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Abstract: Herein, a new identity recognition method of
multi-haptic  pressure  feature based on sparse
representation was investigated. According to the common
dynamic features, the regional feature and the ratio of
length vs. width of external bounding rectangle (extracted
by using the least area method) were extracted. The subset
of dynamic feature was optimized by correlation criterion,
the sparse representation of haptic pressure was obtained
according to the sparse basis (i.e., wavelet basis), and the
sparse feature vector was calculated by the Topelitz
measurement matrix. After that, the haptic pressure feature
set was created by combining dynamic feature subset and
sparse feature subset linearly. Furthermore, Support Vector
Machine (SVM) classifier identified more than two objects
following the one to many rule and output the identification
result according to the rule of majority voting, and the
stability of features is studied by calculating the intraclass
correlation coefficient (ICC) and coefficient of variation
(C.V). Overall, the improved acuracy of identity recognition
demonstrating the effectiveness and stability of the multi-
haptic pressure feature.

Keywords: dynamic feature, sparse representation,
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1. INTRODUCTION

Biometric features, such as fingerprint and facial
characteristic, have attracted growing interests and have
been widely used for inherent physiology. As a branch of
biometrics, haptic pressure has been used for motion
measurement, medical rehabilitation, and disease
diagnosis [1,2]. Biometrics research efforts have indicated
that the information of haptic pressure is unique and
repetitive, demonstrating the effectiveness and stability for
identity recognition and footprint tracking[3,4]. In the past
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several years, simple haptic pressure dynamic features
have been used to detect diabetic foot; it has also been
studied for security systems in special occasions/locations,
such as airports and customs [5]. The platform system,
developed by Intelligent Machines Institute of the Chinese
Academy of Sciences, has been typically adopted to
collect the common haptic pressure features such as the
maximum pressure, contact area, mean pressure, pressure
center, and the geometric center line [6,7].

In this study, according to the characteristics of haptic
pressure, a new identity recognition method of multi-
haptic pressure feature based on sparse representation
(MHPF-RS) was investigated. During the study, the
whole foot was divided into five regions. Based on the
common dynamic features the regional features were
extracted, and the ratio of length vs. width of external
bounding rectangle was acquired by using the least area
method. Subset of dynamic features was optimized by
correlation criterion. The sparse representation of haptic
pressure was then obtained according to the sparse basis
(i.e., wavelet basis). Thereafter, sparse feature vector was
calculated by the Topelitz measurement matrix, and the
haptic pressure feature set was obtained by combining
optimized dynamic feature subset and sparse feature
subset. Furthermore, Support Vector Machine (SVM)
classifier identified more than two objects following the
one to many rule and output the identification result
according to the rule of majority voting. The stability of
identity recognition was further studied by calculating the
intraclass correlation coefficient (ICC) and coefficient of
variation (C.V). The results indicated that the accuracy of
identity recognition of MHPF-RS was improved,
demonstrating the effectiveness and stability of the multi-
haptic pressure feature.



2036

2. HAPTIC PRESSURE COLLECTION

Figure 1. Photo-image showing one platform.

The platform system [6] for collection of haptic
pressure was provided by the Key Laboratory of
Biomimetic Sensing and Advanced Robot Technology of
Intelligent Machines Institute of the Chinese Academy of
Sciences. The platform system consists of 25 individual
platforms, while each platform includes 2400

piezoresistive sensors with the size being 40 x 60 cm (Fig.

1). The measuring pressure range, sampling frequency,
and measurement error of this platform are 10~900 kPa,
100 Hz, and 8%, respectively. Ten individuals (five males
and five females, who are staff members or students in
the Key Laboratory of Intelligent Computing & Signal
Processing with the average age of 23.4 years)
participated in this study. All of the individuals granted
the permission to be tested, and they could move freely
during the testing time. Sample data were collected under
normal walking speed. Fig. 2 depicts the entire stage
during one step: the heel landed first, the entire foot then
landed with maximum pressure, and the toes landed at the
end. As shown in Fig. 2, the pressure values could be
represented by different colors; for example, red color
marked with “a” represented pressure values in the range
of 84-90 kPa.

