 

based on empirical mode decomposition (EMD), wavelet 
thresholding and independent component analysis (ICA).  

EMD was proposed by N. E. Huang in 1998 [2]. EMD 
decomposes the signal into several intrinsic mode 
functions (IMFs) through an iterative process called 
sifting. A generalized task for EMD is signal denoising, 
which is accomplished by reconstructing the signal with 
the IMFs containing useful information, abandoning the 
noise-dominated ones. [1]. Hence, how to choose the 
proper number of noise-dominated IMFs is an important 
factor in EMD approach, which affects denoising 
performance greatly.  

With respect to wavelet approach, the signal is 
transformed into wavelet domain at first. The energy of 
the speech signal often focuses in a few wavelet 
components with high amplitudes, while the energy of 
noise spreads over all coefficients with low amplitudes 
[3]. The wavelet coefficients are compared to a given 
threshold value and then they are modified depending on 
the thresholding rule. Finally, inverse wavelet transform 
is performed to obtain the denoised signal. A main 
drawback of the wavelet approach is that the basic 
functions are fixed, which cannot match the varying 
nature of signals [3]  

In addition, simply EMD approach or wavelet 
thresholding cannot achieve satisfactory performance 
when the signal-to-noise-ratio (SNR) is low [4]. 
Therefore a combination method of EMD and wavelet is 
introduced, which can be termed as EMD-wavelet [5]. 

Independent component analysis (ICA) is a famous 
approach for blind source separation (BSS) problems. 
ICA is dedicated to recover a set of unknown mutually 
independent source signals from their observed mixtures 
without prior-knowledge of the mixing coefficients [6]. If 
the speech signal can be extracted from the noisy mixture 
by ICA, then great improvement in SNR will be achieved 
[7]. 

Traditional ICA is only capable of tackling the 
problem when the number of channels is larger than or 
equal to the number of sources. When there is only one 
sensor in the receiver end, the problem comes into single-
channel independent component analysis (SCICA) [8]. 
Because SCICA is the extreme case of underdetermined 
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problem, traditional ICA of multi-dimension becomes 
incompetent. 

An approach combining EMD and ICA is proposed in 
[9], which attempts to deal with the SCICA problems. 
This approach is described as EMD-ICA. The main 
shortcoming of EMD-ICA denoising approach is that the 
constructed virtual noise channel can’t necessarily match 
with the real white one [10]. 

Besides, traditional ICA has to recover all the source 
signals, which causes the trouble of selection. However, 
ICA with reference (ICA-R) is able to extract the desired 
component from mixture when the pre-defined reference 
signal is available [11]. But the adoption of ICA-R results 
in heavy computation load. Moreover, the reference 
signal is hard to construct when the background noise is 
very strong. 

We proposed a basic idea of speech signal denosing 
which combines EMD-wavelet and ICA-R in [12]. In this 
paper, we further this work by replacing original ICA-R 
algorithm by fast ICA-R. In addition, according to the 
nonlinear relationship between the length of the data and 
the running time of EMD algorithm, we segment the 
noisy speech in advance to reduce the processing delay. 
What’s more, EMD-ICA denoising method is brought 
into study and we make a comprehensive comparison of 
all the approaches aforementioned. Simulations were 
performed to verify the validity of the proposed method. 
The detailed analyses of the results demonstrate the novel 
method proposed in this paper exhibits superior denoising 
performance with a half shorter running time. 

II.  BASIC THEORY 

A.  Emprical Mode Decompositon 
EMD decomposes a given signal into a series of IMFs 

one after another, starting from high frequency to low 
frequency [13]. In contrast to conventional decomposition 
methods, the basic functions of EMD are derived from 
the signal itself rather than defined in advance [3]. 

An IMF is defined as a function with equal number of 
extrema and zero crossings (or at most differed by one) 
with its envelopes, as defined by all the local maxima and 
minima, being symmetric with respect to zero [13]. The 
total sum of the IMFs matches the signal very well and 
therefore ensures completeness.   

