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Abstract—In this paper, a hybrid TS-DE algorithm based on 
Tabu search and differential evolution algorithm is 
proposed to solve the reliability redundancy optimization 
problem. A differential evolution algorithm is embedded in 
Tabu search algorithm. TS is applied for searching solutions 
space, and DE is used for generating neighborhood solutions. 
The advantages of both algorithms are considered 
simultaneously. And an adaptive hybrid TS-DE approach is 
developed to solve three benchmark reliability redundancy 
allocation problems.  By comparing with other algorithms 
reported in previous literatures, experimental results show 
that the proposed method is effective and efficient for 
solving the reliability redundancy optimization problem. 
 
Index Terms—nonlinear programming, Tabu search, 
differential evolution, reliability optimization, redundancy 
allocation 
 

I.  INTRODUCTION 

The reliability optimization problem is very important 
in industry and has attracted attention in academic field 
and engineering fields. In general, two major ways have 
been used to improve system reliability. The first way is 
by increasing the reliability of components, and the 
second way is by using redundant components in the 
subsystems. In the first way, sometimes it cannot meet 
our requirements even though the currently highest 
reliable components are used. The second way is by 
choosing the components reliability combination and 
redundancy levels to arrive the highest system reliability. 
But the cost, weight, volume are all increased. So it is 
necessary that a trade-off is achieved between these two 
options for constrained reliability optimization. Such 
reliability allocation and redundancy allocation problem 
is called as RRAP (reliability-redundancy allocation 
problem) [1, 2, 3].  

A reliability redundancy allocation problem of 
maximizing the system reliability subject to multiple 
nonlinear constraints [4, 7, 8, 9] belongs to mixed-integer 
programming problems. It can be formulated as following 
model uniformly: 

Max Rs = f(r, n) 
s.t. gj(r, n) ≤ bj, j = 1.. m; nj∈positive integer, 0≤rj≤1   (1)                        

Where ri is the reliability of subsystem i, and ni is the 
number of components of subsystem i. The f (.) is the 
objective function for the system reliability; the gj (.) is 
the jth constraint function and bj is the jth upper 
limitation of the system; the m is the number of 
subsystems. The goal is to determine the number of 
redundant components and the components’ reliability in 
each subsystem so as to maximize the overall system 
reliability.   

RRAP has been proven to be NP-hard problem. There 
are many different optimization technologies have been 
presented to resolve it. The approaches called heuristics 
and meta-heuristics have been widely researched and 
applied [5, 6, 12].They offer feasible solution within 
reasonable computational time. Hsieh [5] used a linear 
programming approach to solve the RRP-MCC with 
nonlinear constraints. Coit and Smith [13] presented a 
genetic algorithm (GA) to solve the Reliability-
Redundancy problem. Hsieh et al. [14] used genetic 
algorithm to solve reliability design problems of series 
systems, series-parallel systems and complex (bridge) 
systems. You and Chen [15] proposed a greedy genetic 
algorithm for series–parallel redundant reliability 
problems. Ta_Cheng Chen[16] used an immune 
algorithm-based approach to solve the RRP-MCC 
problem of series system, series–parallel system, and 
complex(bridge) systems and overspeed protection 
system. Hsieh and You [17] presented an immune based 
two-phase approach to solve the reliability-redundancy 
allocation problem. First, an immune algorithm (IA) is 
used to get preliminary solutions. Second, the quality of 
solutions was improved by a procedure to obtain the last 
solutions. The result showed that the solutions are 
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superior to those best solutions of other approaches in the 
literature. Liang  and  Chen[18] proposed  a  variable  
neighborhood  search (VNS)  with  an  adaptive  penalty  
function. This method  improved  the  performance  and  
the  solution  quality  were  as good as others. Zavala et 
al.[21] proposed  a  particle swarm  optimization  (PSO)  
approach  named PESDRO to  solve  a  bi-objective  
redundant reliability  problem; And the reliability 
redundant problems of series system, parallel system and 
K-out-of-N  system  are  resolved. Zou et al. [19,20] used 
global harmony search algorithm to solve RRAP. Leandro 
dos Santos Coelho [22] presents a PSO approach based 
on Gaussian distribution and chaotic sequence (PSO-GC) 
to solve the reliability–redundancy allocation problems of 
complex (bridge) system and overspeed protection 
system. The PSO-GC has got better solutions than the 
classical PSO. Harish Garg and S.P. Sharma [23] used 
PSO to solve multi-objective reliability redundancy 
allocation problem of a series system. Agarwal and 
Sharma [24] applied ant colony optimization (ACO) 
algorithm with an adaptive penalty function to 
redundancy allocation problem. Nabil Nahas et al. [25] 
coupled ant colony optimization algorithm with degraded 
ceiling local search method for redundancy allocation of 
series–parallel systems. Mohamed Ouzineb [26] 
presented Tabu search (TS) approach to solve the 
redundancy allocation problem for multi-state series–
parallel systems. Afonso et al. [27] used imperialist 
competitive algorithm (ICA) to resolve RRAP.                                                                                           