3. FEATURE SET OF HAPTIC PRESSURE
3.1 Subset of Dynamic Feature

At present, these are many common dynamic haptic
pressure features available, such as maximum pressure,
total pressure value, average pressure, contact area, center
of pressure, geometric center line, pressure change rate,
and single contact time which are calculated according to
table 1[6, 7]. As mentioned in previous research, in order
to solve the repeated problems of plantar pressure
distribution in a normal population through the peak
pressure, the maximum pressure point, the contact time,
and the whole foot should be divided into ten regions [8].
On the other hand, in order to study the obesity influence
of children and the adolescent in walking process through
the dynamic plantar pressure distribution, the whole foot
could be divided into five regions (i.e. big toe, 2-5toes,
forefoot, arch, and heel) [9].
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TABLE 1

CALCULATION FORMULA OF COMMON DYNAMIC FEATURE

Common Dynamic

Calculation formula
Feature

— i is an integer,
. re,.. =max{pre,
Maximum pressure Plem = 17 tpre}

i=1,2,...n

n
Total pressure pre,,, = Zprei
i=1

Contact area

n

—qk 1

Acomacl =a zl
i=1

n

preaverage = Zprei /Acomact

i=1

X, =3 (X, *pre,) /Y pre,

i=1 i=1
Y=Y (Y *pre)) 3 pre,
i=1 i=1

Geometric center line is the
broken line which is formed by

pre,.,pre, ,---pre,,. , being the

Average pressure

Center of pressure

Geometric center line
center of every row.

d\ pre.
Pressure change rate pre, = %
T is the time from heel langding

Single contact time contact

to toes leaving ground.

In this study, according to the related biometrics and
the spatial resolution of equipment, the whole foot was
divided into five regions (A1-AS5) along the longitudinal
axis of haptic pressure. The region of A1, A2, A3, A4, and
A5 are heel, arch, forefoot, big toe, and 2-5 toes with
relative contact area at 33%, 17%, 33%, 8.5%, and 8.5%,
respectively. For each region, the dynamic feature subset
was created by the regional feature, the ratio of length vs.
width of external bounding rectangle, and the common
dynamic haptic pressure feature. As shown in equation (1),
the Fui, Fr, and Fps are common dynamic features,
regional features, and ratio of length to width, respectively.
According to haptic pressure information, although
pressure value was unstable, haptic pressure distribution
was still relatively stable. So the regional feature of haptic
pressure (mainly discussing the relation between regional
pressure and whole pressure) was discussed in equation
(2), where Fi(k) was the ratio of the k-th region pressure
vs. total pressure, and pre; was the pressure of each region,
when it is greater than 2 kPa.

Fh=(Fh1’Fh2’Fhs) 6]
D pre (2

F, (k) ZSML subject topre 22KPa k=1,---5

X e

KT praed,

The ratio of length vs. width feature was extracted
since it is one of the most stable features in haptic pressure
[10]. During walking, the axis cannot always keep
horizontal or vertical, thus, the ratio of length vs. width of
external bounding rectangle was extracted using the least
area method[11].
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Figure 2. Entire stage of one step for haptic pressure

Below is the procedure to acquire the ratio of length vs.

width:

(1) Selected centroid as the coordinate origin and main
axis as the x axis.

(2) Rotated 5° per time (180° in total) to acquire the
minimum area of bounding rectangle.

(3) Calculated the ratio of length vs. width of external
bounding rectangle to obtain the Fjs.