 ( )
n

i=1

( )iimf tx t =∑ . (2) 

For convenience, we refer to ( )iimf t  as the i th-order 
IMF. By this convention, lower order IMFs capture high 
frequency modes while higher order IMFs typically 
represent low frequency modes. 

Considering the IMFs acquired from the 
decomposition of noise speech signal, lower order IMFs 
comprises the large amount of noise compared to the rest 
ones, so a denoised signal can be acquired by 
reconstructing the signal using only the high-order IMFs. 
However, EMD denoising principle may cause great 
distortion because the noise-dominated IMFs are likely to 

contain some signal portions as well, thus the signals’ 
structures or features cannot be well preserved [4]. 

Although EMD often results in useful decomposition 
outcomes, it is not mathematical established [5]. Some 
inferences in the paper are based on large amount of 
simulations other than sound mathematically theory. 

B.  Wavelet Thresholing 
Discrete Wavelet Transform (DWT) projects the signal 

onto a number of predefined orthonormal basis functions, 
which are termed mother wavelet [4]. Then signal is 
expressed by a linear sum of the mother wavelet and 
wavelet coefficients. Therefore, DWT may not match the 
real signal if the pre-selected mother wavelet is not 
appropriate [3]. 

Wavelet thresholding can be briefly described as 
follows. DWT transforms signal 1 2[ , ,..., ]Nx x x=x  into 
wavelet domain by a orthogonal N N× transform matrix 
U , 

 =c Ux . (3) 

where 1 2[ , ,... ]Nc c c=c represents the wavelet coefficients. 
There are two major thresholding rules, hard and soft 

thresholding, which can be referred [5] 

 
,

( )
0,T

A A T
A

A T
ζ

>⎧
= ⎨ ≤⎩

. (4) 

 
sgn( )( ),

( )
0,T

A A T A T
A

A T
ζ

− >⎧
= ⎨ ≤⎩

. (5) 

where A  is the amplitude of wavelet coefficient, 
( )T Aζ is the amplitude after thresholding and T is the 

thresholding value. Soft thresholding cause no 
discontinuities in the denoised signal, so it is preferred in 
practice for speech denoising. 

Using any one of the threshloding rule above, the 
denoised signal can be estimated by inverse discrete 
wavelet transform 

 ˆ = Tx U c . (6) 

where 1 2 T[ ( ), ( ),.... ( )]T T Nc c cζ ζ ζ=c , TU represents the 
transposition of matrix U  and 1 2ˆ ˆ ˆ ˆ=[x ,x , x ]Nx …,  is an 
almost noise-free version of x . 

The performance of denoising in wavelet domain 
depends on the threshold value particularly. The most 
widely used thresholding method is VisuShrink [14], 
which is given by 

 = 2 logT Nσ . (7) 

where σ  can be estimated based on the component 
median [14] 

 
( )median : 1,... N

ˆ=
0.6745

ic i
σ

=
 (8) 
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However, research indicated that simply wavelet 
thresholding is not ideal when SNR is low [5].  

C.  EMD-wavelet 
EMD-wavelet method is proposed to obtain a denoised 

signal with minimal distortion. 
Firstly, the noisy signal is decomposed into several 

IMFs by EMD adaptively. Then wavelet thresholding is 
applied to all IMFs to exclude components that are 
expected to be significantly corrupted by noise. Finally, 
the signal is constructed by the processed IMFs. 

The soft thresholding methods can be translated to [5] 

 
sgn( (t))( (t) ), (t)

(t)
0, (t)

i i i
i

i

imf imf T imf T
imf

imf T
− >⎧⎪= ⎨ ≤⎪⎩

(9) 

where (t)iimf indicates the ith processed IMF. 
The denoised signal can be written by 

 ( ) ( )
1

ˆ
n

i
i

x t imf t
=

=∑  (10) 

In EMD-wavelet method, EMD is used to analysis the 
noisy signal other than wavelet decomposition, so it is 
dispensable to determine the basis functions by exploiting 
prior-knowledge. At the same time, IMFs are “shrinked” 
other than being discarded completely, which results in a 
relatively less distortion signal [15]. 