Recently some hybrid meta-heuristic methods have 
been proposed to solve the reliability redundant allocation 
problems. Nima Safaei et al. [28] presented an 
Annealing-based PSO (APSO) method. Even though 
APSO didn’t obtain the better solution than other well-
known meta-heuristic method, it applied Metropolis-
Hastings strategy and affected the performance of the 
basic PSO. Wang and Li [29] presented a coevolutionary 
differential evolution with harmony search algorithm 
(CDEHS) to solve the reliability redundancy optimization 
problem. The method divided the problem into two parts: 
the continuous part and the integer part. The continuous 
part evolved by differential evolution algorithm, and the 
integer part evolved by harmony search approach. Thus 
two populations evolve simultaneously and cooperatively 
to get the solutions. Shi-Ming Chen et al. [37] proposed 
SAABC algorithm coupled simulated annealing 
algorithm(SA) with artificial bee colony (ABC) algorithm. 
The SAABC outperformed ABC and GABC in terms of 
convergence speed and accuracy. 

Although the above methods can get the near optimal 
solution in a limited computational time, generally there 
are some problems such as slow convergence speed and 
low precision of the and so on. Moreover some methods 
can not consider the problem on the balance of 
convergence speed and accuracy. 

In this paper, a hybrid Tabu search and differential 
evolution algorithm is proposed. DE algorithm has quick 
convergence speed, but it will lose the information of no 
selected individual. On the contrary, TS method has 
strong memory function, and it can get higher accuracy 

solution. Whereas its convergence speed is slow. This 
method considers the advantages of both algorithms 
simultaneously. It is used to solve three problems on 
reliability redundancy optimization. The experimental 
results show that the proposed TS-DE method has higher 
precision, faster convergence speed, and is more effective 
for reliability redundancy optimization problem. 

The paper is organized as follows. Section 2 provides 
the general procedure of the original Tabu search (TS) 
and differential evolution algorithm (DE). In Section 3, a 
hybrid TS-DE algorithm based on TS and DE is proposed. 
The simulation results and comparisons are provided in 
Section 4. Finally, the conclusion of the paper is 
summarized and the future work is directed in Section 5. 

II.  THE HYBRID ALGORITHM BASED ON TS AND DE 

A.  The Tabu Search Algorithm (TS) 
Tabu search is a metaheuristic algorithm that has 

become the methods of choice for solving many complex 
applied optimization problems. It combines local search 
with a Tabu list in order to avoid searching the same 
solutions repeatedly. It has been proved to be very 
effective in many optimization problems. 

Tabu search is an iterative procedure where moving 
from a current solution to a new solution in a 
neighborhood at each iteration. The steps are described as 
follows: 

Step 1. The initial solution is generated randomly. The 
parameters are initialized. The Tabu list is set null. 