3.2 Subset of Sparse Feature

Traditional approach for reconstructing images from
measured data follows the well-known Shannon sampling
theorem, in which the sampling rate must be at least twice
as the highest frequency. The fundamental theorem of
linear algebra also requires that the number of collected
samples of discrete finite-dimensional signal should be at
least as large as its length to ensure reconstruction.
However, compressed sensing is a new type of sampling
theory, which can predicts sparse signals and images
reconstructed from incomplete information.

Based on the compressed sensing theory, if a vector /
is K-sparse, it is possible to recover / from y. As shown in

equation (3), ® € C™* " is the measurement matrix, while

the vector y e C™ is measurement vector. The main
interest is vast under the sampled case of m << N .

y=oI 3)

According to statistics, many signals and images are

not sparse in nature. However, at some suitable basis, its

sparse representation could be obtained. In other words,

the non-zero sparse could be acquired. Hence, the sparse
representation of / can be obtained by equation (4). Where

IeC" is the normal signal of haptic pressure,
YeC"*" is a sparse basis, and x is a sparse
coefficient.

I=¥x “4)
Then the whole measuring process is y = ®¥x , and

signal can be recovered by equation (5).

rnin”s”1 subject to OWs=y 5)

Based on the sparse representation theory, the wavelet
basis is a sparse basis. Thus, in this study, the sparse
representation of haptic pressure is represented by wavelet
basis.

The null space property (NSP) is difficult to express
directly, while the restricted isometry property (RIP) is
easier to handle and present[12]. If a matrix satisfies the
conditions of RIP, then the sub-matrices (maximum
column k) are the complete conditions. Gaussian,
Bernoulli, and some deterministic matrices can satisfy the
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condition of RIP. Thus the Gauss, Bernoulli, and Topelitz
matrices were usually chosen as the measurement matrices
(shown in equation (6) and (7), respectively).

In theory, a random matrix (e.g., the Gauss matrix and
Bernoulli matrix) has the best random results. However,
for the Gaussian/Bernoulli distribution, the free elements
of Gauss/Bernoulli matrix (&(MxN) with a; ; ~N (0,1)) are
both MxN, which is very high and should increase the
data storage amount and cause the delay of real-time
recognition. The deterministic matrix has been repeatedly
reported in literatures [13-17]; the Topelitz matrix, as one
of the deterministic matrices, has the free elements merely
at N+M-1, which is much smaller than that of the
Bernoulli matrix and Gauss matrix. Therefore, the
Topelitz matrix was used for the measurement matrix in
this study.

ay ap -t Gy
| Gu Aptt Gy 6
wGums or Bemoulli — . . ( )
Ay Ayp Ay
ay Ay q,
_| 9wn ay - a9 7
wmpelitz - : : . ( )
Ay Avem2" 9y

In corresponding to various test measurement matrices,
there are several algorithms to recover the signal, such as
matching pursuit (MP)[18], orthogonal matching pursuit
(OMP)[19], Improved Backward Optimized Orthogonal
Matching PursuittMBOOMP)[20], regularized orthogonal
matching pursuittROMP)[21], stagewise orthogonal
matching pursuit(STOMP)[22], iterative hard
thresholding (IHT)[23], compressive sampling matching
pursuit (CoSaMP)[24] , subspace pursuit (SP)[25], efc. In
this study, the SP was used to recover the signal since it
has a good performance in reconstruction of probability
and speed.

To facilitate the analysis, one-dimensional signal from
haptic pressure was recovered based on the compressed
sensing theory (the length of signal N was set as 256). The
correlation between measurement times (or sparsity K)
and the success rate of recovery were discussed in the
following experiments.
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TABLE 2

SUCCESS RATE VERSUS MEASUREMENT TIMES

Measurement
matrix | Bernoulli Gaussian Topelitz
Measure- matrix matrix matrix
ment times
50 1 0 0
55 2 2 1
60 5 6 8
65 20 19 27
70 43 40 51
75 82 77 80
80 87 90 93
85 97 99 98
90 99 100 100
95 100 100 100
100 100 100 100
TABLE 3
SUCCESS RATE VERSUS SPARSITY K
Measurrenn;fr?)t( Bernoulli Gaussian Topelitz
. matrix matrix matrix
Sparsity K