D.  Independent Component Ananlysis 
Independent component analysis (ICA) is a statistical 

method for transforming an observed multi-dimensional 
random vector into components that are statistically as 
independent from each other as possible [16]. In 1994,    
P. Comon theorized ICA as the process of dynamic 
optimization (learning rule) under certain object (contrast) 
function [17]. Negentropy, introduced by A. Hyvärinen in 
[6], is largely used as the object function. Experimentally 
speaking, the ICA algorithm based on negentropy always 
works better than that using other object functions [18]. 

Considering the scenario that the source signals are 
linearly mixed instantaneously, the received signals can 
be represented as  

 M = AS  (11) 

where 1 2[ , , , ]pm m m=M  is the aggregation of the 
received signal, 1 2[ , , , ]qs s s=S is the aggregation of the 
source signal, A is the mixing matrix. If the inverse of A , 
has been estimated accurately by ICA, supposing it to 
be -1W = A , then the source signals could be recovered 
by 

 ( )ˆ = ⋅ = ⋅ =S W M W AS S  (12) 

where 1 2
ˆ ˆ ˆ ˆ[s ,s , s ]q=S …， is the estimation of S . 

For common ICA method, p q≥ is needed. Single-
channel ICA is such an extreme case that q 2≥ and 1p = , 
which is impossible for common ICA in realization [8]. 

However, EMD brings a promising approach by 
expanding the single channel received signal into multi-
channel IMFs, transforming the single channel 
underdetermined problem into the multi-channel positive 
definite problem. The approach is described as EMD-ICA 
[9]. 

With respect to signal denosing, EMD-ICA first 
constructs a virtual noise channel using low-order IMFs 
[10]. Assuming the noisy speech is X , the virtual noise 
channel is Y , the real noise is n  ,speech signal is S . 
Supposing the virtual noise channel draw very near to the 
real noise, namely ≈ 1n n  

 11 12

21 21

a a
a a≈1

X = n + S
Y = n n

 (13) 

where ija i, j =1,2  are mixing coefficients. Then, (13) can 
be written in a matrix form 

 11 12

21

a a
a 0
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

X n n
= = A

Y S S
 (14) 

where A  is the mixing matrix. 
If B  is the estimated inversion of A , 

supposing ≈ -1B A , then the source signals could be 
recovered by 

 ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

n X
= B

S Y
 (15) 

But in fact the noise contained in each IMF is colored, 
having different energy in each mode, so the virtual 
channel can't necessarily match with the real white one 
[10]. 

It is also noticeable that the common ICA is only 
capable of recover all the independent components, 
because the whole unmixing matrix W  is present in the 
learning rule [11]. This is inefficient in some application 
scenario, especially where only few source signals are 
desired. Although some ICA algorithms are able to 
extract ICs one at a time with a deflation process, the 
arbitrary order of extraction remains as the major 
drawback [19]. 

The ICA with reference (ICA-R) is a good candidate to 
solve this problem when the pre-defined reference signals 
are available. The framework of original ICA-R can be 
formulated as follows [11] 

 
( ) ( ){ } ( ){ }
( ) ( ) { }

2

2

maximize

subject to 0, 1 0

J y E G y E G v

g h E y

ρ ⎡ ⎤≈ −⎣ ⎦

≤ = − =w w
(16) 

where ( )J y is a reliable approximation of negentropy, 
being defined as the estimator for independent in this 
framework. The inequality constraint ( )g w  is exploited 
to incorporate prior information of the desired signal into 
the ICA learning rule. The equality constraint ( )h w  is 

used to bound ( )J y and the weight vector w . 
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And the augmented Lagrangian function ( ), ,L μ λw  
for (16) can be formulated as follows: 

 

( ) ( ) ( ){ } ( ) ( ) 22 21 1, , [max ,0 ]
2 2

L J y g h hμ λ μ γ μ λ γ
γ

= − + − − −w w w w

(17) 

where μ and λ are Lagrange multipliers for the 
constrains ( )g w  and ( )h w  respectively. γ is a scalar 

penalty parameter. ⋅  denotes the Euclidean norm. A 
Newton-like learning algorithm can be derived by finding 
the maximum of ( ), ,L μ λw  as follows: 

