
MCBS: Matrix Computation Based Simulator of
NDN

Xiaoke Jiang, Jun Bi, You Wang

Institute for Network Sciences and Cyberspace, Tsinghua University
Department of Computer Science and Technology, Tsinghua University
Tsinghua National Laboratory for Information Science and Technology

Email:{jiangxk10, wangyou10}@mails.tsinghua.edu.cn, junbi@tsinghua.edu.cn

Abstract—This paper presents a lightweight matrix
computation-based simulator of Named Data Networking
(NDN). This simulator treats the experiment network as a
whole. Matrix is used to describe network states, and matrix
operation is used to simulate different network events. The
simulator, just like Newtonian mechanics to some extend,
once given the system initial state, including routing table,
content distribution, and initial data requesting information
of NDN network, can figure out all of the subsequent
network state based on matrix computation.

This simulator splits packet process into different events,
such as interest generating, interest forwarding, cache or
content hitting and transmitting, and turns them into matrix
computation on the network scale.

One of advantages of the simulator is convenient and
user-friendly compared to CCNx Project and NS-3 based
simulator.

And they can provide similar simulation result. This
simulatorcan works on different platform, including Linux,
mac OSX and Windows.

Computational complexity of the simulator depends on
number of involved contents and nodes, which makes
analysis between small group of nodes and contents very
simple and fast.

Index Terms—NDN, CCN, Simulator

I. INTRODUCTION

Named Data Network (NDN) [1] or Content-Centric
Network (CCN) [2], as one of most promising future
Internet architecture propose, has drawn a lot of
attentions among the research community. NDN
introduces some new elements into Layer-3 design, such
as named content, cacheable router, and stateful data
plane. Those new elements change data transmission
pattern from sending data to specific destination with
end-to-end pipeline, to retrieving specific data within a
unified content bucket.

 There is lots of progress in the implementation of
NDN. The most famous implementations are CCNx
Project and ndnSIM. The former is the official prototype

of NDN built by PARC and the latter is the NS-3 based
simulator developed by UCLA. However, CCNx Project
is complex and is not easy for users to configure and run
the experiment scenario. It is even harder to modify the C
code to implement the users’ own innovation on NDN.
That’s why we propose a the matrix computation based
simulator of NDN as a alternative tool apart from
ndnSIM.

In this paper, we build a user-friendly and light-
weighted NDN simulator based on matrix computation.
This simulator can run on multiple platforms, including
Linux, Mac OSX, and Windows, since it relies on
MatLab to execute the corresponding code. Compared to
our previous work[3], this paper simplifies the core
algorithm and clarifies the rationalities which stands
behind the matrix computation. As a consequence, the
new algorithm is easier to understand and finishes the
simulation with less time. We also update latest progress
on related NDN prototype and simulators.

II. RELATED WORKS

NDN [1] named very content chunk, instead of every
host on Layer-3. There are two kinds of datagrams in
NDN: Interest and Data, both of which contain the name
of content chunk. NDN adopts a pull model to retrieve
contents and completely abandons the way of the
traditional end-to-end pipeline. The application that needs
specific data is called consumer, and the application that
originally provides specific data is called producer. As the
way to expressing its needs, consumer sends an Interest
contained corresponding name; On the other side,
producer announce the name prefix of the data it provides
into the routing system. NDN Routers forwards Interest
according to the name until the Interest meets a Data that
contain the same name. During the process, applications
request and/or provides data by announcing their names;
NDN routers forward and/or aggregate Interests by name,
Interest-Data is matched by name, and cached Data is
indexed by names.

The most famous and official implementation of NDN
is CCNx Project [4] lead by Van Jacobson, who is also
the author who propose CCN. They also support NDN on
the Open Network Lab (ONL), which contains 14
programmable routers over 100 client nodes. Every node
and router runs CCNx Project NDN implementation.

Manuscript received January 9, 2014; revised June 2, 2014; accepted
July 3, 2014.

Supported by the National High-tech R&D Program (“863”
Program) of China (No.2013AA010605), Jun Bi is the corresponding
author of this paper.

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014 2007

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.9.2007-2012

Urbani[5] et al. took a completely different approach.
They provide support of Direct code Execution (DCE) for
CCNx Project NDN implementation inside NS-3
simulator.

Mini-CCNx[6] adopts container-based emulation and
resource isolation techniques to enable hundreds of
emulated NDN nodes in a commodity laptop. And the
best advantage is that the code you run on Mini-CCNx is
the same code which you’ll use in a real network. This
really adds a realistic behavior to the tests.