20 100 100 100

25 100 100 100

30 84 86 90

35 42 37 38

40 8 7 8

45 0 0 0

50 0 0 0

The correlation of measurement times on the success
rate of recovery was studied in the first experiment
(sparsity K was set at 30). As shown in Table2 , the
measurement times increased from 50 to 100 steps with a
5 steps interval, and the success rate of recovery based on
the Bernoulli matrix, Gauss matrix, and Topelitz matrix
improved with the increase of measurement times. Note
that the success rate of Topelitz matrix was slightly higher
than that of Bernoulli matrix and Gauss matrix, while the
free element of Topelitz matrix was the least. In the
second experiment (Table3), the measurement times (M)
was set at 128, the success rate of recovery decreased
when the sparsity K increased from 20 to 50. According to
results from the above experiments, the Topelitz matrix
was selected as the measurement matrix in the subsequent
study, since it has the least free element and the highest
success rate.
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3.3 Dynamic Feature Optimization

Feature optimization is to choose some independent
and reliable features from the numerous features, and it is
an important step during the selecting parameters, which
could directly affect the stability and unique of feature set.

The feature selection process consists of two steps,
namely feature subset evaluation and feature subset
search. Feature subset search process can be obtained
through an optimal feature subset from the numerous
feature subsets, which has the best evaluation function
value of feature subset by using one of three search
methods, such as exhaustive search, heuristic search and
random search. From the point of view of the evaluation
function, feature selection can be divided into five
criterions, such as correlation measure, instance measure,
information measure, consistency measure, and
classification error rate [26]. In this study, by evaluating
the feature subset evaluation function and saving all
evaluated subsets, feature subset search was sequenced
the feature subset in descending order according to its
performance. And dynamic feature subset was optimized
by correlation criterionAnd below is the procedure for
feature optimization:

(1) Pre-treated the haptic pressure by denoising and
removing the maximum pressure frame and two adjacent
frames.
(2) Extracted the dynamic feature subset (7).

2a) Calculated the dynamic feature subsets (F;; and
Fi2) according to feature definition.

2b) Calculated the ratio of length vs. width of external
bounding rectangle by using the least area method.
(3) Optimized the feature

(3.1) Calculated each feature (fr) and the U(frn, Fn)
according to the dynamic feature subsets (F}), as shown in

(8).

(S, F) =20 21Uu) + EntE) = En(f,, )

En(f,)+ En(F,)
Where En(f,;) =—p(f,;)10g, p(,) and

En(F,) = —z p(f,)1og, p(f,) are entropy function;
j=1

®)

En(f,.F,)= —Z P(Js Fy)1og, p(f» 1) is the joint
=

entropy.
(3.2) Calculated the correlated evaluation function (Hy)
of Fj, according to equation (9).

YU F)

H =
XUty )

(3.3) Obtained a new feature subset F}' according to
the descending order of U(f, F), dropped a feature with
the smallest correlation, and calculated the evaluation
function H," again. If H," > H,, the process should be
repeated until no more decrease. The optimal

subset F, =(f, - f,) was created by the remained

dynamic features.
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Figure 3. Block diagram of identity recognition
4. RESULT

For identity recognition, 90 samples per individual
were collected among 15 steps, which included 45 left
foot data and 45 right foot data. The data with the highest
pressure value and two adjacent frame data were chosen,
and the size of each frame was 32 x 64 pixel. The block
diagram of identity recognition was shown in Fig. 3.