 ( )1 /
kk k w kLη δ+ ′= − -1

xxw w R w  (18) 

where k is an iteration index, η is the learning rate, xxR is 
the covariance matrix of the observed signal ,

kwL′ is the 

first derivative of ( ), ,L μ λw with respect to w .The 

definition of ( )kδ w is detailed in [11]. 
As can be seen in (18), the computation of the 

inversion of xxR  is involved in the learning algorithm, 
which is time consuming therefore limits the application 
of ICA-R in practice. In order to cut down the 
computation complexity, fast ICA-R is adopted in our 
method. 

The improvement is based on the following two 
considerations [19]. 

• By normalizing the weight vector w , the equality 
constraint ( )h w  and λ can be omitted. The 
corresponding augmented Lagrangian function for 
the fast ICA-R. 

 ( ) ( ) ( ){ }2 21, max ,0
2

L J y gμ μ γ μ
γ
⎡ ⎤= − + −⎣ ⎦w w (19) 

• By pre-whitening the observed signals, the 
covariance matrix of whiten signal equals unity. 
Then the computing of -1

xxR  in (18) is avoided.  

 ( )1 /
kk k w kLη δ+ ′= −w w w  (20) 

Then, weight vector is normalized by. 

 1 1 1/k k k+ + +=w w w  (21) 

As a result, the computation load for the fast ICA-R is 
considerably reduced.  

Another limitation of ICA-R is how to construct the 
reference signal. Because the speech has pitch and its 
harmonic frequencies, periodic rectangular pulses with 
pitch frequency of the speech signal can be used as the 
reference signal [20]. But few methods have been 
proposed to determine the pitch frequency when the 
speech is buried in noise. According to this problem, a 
novel way to construct the reference signal for ICA-R is 
proposed in this paper. We get the reference signal by 

assembling high-order IMFs, which works well even if 
the speech signal is buried in noise. 

III.  ALGORITHM 

The method we proposed incorporates the advantages 
of EMD, wavelet and ICA, so it is referred to as EMD-
wavelet-ICA. 

The algorithm can be stated as below: 
• Step1. Decompose the contaminated signal by 

EMD into a set of IMFs. 
• Step2. Apply wavelet thresholding to the frontal 

two IMFs to get two denoised IMFs, 
( )1imf t and ( )2imf t . 

• Step3. Summing over the remaining IMFs to get a 
reference signal ( )r t  

• Step4. Extract the object signal ( )z t  

from ( )1imf t , ( )2imf t  and ( )3imf t by fast ICA-R. 

• Step5. Summing over ( )z t  and ( )r t to get the 
denoised signal. 

The block diagram of the algorithm is illustrated in   
Fig. 1. Time variable t is omitted in the figure for 
simplicity. 

Note that in Step2, it is totally unnecessary to apply 
thresholding to all IMFs with respect to white Gaussian 
noise removal. Equation (22) displays the difference 
between our method and the conventional EMD-wavelet. 

 ( ) ( ) ( )
1

21

x̂
c n

i i
i c

t imf t imf t
=

= +∑ ∑  (22) 

where 1c denotes the number of high-order IMFs to be 
processed by wavelet thresholding, and 2 1 1c c= + . The 
introduction of parameters 1c  and 2c gives us flexibility 
to process the noisy low-order IMFs and preserve the 
high-order ones that contains primarily speech signal. 

Huang proves in [21] that at least in the noise-only 
case, the distribution of the IMF samples still obeys 
Gaussian distribution, while IMFs contains mainly speech 
components do not follow the certain characteristics. 
Taking advantage of this discrepancy, we set the auto-
correlation of Gaussian white noise as the criterion and 
calculate the autocorrelation of all the IMFs. 