Step 2. The stop criterion is checked. If it is satisfied, 
the search is terminated and the current best solution is 
accepted. Otherwise, continue to the following steps. 

Step 3.Generating all (or some) neighborhood solution, 
and choosing some candidate solutions. 

Step 4.The aspiration criterion is checked. If one 
candidate solution satisfies aspiration criterion, it is 
accepted to be new current best solution, then return to 
step 2. Otherwise continue to the following steps. 

Step 5. Choosing the best status from the candidate 
solutions to be current best solution and updating Tabu 
list. 

Step 6. Go to step 2.  

B.  Differential Evolution Algorithm (DE) 
Differential evolution algorithm was first presented by 

Price and Storn in 1995. It is a kind of evolutionary 
algorithm using real number code. Compared with the 
traditional genetic algorithm, differential evolution 
algorithm generates new species by mutation and 
crossover operations on the current population, and then 
adopts the competition strategy of one-to-one to update 
the population. So DE is simple, effective and efficient 
method for solving optimization problems[30,31,32]. At 
present, a variety of the DE algorithms have been 
proposed. Among them the DE/rand/1/bin has been 
widely used[32]. Here, we choose DE/rand/1/bin with 
mutation, crossover and selection operations. The 
procedure is described as follows: 

Step 1: Initializing parameters. 
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The parameters are: F, CR and M. Where F is scale 
factor, CR is crossover rate; M is the size of population. 

Step 2: Randomly generating initial population of 
individuals. 

Step 3: Evaluate all individuals of the population. 
Step 4: Mutation. 
The mutation operator is: 

        Vi
k+1 = xi3

k + F× (xi1
k – xi2

k)                                   (2) 
vi 

k+1 is the trial vector. The xi1
k, xi2

k, xi3
k are three 

different individuals randomly selected from kth 
generation population, i1,i2,i3 is random number ranged 
from 1 to M, and mutation factor F is a scale coefficient. 

Step 5: Crossover. 
The crossover operator is: 

                   vi,j
k+1  if rand < CR or j = rd  

ui,j
k+1 =                                                                   (3) 

                   xi,j
k   otherwise 

uk+1 is the offspring vector. Where, rd is a random 
integer between 1 and D (D is the number of variables). 
CR is a real number between 0 and 1. 

Step 6: Selection. 
The selection operation is performed as follows: 

                  ui
k+1  if f (ui

k+1) < f (xi
k) 

xi
k+1 =                                                                      (4) 

                  xi
k   otherwise 

If the fitness of the offspring is better than that of the 
parent, the offspring u i

 k+1
  is selected to replace the parent 

xi
k. 
Step 7: stopping criterion. 
If the stopping criterion is met, the process is end. 

Otherwise, go back to Steps 4. 

III.  THE HYBRID TS-DE ALGORITHM BASED ON TS AND 
DE 

In DE algorithm, if an individual is not selected the 
information of that individual is lost, but TS algorithm 
has memory ability. In DE algorithm the new candidate 
solution is generated randomly from the population. This 
method can increase the ability of getting the global 
optima, but it cannot ensure a better solution, TS can 
promote the search for an optimal solution. But TS may 
waste resources on poor individuals without a selection 
operator. In order to increase the convergence speed and 
to produce better quality solution, a differential evolution 
algorithm is embedded in Tabu search algorithm. TS is 
applied for searching solutions space, and DE is used for 
generating neighborhood solutions. In this way the TS 
can help getting a better solution of each generation in 
DE algorithm, and accept the best current solution by 
using aspiration criterion. These consider the advantages 
of both algorithms simultaneously. 

In the original DE algorithm, scale factor F and 
crossover rate CR are set to fixed values for all solutions. 
In order to improve the performance of DE algorithm, we 
have introduced adaptive parameters to get better feasible 
solutions. So an adaptive adjustment strategy of 
modifying scale factor F and crossover rate CR is 
developed. The formulas are described as follows: 
F=F0+η×sin(K/MAXCOUNT×2π)                                 (5)                                             
CR=CR0×sin(K/MAXCOUNT×π/2)                              (6)                                            

Where k is the current number of iterations, 
MAXCOUNT is the total counts of iterations. And η is 
the coefficient between 0 and 1. F0 and is the initial value 
of F, CR0 is the initial value of CR. And we assumed that 
the values of F and CR are in the range of [0.0, 2.0] and 
[0.0, 1.0] respectively. 