Firstly, samples of training set were denoised by sub-
regional threshold. Then, common dynamic features,
regional feature, and ratio of length vs. width of external
bounding rectangle were extracted, which formed the
dynamic feature subset. Meanwhile, the gray image of
haptic pressure was obtained. Sparse representation of
haptic pressure was acquired based on the wavelet basis,
I =%¥x , where ¥ is wavelet basis. The sparse feature
vector F, is obtained by using the Topelitz matrix as
measurement matrix (i.e. F» = Dropei- ). The dynamic
feature subset was optimized by correlation criterion, Fo
and F, form feature set of haptic pressure, where F,; was
optimized feature subset. The classifier SVM followed the
one to many rule to classify more than two objects. After
that, the model of identity recognition based on MHPF-RS
was obtained. Samples of test set were then input into the
model, where F was extracted on the same measurement
matrix. Thereafter, the SVM classifier output the
identification result according to the rule of majority
voting.

Different kernel functions have a certain effect on
classification performance of SVM classifier. As we know,
there are three commonly used kernel functions,
Polynomial, Gaussian RBF, and Sigmoid. Polynomial
kernel and Gauss RBF needs less input parameters. For
the nonlinear classification, Gauss RBF is the best choice
[27] and its application effect is very good in cancer
classification and gait recognition [28, 29].

Meanwhile penalty factor C and kernel function
parameter y selection also have a certain influence on
classification performance of SVM classifier. The penalty
factor C not only controls punishment degree of
misclassified samples, but also determines complexity and
generalization ability of model. The kernel function
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parameter y determines the mapping feature space
(dimension), thus affecting the minimum empirical error
of classification. According to the experiment result,
Gaussian RBF has been eventually selected in this study,
and at the same time penalty factor C and kernel function
parameter v are 10, 4 respectively.
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Figure 4. The curve of dynamic feature

The dynamic feature (i.e. ratio of length vs. width) was
studied in the first experiment. During the study, eight
curves for each individual object were acquired according
to the haptic pressure, and each curve contained 30 data at
different sampling time (each data is the average of 20
frames); meanwhile, the ratio of length vs. width of
external bounding rectangle were acquired by the least
area method. As shown in Fig. 4; the average feature value
fluctuated up and down within the range of 4.36%, while
eight curves are easy to distinguish.

For the second experiment, the regional features of
forefoot and heel were studied and shown in Fig.5a and 5b,
respectively. The results indicated that the regional
features fluctuated barely, while eight curves are easy to
identify.
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Figure 5. (a) The curve of the regional feature of forefoot. (b) The curve
of the regional feature of heel

In order to further discuss the stability and
repeatability of features, intraclass correlation coefficient
(ICC) and coefficient of variation (C.V) were calculated.
ICC, as shown in equation (10), is one of the index to
evaluate the reliability and repeatability of object [30].
According to the ICC standard, [0, 0.4] shows poor
reliability and [0.75, 1] shows the good reliability [31].
The ICC of 8 objects were summarized in table4, where
F,, is the ratio of length vs. width, and fn2(1) — fr2(5) are
regional features of region 1-5. It shows in table4 that, the
confidence of F, has the best average value at 0.9798,

while, the fn2(1) and fr2(3) also maintained good
confidence, however, a few confidences of f12(2), fr2(4),
and f52(5) are quite low.

2> (x, = x)(x;, —X)
1CC=—H

Z(xl.1 —x) +i(x,.2 —x)

standard deviation

, xis average (10)

CV=

*100% (11)
average

Furthermore, as demonstrated in equation (11), C.V
could be used to measure the variation degree of sample,
which eliminates the influence of sample units and the
average value. As shown in table5, the result of C.V is
consistent with that of ICC, in which the C.V of fi2(2),
fr2(4), and f2(5) are high, and the highest C.V happening
in fn2(5) reached up to 116.83%, while the C.V of other
feature is lower than 10%. Note that f52(2), fr2(4), and
fn2(5) are the features of big toe, 2-5toes, and arch,
respectively. In these three regions, haptic pressure and
contact area are small and easily affected by
environmental and standing posture, thus, the coefficient
of variation is high for different measures. And ref [10]
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has been also described that the heel and the forefoot
regions are the highest stability, which bear most of haptic
pressure value.