 ( ) ( ) ( )R ii i iE imf t imf tγ γ= +⎡ ⎤⎣ ⎦  (23) 

where γ denotes shift. Then the results are compared 
with the criterion. Simulations have proved that the auto-
correlation of frontal two IMFs always get a relatively 
large maximum when =0γ  but rather small values at the 
rest, so 1imf  and 2imf  have the maximum possibility to 
be the noise-dominated IMFs. Consequently, we 
set 1 2c = , 2 3c = in the propose method. 
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x x̂
r

1imf

2imf z
1imf

2imf

3imf

4imf

nimf

 
Figure 1.  The framework of the EMD-wavelet-ICA. 

No noticeable degradation is observed in simulations 
by using this slightly modified version of EMD-wavelet 
compared to the original version. 

It goes beyond doubt that the way we combine EMD 
and wavelet is not optimum. On the one hand, wavelet 
can be more appropriately adapted by exploiting the 
special characteristics of EMD, such as iterative EMD 
interval-thresholding, which effects better than the direct 
combination version [5]. On the other hands, although 
universal threshold ensures nearly no Gaussian noise will 
be left in the denoised signal, the elimination of possibly 
informative parts of signal is inevitable [14]. Some other 
threshold values are capable of preserving more useful 
information, such as the IMF-dependent threshold, 
characterized by adopting different thresholds T  per 
mode [5]. But what we concentrate on in this paper is the 
exploration combining EMD-wavelet with ICA-R in 
single-channel speech signal denoising. Therefore, the 
direct combination version of EMD-wavelet and 
universal thresholding are adopted for simplicity. 

In Step3, it is worthy to point out that EMD-wavelet 
is not exploited as a merely pre-processing tools, it 
becomes an integral part of the proposed method. 
Because the reference signal ( )r t  we used in the 
following separation process is constructed by the 
remaining IMFs.  

 ( ) ( )
3

n

i
i

r t imf t
=

=∑  (24) 

Although lacking high frequency of the speech signal, 
it indeed exhibit satisfactory performance by 
demonstration of the simulation results. Then the 
denoised result can be written by 

 ( ) ( )
3

1
x̂ ( )i

i
t imf t r t

=

= +∑  (25) 

where (t)iimf indicates the speech component extracted 
from the frontal three IMFs. 

In Step4, the employment of fast ICA-R not only 
makes the whole algorithm automatic and but also 
reduces the computation consumption of original ICA-R 
at the same time. Simulations on speech signal were also 
performed in [19], the results demonstrated the efficiency 
and accuracy of fast ICA-R. 

In addition, there are various additional ways to 
combine EMD-wavelet with fast ICA-R. For example, 
fast ICA-R can be applied to all the IMF instead of 
merely focusing on the frontal three ones. But previous 
simulation result had proved that the approach focusing 
all the IMFs does not make distinct enhance performance 
[12]. 

IV.  SIMUALATION RESULTS  

To verify the validity of EMD-wavelet-ICA, 
simulations on the auto-correlation criterion, the output 
SNR, the correlation coefficient and the running time are 
performed. Then the results are analyzed and compared to 
the methods aforementioned. 

A.  The Auto-correlation Criterion 
The auto-correlation of the Gaussian white noise and 

the frontal three IMFs from the decomposition of noisy 
speech when SNR=-3 dB are shown in Fig. 2. 

In Fig. 2 (b) and (c), the auto-correlation properties of 
the frontal two IMFs indicate that they are noise-
dominated. In Fig. 2 (d), the short-time auto-correlation 
properties of speech signal is dominated, which indicates 

3imf  mainly contains speech signal. 
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Figure 2.  (a)The auto-correlation of Gaussian white noise (b)The auto-
correlation of 1imf  (c)The auto-correlation of 2imf  (d)The auto-

correlation of 3imf  
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B.  Waveform 
The waveforms of the original speech signal, the noisy 

received signal corresponding to SNR=-3 dB and the 
denoised signals by different approaches are 
demonstrated in Fig. 4. 