The hybrid approach is described as follows: 
Step 1. Initializing parameters. The Tabu list is set null. 
Step 2. Initializing a random population x, Generate 

current best solution xbest from x. 
Step 3.The stop criterion is checked. If it is satisfied, 

the search is terminated and the current best solution is 
accepted. Otherwise, continue to the following steps. 

Step 4.Generating neighborhood solution by DE 
algorithm, and choosing the best one from candidate 
solutions. 

Step 5.The aspiration criterion is checked. If one 
candidate solution satisfies aspiration criterion, it is 
accepted to be new current best solution, then return to 
step 2. Otherwise continue to the following steps. 

 Step 6. Choose the best status from the candidate 
solutions to be current best solution and updating Tabu 
list. Go to step 3. 

The main procedure of Generating neighborhood by 
DE algorithm is shown in Fig. 1: 

For i = 1 to M 
       Randomly generate three integers i1, i2 and i3 in [1, M],  

and i1≠ i2≠ i3 ≠ i.  
       vi

k+1= xi3
k+ (F0+sin(K/MAXCOUNT× 2π))× (xi1

k− xi2
k) 

       Randomly generate an integer rd in the range [1, N] 
       For j = 1 to N 
              If rand < CR0×sin(K/MAXCOUNT*π/2) or j = rd 
                    ui,j

k+1 = vi,j 
k+1 

              Elseif 
                    ui,j

k+1 = xi,j
k 

              End If 
       EndFor 
       If f(ui

k+1) < f(xi
k)  

              xi
k+1= ui

k+1  
       Elseif 
              xi

k+1= xi
k 

        End If 
 EndFor  
 Choosing the best solution from this generation candidate solutions

Figure 1. Pseudo code of Generating neighborhood by DE algorithm 

IV.  SIMULATIONS AND COMPARISONS 

In this section, we implement the simulations based on 
three benchmark problems to test the performances of the 
proposed TSDE for reliability-redundancy optimization 
problems. And we compared the TSDE with some other 
typical algorithms from the literatures.  

A penalty function method is used to handle constrains, 
it is described as follows: 

∑
=

λ+−=
p

1j

2)}x(g,0{ jmax)x(f)x(Fmin              (7) 

Where F (x) represents penalty function, f (x) 
represents objective function. gj(x), (j = 1, 2, p) represents 
the jth constraint, and λ is a large positive constant which 
imposes penalty on unfeasible solutions, and it is named 
as penalty coefficient. 

2052 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER



1 2 

3 

5 

4 

Gas Turbine 

Air Fuel Mixture 

V1 

 
Mechanical and 

electrical  
overspeed 
detection 

 

V2 V3 V4 

A.  Problem1: Series-parallel System 
The Series-parallel system [10][18][34] is shown as 

Figure 2:  
 
 
 
 
 
 
 
 

Figure 2. Series-parallel system 
This problem is formulated as follows: 
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∑
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1i
iii3

m
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iiii2

m
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2
i
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ii1

54321

W))4/nexp(nw)n,r(g

C))4/nexp(n()rln/1000()n,r(g

Vnvw)n,r(g.t.s

)R))R1)(R1(1(1)(RR1(1)n,r(fMax 

i
               (8)                

Where m is the number of subsystems, ni is the number 
of components of subsystem i, Ri ( ni ) is the reliability of 
subsystem i, f ( r , n)  is the reliability of the system; The 
wi is the weight of each component in subsystem i, vi is 
the volume of each component in subsystem i; The  ri  is 
the reliability of each component in subsystem i; The 
item αi(-1000/lnri)βi is the cost of each component in 
subsystem i, the parameters αi and βi is the constant 
value(usually assume that have been given),1000 is the 
task time of the components(it is commonly expressed in 
Tm); The V is the upper limit of total volume of the 
system, C is the upper limit of total cost of the system, W 
is the upper limit of total weight of the system. The 
parameters for this problem are listed in Table Ⅰ: 

TABLE I.   