TABLE 4

THE INTRACLASS CORRELATION COEFFICIENT OF 8 OBJECTS

Numb | f,,() | £,,(2D)| [,,0B)| f..(BD| [f,.(5) F,
er A
1| 09996 | 0.9722 | 09964 | 0.9201 | 0.9987 | 1.0000

2 09730 | 09976 | 0.9870 | 09569 | 0.9913 | 0.9702
3| 1.0000 | 0.9328 | 0.9918 | 0.9893 | 0.9957 | 1.0000
4 | 09499 | 0.9064 | 0.9506 | 0.5940 | 0.9983 | 0.8980
5| 09308 | 09997 | 09997 | 09999 | 0.9998 | 1.0000
6 | 0.9648 | 0.9998 | 0.8958 | 0.8101 | 0.8185 | 1.0000
7| 08777 | 0.6725 | 07645 | 0.7740 | 07112 | 0.9702
8 | 09517 | 09998 | 09433 | 09728 | 09855 | 1.0000

TABLE 5
COEFFICIENT OF VARIATION OF 8 OBJECTS

CV (%)

Numb | f,,(D) | f,,(D)] [,,B) f,.(4)]| f,.(5) F,
er s
1 157 | 388 | 122 | sd0 | 9623 | THOF
2 | 068 | 1465 | 159 | 904 | 3826 | 29
3| 303 | 272 | 351 | 600 | 11683 | 456
4 | 220 | 2782 | 119 | 404 | 421 | 158
s | 072 | s34 | 933 | 2598 | 2488 | 181
6 | 125 | 129 | 146 | 365 | 604 0
7 | 610 | 393 | 409 | 1413 | 840 | 174
8 | 078 | 222 | 050 | 148 | 235 | MNOVE

For the third experiment, four algorithms by using
different feature set were compared, which included
common dynamic feature, multi-dynamic feature, multi-
dynamic feature after correction, and multi-haptic
pressure feature based on sparse representation. For all
algorithms, the SVM classifier followed the one to many
rule. Among 450 samples of left foot (45 samples x 10
objects), 60% samples for each object were randomly
selected as training samples to establish the model of
identity recognition, while the rest samples were used as
test samples. Accuracy is average of 50 tests repeating 3
times. Table6 shows the results of accuracy based on four
different algorithms, it is evident that the algorithm using
MHPF-SR has the average accuracy up to 96.81% among
those 4 algorithms.
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TABLE 6

THE ACCURACY OF ALGORITHMS USING DIFFERENT FEATURE SETS

Feature set Accuracy (%) Number of
error
Common dynamic 211 | 7200 | 644a | 55 1 50 | ea
feature
Multi dynamic feature 67.56 | 63.56 | 71.11 | 58 | 66 | 52
Multi dynamic feature | ¢ o | ¢- 11 | geg0 | 24 | 23 | 20
after correction
Multi haptic pressure o556 | 9843 | 9644 | 3 5 .

feature

5. CONCLUSION

In this study, a new identity recognition method of
multi-haptic  pressure  feature based on sparse
representation was investigated according to the common
dynamic features such as regional feature and the ratio of
length vs. width of external bounding rectangle (extracted
by using the least area method). The subset of dynamic
feature was optimized by correlation criterion, the sparse
representation of haptic pressure was obtained according
to the sparse basis, and the sparse feature vector was
calculated by the Topelitz measurement matrix. Then, the
haptic pressure feature set was obtained by combining
optimized dynamic feature subset and sparse feature
subset. Furthermore, SVM classifier was used and the
identification result was yielded according to the rule of
majority voting. The results of ICC and C.V evidenced the
stability of features, while the highest accuracy of identity
recognition based on MHPF-RS exceeded 98.43%,
demonstrating effectiveness and stability of the algorithm.
The future research will investigate feature set which will
be obtained by using different combining method.