Fig. 4 (d) and (e) demonstrate that using different 
mother wavelet will lead to different denoising 
performance. It’s obvious that db6 mother wavelet 
outperforms sym8 as for this chosen speech signal. In 
EMD-wavelet-ICA approach, the selection of mother 
wavelet is also unavoidable in Step2. However,        
EMD-wavelet-ICA utilizes EMD other than wavelet 
decomposition to analysis the signal in Step1, hence the 
influence of selecting appropriate mother wavelet is 
brought to minimum. For simplicity, we choose db6 
mother wavelet in the following simulations. 

Fig. 4 (c),(d),(e),(f) and (g) show that the denoised 
result by simply EMD or wavelet still contain 
considerable residual noise, while EMD-ICA and EMD-
wavelet perform much better, but not extraordinary 
satisfactory. 

As can be seen from Fig. 4, our method exhibits a 
superior performance in denoising. 

C.  Output SNR 
To evaluate the performance of the denoising method, 

average values of the output SNR is calculated. 

 
( )

( ) ( )

2

put 2

[ ]
SNR 10log

ˆ[ ]
out

E s t

E s t s t
=

−
 (25) 

where ( )s t and ( )ŝ t are the original and the estimated 
signals respectively. 100 independent noise sequences are 
generated for each input SNR value. The relationship 
between the average output SNR and the input SNR is 
shown in Fig. 3. 

In Fig. 3, an improvement up to 7.2 dB is obtained by 
EMD-wavelet-ICA when input SNR=-4 dB. The output 
SNR curve of EMD-wavelet-ICA outperforms the other 
approaches, especially when the input SNR is low. In fact, 
it achieves nearly 0.7 dB gain against EMD-wavelet and 
even higher gain compared to other methods.  
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Figure 3.  The relationship of output SNR and input SNR 
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Figure 4.  (a)The waveform of the clean speech signal (b)The 
waveform of the noisy signal corresponding to SNR=-3 dB (c)The 
waveform of the denoised result by EMD (d)The waveform of the 

denoised result by the wavelet (db6 mother wavelet) e)The waveform of 
the denoised result by the wavelet (sym8 mother wavelet) (f)The 

waveform of the denoised result by the EMD-ICA (g)The waveform of 
the denoised result by the EMD-wavelet (h)The waveform of the 

denoised result by the EMD-wavelet-ICA 
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Figure 5.  The relationship between correlation coefficient and input 

SNR 

D.  Correlation Coefficient 
The value of correlation indicates how much the 

denoised signal resembles its original version. 

 ( )
( ) ( )

ˆcov( , )ˆ,
ˆ ˆcov , cov ,

s ss s
s s s s

ρ =
⋅

 (26) 

This criterion cancels out the influence of amplitude in 
ICA, the closer the correlation coefficient to 1, the better 
the denosing performance is. 

For each SNR value, 100 independent noise sequences 
are generated and the correlation coefficients are 
calculated in Fig. 5.  

From Fig. 5, performance of the proposed method 
remains good when signal-to-noise is low, while other 
methods degrade substantially. When input SNR=-5 dB, 
the correlation coefficient of the noisy speech and the 
speech signal is 0.4903, and that of the denoised result by 
simply EMD approaches and the speech signal becomes 
0.5813. In an ascending order, the correlation coefficient 
reaches up to 0.6510, 0.6539, 0.6686 and 0.7237 
respectively by wavelet, EMD-wavelet, EMD-ICA and 
EMD-wavelet-ICA approaches. The proposed method 
can achieve almost 47% performance enhancement 
compared to the noisy speech. 

E.  Performance Comparison between Fast ICA-R, ICA-R 
and Fixed-point Algorithms 

Fixed-point ICA (FastICA) is the most widely used 
ICA algorithms in practice because of its satisfactory 
convergence property [22]. We make a comparison 
between the performance of the proposed method and 
other versions of it, which employ FastICA and original 
ICA-R in Step4 respectively. Note that we have to use 
prior-knowledge to select the desired IC by visual 
inspection when using FastICA. 
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Figure 6.  Performance comparison between fast ICA-R, ICA-R and 

FastICA algorithms 

TABLE I.   
THE RUNNING TIME OF THE APPROACHES AFOREMENTIONED 

pτ /s SNRin  /dB 
-6 -4 -2 0 2 

EMD 4.2610 4.2613. 4.2410. 4.2313. 4.2184
Wavelet 0. 1352 0. 1333 0.1402 0.1394 0.1386