THE PARAMETERS OF SERIES-PARALLEL SYSTEM. 

Subsystem i 105αi βi wivi
2 wi V C W

1 2.500 1.5 2 3.5 180 175 100
2 1.450 1.5 4 4.0    
3 0.541 1.5 5 4.0    
4 0.541 1.5 8 3.5    
5 2.100 1.5 4 4.5    

B.  Problem 2: Complex (bridge) System 
The complex (bridge) system [33,35] is shown as 

Figure 3: 
 
 
 
 
 
 
 

Figure 3.  Complex (bridge) system 
This problem is formulated as follows: 

5432154325431

542153214321

5325414321

RRRRR2RRRRRRRR
RRRRRRRRRRRR

RRRRRRRRRR)n,r(fMax

+−−
−−−

+++=
        (9)                               

The constraints are the same as series system. The 
parameters for this problem are listed in Table Ⅱ: 

TABLE II.   

THE PARAMETERS OF COMPLEX (BRIDGE) SYSTEM. 

Subsystem i 105αi βi wivi
2 wi V C W 

1 2.33 1.5 1 7 110 175 200
2 1.450 1.5 2 8    
3 0.541 1.5 3 8    
4 8.050 1.5 4 6    
5 1.950 1.5 2 9    

C.  Problem 3: Overspeed Protection System 
The problem is used to overspeed protection of a gas 

turbine. When the overspeed occurs, the system will be 
cut off. The overspeed protection system [36] is shown as 
Figure 4: 

 

 
Figure  4.  The overspeed protection system of a gas turbine  

The control system can be viewed as an N-stage (N=4) 
mixed series-parallel systems. The model is formulated as 
follows: 
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m

1i

n
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i

    (10) 

Here i
iii rTrC βα )ln/()( −= , T is the task time of 

the components, the parameters αi and βi is the same as 
series system. 

The parameters for this problem are listed in Table III 

TABLE III.   

THE PARAMETERS OF OVERSPEED PROTECTION  SYSTEM. 

Subsystem i 105

αi

βi vi wi V C W T 

1 1 1.5 1 6 250 400 500 1000
2 2.3 1.5 2 6     
3 0.3 1.5 3 8     
4 2.3 1.5 2 7     

To analyze the performance of the TSDE, the TS and 
DE are developed as well for comparison. For the TS 
algorithm, the maximum number of iterations is set to 
1500, and the length of Tabu list is set to 24. For the DE 

1 2 

3 

4 

5 
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and TSDE algorithms, set F0=0.1, CR0=1.0, η=1, 
population size M=40, and the maximum number of 
iterations is set to 1500. Every algorithm runs 50 times 
independly for each problem, and the statistical results 
are listed in Table IV,Table V, and Table VI, including 
the best results(Best), the worst results(Worst), the mean 
results (Mean)and standard deviation(SD). 

TABLE IV.   

RESULTS OF THE SERIES PARALLEL SYSTEM USING THREE ALGORITHMS 

Algorithm Best Worst Mean SD 
TS 0.999972

5346 
0.992831

4610 
0.999160

6706 
1.3553e-03

DE 0.999898
4359 

0.983580
3872 

0.997535
6371 

2.8176e-03

TSDE 0.999976
6491 

0.999964
7634 

0.999976
2814 

1.8994e-06

TABLE V.   