ACKNOWLEDGEMENTS

We will appreciate valuable comments on an earlier
version of this paper from the anonymous referees.We
also express our thanks to Professor Yi-ning Sun for
valuable guidance and helpful discussions. Helpful
discussions with Professor Fong is also acknowledged.
This work was partly supported by the National Natural
Science Foundation of China(Grants No.: 61172127 and
61201127); the Doctoral Program of Higher Education
(Project No.: 20113401110006), and the Youth Research
Project of Anhui University (Project No.: KIQN1107).

REFERENCES

[1]1 D..Surdilovic, Z. Jinyu. Gait phase and centre of pressure
measuring system [J]. Industrial Informatics, 2004 2nd
IEEE International Conference, INDIN, 2004, 331-334.

[21 P.R.Cavanagh, J.S.Ulbrecht, G.M Caputo. New
developments in the biomechanics of the diabetic foot.
Diab Metab Res Rev 2000;16:S6-10.

[31 D. L. Edward, B. Ajoy. Plantar pressure parameters for
dynamic gait stability analysis [J]. Engineering in Medicine

©2014 ACADEMY PUBLISHER

(4]

(5]

(6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

2041

and Biology Society. EMBS '06. 28th Annual International
Conference of the IEEE, 2006, 4465-4468.

A. B. Putti, G. P. Arnold, L. A. Cochrane, R. J. Abboud.
Normal pressure values and repeatability of the Emed ST4
system[J]. Gait Posture, 2008, 27(3), 501-505.

A. Ramanathan, G. Fadel, A. Jain, R. Abboud. Press-fit
ceramic  implant  arthroplasty = of the  Hallux
Metatarsophalangeal joint-evaluation of outcomes[J]. Foot,
2008, 18, 34-39.

S. Xu, X. Zhou, Y. Sun. A genetic algorithm-based feature
selection method for human identification based on ground
reaction force[J]. Proc of the 1st ACM/SIGEVO Summit
on Genetic and Evolutionary Computation, Shanghai,
China, 2009, 665-670.

ZM.Yao. Gait recognition based on haptic force
information[D]. Hefei, University of Science &
Technology of China, 2010, 91-98 (in Chinese).

J. K. Gurney, U. G. Kersting, D. Rosenbaum. Between-day
reliability of repeated plantar pressure distribution
measurements in a normal population[J]. Gait Posture,
2008, 27, 706-709.

S. H. Hua, Yan, K. Zhang, G. Q. Tan, J. Yang, Z. C. Liu.
Effects of obesity on dynamic plantar pressure distribution
in Chinese prepubescent children during walking [J]. Gait
& Posture, 2013, 37(1), 37-42.

B. Kerstin, G. Joachim. Preliminary normative values for
foot loading parameters of the developing child [J]. Gait &
Posture, 2007, 26(2), 238-247.

C.G. Rafael, E.W. Richard. Digital image processing,

Third Edition[M]. Beijing, Publishing house of electromcs
industry, 2010, 801-861.

E.J. Candés and T. Tao. Decoding by linear
programming[J]. IEEE Trans. Inform. Theory 51 (2005),
4203-4215.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, R. D.
Nowak. Toeplitz-structured compressed sensing
matrices[J]. Proceedings of the 2007 IEEE/SP 14th
Workshop on Statistical Signal Processing, 2007, 294-298.

H. Rauhut. Circulant and Toeplitz matrices in compressed
sensing[R]. Proc. SPARS’09, 2009,
http://arxiv.org/abs/0902.4394.

R. Devore. Deterministic constructions of compressed
sensing matrices[J]. Journal of Complexity, 2007, 23, 918-
925.

J. Haupt, W. U. Bajwa, G. Raz, R. Nowak. Toeplitz
compressed sensing matrices with application to sparse
channel estimation[J]. IEEE Transactions on Information
Theory, 2010, 56(11), 5862-5875.