EMD-wavelet 4.3962 4.3968 4.3825 4.3683 4.3533
EMD-ICA 4.3496 4.3344 4.3256 4.3199 4.2987
 
Although the application of fast ICA-R doesn't exhibit 

noticeable superior performance compare to FastICA, its 
major superiority lies in its automatic. What’s more,     
fast ICA-R algorithm can achieve almost the same 
performance as the original one, actually it get even 
better when SNR increase above 0 dB. 

F.  Running Time Comparison 
The running time is computed for the approaches 

aforementioned respectively and the averaged result of 
100 times experiments is given in Table. Ⅰ. The noisy 
speech under test has the length of 7 seconds. 

In Table. Ⅰ, wavelet and ICA convergent very fast, 
while the running time of EMD is not acceptable in 
practical application. Simulations results of large 
quantities indicate that the relationship between the 
running time of EMD and the length of the noisy speech 
is non-linear, (i.e. the longer the noisy speech is, the more 
time it will consume). If the noisy speech is divided into 
segments in advance, the running time of EMD can be 
considerably cut down. As an illustration, the noisy 
speech signal corresponding to SNR=-3 dB is processed 
by the modified version of EMD and the averaged 
running time result curve of 100 times experiments is 
given in the Fig. 7. 

Fig. 7 shows that the running time decreases 
substantially when the number of segments increases, but 
it remains stable when number of segments surpasses 8. 
According to this result, the noisy speech is divided into 
to 8 segments in advance. Afterwards, 8 segments are 
processed by EMD-wavelet-ICA method respectively. At 
last, the processed segments are joined together to get the 
denoised signal. 
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Figure 7.  The relationship between number of segments with the 

running time of EMD 
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Figure 8.  The framework of the proposed time-saving method 

TABLE II.   
THE RUNNING TIME OF THE OF THE PROPOSED TIME-SAVING METHOD 

pτ /s SNRin  /dB 
-6 -4 -2 0 2 

EMD 2.1856 2.1367.. 2.1435 2.1272 2.1239
EMD-wavelet- 

ICA-R 2.3134 2.3095 2.2747 2.2695 2.2428

EMD-wavelet-
fast ICA-R 2.2583 2.2342 2.2156 2.1968 2.1932

 
The block diagram of the proposed time-saving method 

is illustrated in Fig. 8, where isegment denotes the 
processed result of the i th segment . 

The running time of this operation is shown in      
Table. Ⅱ, which is more acceptable now. The simulation 
results also demonstrate the efficiency of fast ICA-R 
compared with the original ICA-R. As further work, we 
intend to combine EMD-wavelet with fast ICA-R in a 
more appropriate way so as to balance the performance 
improvement with the computation consumption. 

V.  CONCLUSION 

In this paper, we propose a novel approach for speech 
signal denoising, which merges the advantages of     
EMD-wavelet and fast ICA-R. Firstly, an auto-correlation 
criterion is proposed to determine whether the IMF is 
noise-dominated or not. Then wavelet thresholding is 
employed to process these noise-dominated IMFs and the 
reference signal is constructed by assembling the high-
order IMFs. Finally, fast ICA-R is adopted to extract the 
object speech component. The total processing procedure 
is called EMD-wavelet-ICA. 

Simulations indicate that the auto-correlation criterion 
we proposed is dependable. Results of the output SNR 
and the correlation coefficient demonstrate that EMD-
wavelet-ICA exhibits superior denoising performance 

compared to other approaches, especially when signal-to-
noise ratio is low. In addition, constructing the reference 
signal of ICA-R by assembling high-order IMFs is 
verified to be practicable. What’s more, the running time 
is almost twice faster compared to the existing 
approaches because of the efficiency of fast ICA-R and 
the pre-segmentation of the noisy speech. 

Based on these preliminary results, we also attempt to 
evaluate the methods with different types of noises so as 
to make further improvement. 
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