RESULTS OF THE COMPLEX (BRIDGE) SYSTEM USING THREE 
ALGORITHMS 

Algorith
m 

Best Worst Mean SD 

TS 0.99982818
44 

0.96688487
87 

0.99496166
16 

7.3952e
-03 

DE 0.99957392
26 

0.96176637
90 

0.99123325
20 

9.6013e
-03 

TSDE 0.99988963
76 

0.99988935
05 

0.99988943
66 

1.3290e
-07 

TABLE VI.    
RESULTS OF THE OVERSPEED PROTECTION SYSTEM USING THREE 

ALGORITHMS 

Algorithm Best Worst Mean SD 
TS 0.99991922

16 
0.9136394

661 
0.98419501

04 
2.2715e

-02 
DE 0.99881030

68 
0.9523992

418 
0.98767442

10 
1.1077e

-02 
TSDE 0.99995467

47 
0.9999461

512 
0.99995450

42 
1.2504e

-06 
 

TABLE VII.   
BEST RESULTS COMPARISON ON SERIES PARALLEL SYSTEM 

Parameter Hikita et al. [34] Hsieh et al.  [14] Chen [16] This paper 
n1-n5 (3,3,1,2,3) (2,2,2,2,4) (2,2,2,2,4) (2,2,2,2,4) 

r1 
r2 
r3 
r4 
r5 

0.838193 0.785452 0.812485 0.819659 
0.855065 0.842998 0.843155 0.844981 
0.878859 0.885333 0.897385 0.895507 
0.911402 0.917958 0.894516 0.895506 
0.850355 0.870318 0.870590 0.868448 

f(r,n) 0.99996875 0.99997418 0.99997658 0.9999766491 
MPI (%) 25.2771 9.5627 0.2950 - 
Slack(g1) 53 40 40 40 
Slack(g2) 0.000000 1.194440 0.002627 0.000000 
Slack(g3) 7.110849 1.609289 1.609829 1.609289 

Note: (1) the bold values denote the best values of those obtained by all the algorithms. 
(2)Slack is the unused resources. 

TABLE VIII.   
BEST RESULTS COMPARISON ON COMPLEX (BRIDGE) SYSTEM 

Parameter Hikita. et al. [34] Hsieh et al. [14] Chen [16] Coelho[22] This paper 
n1-n5 (3,3,2,3,2) (3,3,3,3,1) (3,3,3,3,1) (3,3,2,4,1) (3,3,2,4,1) 

r1 
r2 
r3 
r4 
r5 

0.814483 0.814090 0.812485 0.826678 0.828086 
0.821383 0.864614 0.867661 0.857172 0.857805 
0.896151 0.890291 0.861221 0.914629 0.914241 
0.713091 0.701190 0.713852 0.648918 0.648146 
0.814091 0.734731 0.756699 0.715290 0.704162 

f(r,n) 0.9997894 0.99987916 0.99988921 0.99988957 0.9998896376 
MPI (%) 47.5962 8.6706 0.3860 0.0612 - 
Slack(g1) 18 18 18 5 5 
Slack(g2) 1.854075 0.376347 0.001494 0.000339 0.000000 
Slack(g3) 4.264770 4.264770 4.264770 1.560466 1.560466 

                 Note: (1) the bold values denote the best values of those obtained by all the algorithms. 
                   (2) Slack is the unused resources. 

TABLE IX.   
BEST RESULTS COMPARISON ON OVERSPEED PROTECTION SYSTEM 

Parameter Yokota et al. [35] Dhingra[36] Chen[16] Coelho [22] This paper 
n1-n4 (3,6,3,5) (6,6,3,5) (5,5,5,5) (5,6,4,5) (5,6,4,5) 

r1 
r2 
r3 
r4 

0.965993 0.81604 0.903800 0.902231 0.901615 
0.760592 0.80309 0.874992 0.856325 0.849921 
0.972646 0.98364 0.919898 0.9481450 0.948141 
0.804660 0.80373 0.890609 0.883156 0.888223 

f(r,n) 0.999468 0.99961 0.999942 0.999953 0.9999546747 
MPI (%) 91.4802 88.3781 21.8529 3.5632 - 
Slack(g1) 92 65 50 55 55 
Slack(g2) 70.733576 0.064 0.002152 0.975465 0.000000 
Slack(g3) 127.583189 4.348 28.803701 24.801882 24.801882 