K. Wang, Y. Liu, J. Zhang. RIP analysis for quasi-Toeplitz
CS matrices[J]. 2010 International Conference on Future
Information Technology and Management Engineering
(FITME), 2010, 2, 9-10.

S. Mallat and Z. Zhang. Matching pursuit in a time-
frequency dictionary[J]. IEEE Trans Singal Processing,
1993, 41(12), 3397-3415.

J . Tropp , A. Gilbert . Signal recovery from ran dom
measurement s via ort hogonal matching pursuit [ J ] .
IEEE Trans. Inform. Theory , 2007, 53 (12) , 4655-4666

F.Hong, Z.Quanbing, W.Sui. Image Reconstruction Based
on Improved Backward Optimized Orthogonal Matching
Pursuit Algorithm[J]. Journal of South China University of
Technology, 2008,36 (8) ,23-27(in Chinese).



2042

(21]

[22]

(23]

[26]

[27

—

[29

—

[30]

(311

D. Needell , Vershynin R. Uniform uncertainty principle
and signal recovery via regularized orthogonal matching
pursuit [ J ] . Found. Comput . Math, 2009 ,9 (3) : 317-334.

D. L. Donoho, I. Drori, Y. Tsaig, and J. L. Starck. Sparse
solution of underdetermined linear equations by stagewise
orthogonal matching pursuit{R]. Technical Report,
Stanford Univer sity, 2006.

T.Blumensath and M.Davies. Iterative hard thresholding
for compressed sensing[J]. Appl. Comput. Harmon. Anal.,
2009, 27(3): 265-274.

D. Needell and J. A. Tropp. CoSaMP: Iterative signal
recovery from incomplete and inaccurate samples[J].
Appl.AndComp.Harm.Anal, 2009, 26(3):301-321.

W. Dai and O. Milenkovic. Subspace pursuit for
compressive sensing signal reconstruction [J]. IEEE Trans.
Inform. Theory, 2009, 55(5): 2230-2249.

M .Dash, Liu H. Feature selection for classification[J].
Intelligent Data Analysis, 1997.1(3):131-156.

C.Burges A tutorial on support vector machines for pattern
recognition[J]. Data Mining and Knowledge Discovery,
1998, 2(2): 121-167.

S. Moustakidis, Theocharis J, Giakas G. Subject
Recognition Based on Ground Reaction Force
Measurements of Gait Signals[J]. IEEE transactions on
systems, man, and cybernetics Part B, Cybernetics: a
publication of the IEEE Systems, Man, and Cybernetics
Society, 1998. 38(6):1476.

S.Wang, J.Wang, H .Chen, S .Li. Feature extraction and
classification of tumor based on wavelet package and
support vector machines[J]. Advances in Knowledge
Discovery and Data Mining, 2007.871-878.

J .Bartko. The intraclass correlation coefficient as a
measure of reliability [J]. Psychological reports, 1966,
19(1), 3-11.

B. Bilney, M. Morris, K .Webster. Concurrent related
validity of the GAITRite(R) walkway, system for
quantification of the spatial and temporal parameters of
gait [J]. Gait & Posture, 2003, 17(1), 68-74.

©2014 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

YanZhang was born in 1982 from XuanChen, received M.SC.
in 2003. Now she is Ph.D candidate in Anhui University. Her
research field includes image processing, pattern recognition,

etc. E-mail: zhangyaner2005@163.com.

DongLiang was born in 1963 from HeFei, received M.SC. in
1990 and Ph.D. in 2002, from Anhui University China. Now he
is a professor and doctoral supervisior in Anhui University. His
research field includes image processing, computer signal
processing, pattern recognition, etc. E-mail: dliang@ahu.edu.cn.
Telephone:+86- 0551-63861275.