CCNx Project is the most official and standard
implementation of NDN in C. But It’s quit complicated
and very hard to modify existing code or add new module.
Or we can say it’s a standard implementation of NDN
with specified and official NDN architecture and
mechanism, but it’s not a good choice as a simulator to
verify new mechanism, which should be scalable and
easy to modify and add new modules.

Rossi and Rossini[7] implemented ccnSim to evaluate
caching performance of NDN, ccnSim is written in C++
under Omnet++ framework. Muscariello and Gallo[8]
from Orange Labs also implemented an NDN simulator,
called Content Centric Networking Packet level
Simulator (CCNPL-Sim). CCNPL-Sim is based on SSim
which implements a simple discrete-event simulator. But
ccnSim focuses on caching policy and performance, thus
other parts, such as Content Store, Forwarding and
routing, are implemented with simplest and unsalable
way.

ndnSIM[9] is another NS-3 based NDN
implementation led by Lixia Zhang. As a simulator, It’s
quite convenient to add new modules or improve existing
modules. It also packed with different cache updating
policies and forwarding strategies ndnSIM is now a
popular tool among ICN research community. We also
implemented a NS-3 based NDN implementation, which
is similar with ndnSIM but focus on NDN protocol itself

III. METHODOLOGY

Our simulator does not simulate behavior of individual
nodes, instead, we treat the network as a whole. Data set
and node set are the two primary entities. Then we use
matrix to describe the network states, such as the
relationship between data and nodes: a specific data is
possibly requested, cached or originally provided by a
specific node. And matrix operation is used to simulate
packet processing, such as forwarding Interest and cached
data hit.

A. Entities
Matrix is employed to describe the network states.

There are 2 types of matrix: type A and type B. And
Matrix F, P and S describe the FIB, PIT and Content
Store respectively. Matrix A describes the contents
producer by the host applications and Matrix R describes
the request status. Among those matrix, F and P are type
B, the others are type A. We list those entities in Table I

We give more explanations here:
• C: content set, for example, {c1, c2} � C, and m =

|C|
• V: host (node) set, for example, {v1, v2, v3, v4} �

V , and n = |V |
�• E: edge set, for example, {e1, e2} � E.�And

physical NDN network can be described with G
=<V,E,C>.�

Schema Type A Matrix is shown in Figure 1 and Type
B Matrix is shown in Figure 2.

Type B: There are also some user defined matrix
operations

• A B, is operation between type A Matrix and

type B Matrix. Let T = R F, is element of matrix T
at row i column j, then

Or, as result shown in Figure 3.

• A A or A B. let T =H S, then

Or, as shown in Figure 4

When S is type B matrix, the computation rule is the
same with the above, but change to be a row vector.

2008 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

• A B Let T = R F , then

B. Algorithm
The algorithm is described here in Algorithm 1.
Note that, operator “|” is matrix xor. Let T = S|A, then

And operator “+” is matrix addition, let T = F + P, then,

matrix xor and matrix addition are both supported over

Mat- Lab platform.
The algorithm is implemented on MatLab platform.

What’s more, cache_update function is implemented with

Least Frequently Used (LFU) and Least Recently Used
(LRU), and interest_generate function is implemented
with zipf distribution

IV. SIMULATION

Our simulator is kind of discrete events system, it
resolves all the NDN handling process to different events
then arranges events step by step. We also implement
NDN on NS3 platform and compare the result of NS3
based simulator and matrix computation based simulator.
In next section, we will compare the result.

In the simulation, the topology is a real intra-AS
network shown in Figure 5. We assume that there are 5
content producers and one content consumer under each
router. There are 10000 contents in total, which are
distributed equally among the producers. Cache size is
1% of the whole contents amount, which is 100, and
cache updating policy here is LRU. We use a real intra-
AS network as the topology for simulation, as shown in
Figure 5, which includes 21 routers numbered from 1 to
21. There are 5 content producers who connect to the
network with router 2, 6, 10, 12 and 16 respectively. The
mobile, a moving Producer, is producer connecting with
router 12. There is one content consumer connecting each

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014 2009

© 2014 ACADEMY PUBLISHER

router, which is representative of all the end hosts
connecting to that router. There are 10000 contents
numbered from 0 to 9999. Contents are distributed
equally among the producers. We expect the ICN traffic
model has the same features as those of the web traffic
model which prior studies have exhibited. [10]. shows
that the request rates of HTTP objects follows the Zipf-
like distribution. The probability of each consumer to
request the ith content is P(i). P(i) follows Pareto-Zipf
distribution :

Ω is the normalization constant, making:

Here α and q are 0.7, i�[0,9999].�
Each consumer requests the contents according to the

requesting probability above. We treat 1000 continuous
request sequences as one "turn". Note that default cache
settings are that cache size is 100 contents, which is 1%
of all the contents and cache updating policy is Least
Recently Used (LRU).