                    Note: (1) the bold values denote the best values of those obtained by all the algorithms. 
                         (2)Slack is the unused resources. 
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Figure 5. The result obtained by three algorithms for series-parallel system 

 

 
Figure 6. The result obtained by three algorithms for complex (bridge) system 

 
Figure 7. The result obtained by three algorithms for overspeed protection system 

Table VII, Table VIII and Table IX compare the best 
result obtained in this paper with those of other methods 
in the literature. 

It can be clearly seen from Table IV, Table V and 
Table VI that the best, worst, mean results obtained by 
TSDE are superior to those obtained by TS and DE for 
three benchmark problems. The best values obtained by 

TSDE are 0.9999766491, 0.9998896376 and 
0.9999546747 respectively. And the standard deviations 
(SD) are 1.8994e-06, 1.3290e-07 and 1.2504e-06 
respectively. These results have shown that the TSDE has 
strong ability of get the best result and stability than TS 
and DE (As Figure 5, Figure 6 and Figure 7). It is worth 
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mentioning that the adaptive parameters F and CR make 
TSDE have better capacity of solution space exploration.  

Table VII, Table VIII and Table IX compare the best 
results obtained by TSDE for three reliability 
optimization problems with those reported in the 
literature. It can be seen that the proposed algorithm can 
get a better solution than any other methods presented in 
literature. MPI (maximum possible improvement) is used 
to measure the amount improvement of the solutions 
obtained by the presented method to the best solutions 
found by other best known methods, and it is described as: 
MPI (%) = (f − fother)/ (1 − fother), where f represents the 
best value obtained by the proposed algorithm, and fother 
represents the best value obtained by one of the other 
methods in literature. It should be emphasized that even 
very small improvements in reliability are critical and 
beneficial in high reliability applications.  

It can be seen from Table Ⅶ, that the best results 
reported by Hikita et al. [34], Hsieh, et al. [14] and 
Chen[16] were 0.99996875, 0.99997418 and 0.99997658 
for the series–parallel system respectively. The result 
obtained by TSDE is better than the above three best 
solution, and the corresponding improvements made by 
the presented method are 25.2771%, 9.5627% and 
0.2950% respectively.  

It can be seen from Table Ⅷ, that the best results 
reported by Hikita et al. [34], Hsieh et al. [14], Chen [16] 
and Coelho [22] were 0.9997894, 0.99987916, 
0.99988921 and 0.99988957 for the complex (bridge) 
system respectively. The result obtained by TSDE is 
better than the above four best solution, and the 
corresponding improvements made by the presented 
method are 47.5962%, 8.6706%, 0.3860% and 0.0612% 
respectively. 

It can be seen from Table Ⅸ, that the best results 
reported by Yokota, et al. [35], Dhingra[36], Chen [16] 
and Coelho[22] were 0.999468, 0.99961, 0.999942 
and0.999953 for the overspeed protection system 
respectively. The result is better than the above four best 
solution, and the corresponding improvements made by 
the presented method are 91.4802%, 88.3781%, 
21.8529% and 3.5632% respectively. 

In short, the proposed TSDE is an effective algorithm, 
and it outperforms the other methods in literature for 
reliability optimization problems. 

V.  CONCLUSION 

In this paper, we proposed a hybrid TS-DE algorithm 
to solve the reliability redundancy optimization problems. 
The proposed approach benefits from advantages of both 
Tabu search algorithm and differential evolution 
algorithm. The adaptive parameters F and CR in DE 
make the algorithm have higher exploration capability of 
solution space. Simulation experiments based on three 
benchmark problems and compared with some algorithms 
in the literature. The results showed that the TS-DE 
algorithm was effective, efficient and performed better 
than the other methods in the literature. The future work 

is to apply it to solve other more complex mixed-integer 
programming problems. 
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