We also define two index to describe performance of
NDN network. one is Average Reply Hops, which is
average distance from other original content consumer to
the Interest meet cor- responding content measured by
router hops, and the other one is Cache Reply Percentage,
which is percentage of requests who get corresponding
contents from cache copy but not the original content
producer.

X-axis is the request sent and 20000 requests are sent
in total during whole simulation. Y-axis is value of
average request hops (Figure 6a) or that of cache reply
percentage (Figure 6b).

The exciting news is that the result of this simulator
and the NS3 are very similar, especially when the
network reaches a stable state, meaning average request
hops and cache reply percentage fluctuate in a small
range. What’s more, this simulator is a little fast for the
network to reach stability and even more stable than NS3,
which is because of the discrete algorithm employed by
this simulator.

We also change the cache size and cache updating
policy, and the results of the two simulator is very similar
with each other.

This simulator can easily provide more details, such as
the average request hops and cache reply percentage of
specified nodes and contents. It can even simulate
mobility scenario, only needing to change the Matrix A
under user defined condition.

Another great advantage is that this simulator is really
easy to use. M-file of MatLab is an interpreted language,
which is much easier to read, modify and maintain than
C++ code of NS3 or C code of CCNx. What’s more, M-
file is much more shorter than C/C++ source files.

V. DISCUSSION

A. Precision Evaluation
We call interest generating, pit record timeout, data

trans- mission error or fail accident events. In actual
operation, accident event can’t be predicted and only be
found after they happened. So in current model, we
haven’t taken them into consideration. But we can import
some accident event which is random or produced by
some rules, if need.

We haven’t imported features of data transmission
error or fail accident events, which provides the
simulation an ideal situation. In actual operation, those
accident events can’t be predicted and can only be found
after they happen. This will be involved in our future
work. This simulator currently can only provide an
approximate prediction, because accidents may happen
when our prediction steps are over. The involved nodes
and contents are less; the prediction steps are less, the
prediction is more accuracy.

The current model doesn’t take time of processing,
such as table lookup time and data transmission time, into
consideration. So the current model only measures data
transmission cost by hops. I think measuring by hops is
popular currently, because of the dynamic of network,
which lead result of measuring by time changes with
network status.

Approximate Prediction: If and only if we know the
network status (F, S, R, P, A Matrix) of some specified
time. The computation based on our model can only
provide a approximate prediction, because accident may
happen when our prediction steps is over. The involved
nodes and content is less, the prediction steps is less, the
prediction is more accuracy.

B. Different with NS-3 based Simulator
 There do be some similarities between our design and
NDN simulator. For example, they both should give
network topology, Forwarding Table, Content
Distribution and Requesting Status first. And they both
use a iteration process to drive the networking-processing
running. What’s more, they both give the result of NDN
data communication.

 However, our work still has great differences:
1) Matrix Computation vs. Host Simulator: NS-3

simulates every node and its packet processing of the
whole network. Our design employs a deeper
abstraction by split entities’ covering. NS-3 do also
need computation to simulate the host and its
behavior, otherwise our �design just employs pure
computation.

2) Centralized vs. Distributed: Every host of NS-3
finish its �computation so the network runs, we
think its distributed control. Our design is single
thread computation and the matrixes record needed
information, which is centralized control.

3) Formal Description vs. Numerical Solution: NS-3
only gives numerical solution aiming at one specific
network assumption, but our design could give a
formal description whatever the network assumption
is.

2010 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

There are some similarities, such as basic input and
output, but the intrinsic mechanisms and coverage area
are totally different. Our design is a higher abstraction of
NDN.

C. Scalability
There are billions of nodes and contents in the network.

If we include all nodes and contents into computation,
this would make a disaster. The number of nodes and
contents depends on the problem to be solved. In general,
we should only take related nodes and contents into
consideration, which may greatly decrease complexity
and scale of computation. For example, if we only want
to know how node n gets content c. First we should get
all the nodes involved. If N hops can reach the original
source, we only need to get nodes limited in N hops and
restrained by F Matrix. If an interest is flooded to all
neighbors, the node set may have lots of element. But if
not, the node set may be small.

Currently, the speed of our implementation is at 0.5
seconds per step when there are 10000 contents and 21
nodes. It’s not very far, but there should be a lot of room
for improvement, however most matrixes are sparse and
there are a lot of optimization algorithms for sparse
matrixes computation.

D. Covering Areas
The current implementation aims at NDN, but this

design can describe the current IP network after some
changing. What’s more, It’s even easier, for the one
packet can only has one next hop to send. The difference
is that NDN data packet is sent back following the P
Matrix, but IP packet only routing by F Matrix. So there
should some modification.

E. Limitation
Frankly speaking, our work is also on preliminary

stage, it couldn’t provide a lot of scenario settings, which
is neither our goal. Our goal is to provide a very easy to
use simulator to users to verify their creative idea with

little cost and as quick as they can. But professional
simulation and deeply analysis need advance
implementation, such as CCNx Project.

VI. CONCLUSION

We present an alternative NDN simulator based on
matrix computation. This simulator treats the experiment
network as a whole. Matrix is used to describe network
states, and matrix operation is used to simulate different
network events. This simulator can figure out all the
subsequent network states after given an initial condition.
What’s more, our simulator employs a centralize control
algorithm instead of simulating behavior of individual
nodes, and changes node operation processes to pure
matrix computation which is quite precise under ideal
conditions and friendly to users.

Our work makes the network computable. We can
infer how interest and data trace to the network. Base on
those computation, we can analysis the whole network
performance, the subset network performance and one
host connectivity performance. We also can make
decision on how to adjust Forwarding Table.

But honestly, there is still a lot of work to be done in
order to make the simulator faster and fit other scenarios.

REFERENCES

[1] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton,
D.K. Smetters, B. Zhang, G. Tsudik, D. Massey, C.
Papadopoulos, et al. Named data networking (ndn) project.
Technical report, Tech. report ndn-0001, PARC, 2010.

[2] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass,
N.H. Briggs, and R.L. Braynard. Networking named
content. In Proceedings of the 5th International Conference
on Emerging Networking Experiments and Technologies.
ACM, 2009.

[3] X. Jiang, J. Bi, Y. Wang, P. Lin, and Z. Li. An easy matrix
computation based simulator of ndn. In the Third
International Conference on Networking and Distributed
Computing (ICNDC 2012), Hangzhou. IEEE, 2012.

[4] CCNx Project. http://www.ccnx.org.�

JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014 2011

© 2014 ACADEMY PUBLISHER

[5] NS3 DCE CCNx Project. http://www-
sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/getting-
started.html.

[6] Carlos Cabral, Christian Esteve Rothenberg, and Maurício
Ferreira Magalhães. Mini-ccnx: fast prototyping for named
data networking. In Proceedings of the 3rd ACM
SIGCOMM workshop on Information-centric networking,
pages 33–34. ACM, 2013.�

[7] Dario Rossi and Giuseppe Rossini. Caching performance
of content centric networks under multi-path routing (and
more). Relatório técnico, Telecom ParisTech, 2011.�

[8] CCN Packet Level Simulator (CCNPL-Sim).
http://code.google.com/p/ccnpl-sim/wiki/Installation.�

[9] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang.
ndnsim: Ndn simulator for ns-3. http://irl. cs. ucla.
edu/ndnSIM. html.�

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and zipf-like distributions: Evidence and
implications. In INFOCOM’99. Eighteenth Annual Joint
Conference of the IEEE Computer and Com- munications
Societies. Proceedings. IEEE, volume 1, pages 126–134.
IEEE, 1999.

Xiaoke Jiang is born in 1987. Now he is a
Ph.D. Candidate at Tsinghua University.
His research interest is Named Data
Networking, especially the transport
functionality, such as optimal chunk size,
mobility support, and Interest aggregation.

Jun Bi is born in 1972, post-doctoral, and
professor at Tsinghua University. His
research interests include Next Generation
Internet Architecture and Protocols, High
Performance Routers and Switches,
Source Address Validation, Internet
Routing, IPv4/IPv6 Transition, etc. He is
the corresponding author of this paper.

You Wang is born in 1988. Now he is a
Ph.D. student at Tsinghua University. His
research interests include IPv4/IPv6
transition, IP mobility management
protocols, Future Internet architectures
and Software Defined Networking.

2012 JOURNAL OF COMPUTERS, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

