
Solving Lattice Protein Folding Problems by
Discrete Particle Swarm Optimization

Jing Xiao
School of Computer Science, South China Normal University, Guangzhou 510631, China
State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China

Email: xiaojing@scnu.edu.cn

Liang-Ping Li
Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China

Email: liangpingli@gmail.com

Xiao-Min Hu
School of Public Health, Sun Yat-sen University, Guangzhou 510080, China

Email: huxiaom6@mail.sysu.edu.cn

Abstract—Using computer programs to predict protein
structures from a mass of protein sequences is promising for
discovering the relationship between the protein
construction and their functions. In the area of
computational protein structure analysis, the hydrophobic-
polar (HP) model is one of the most commonly applied
models. The protein folding problem based on HP model has
been shown as NP-hard, to handle such an NP-hard
problem, this paper proposes a discrete particle swarm
optimization algorithm (DPSOHP) to solve various 2D and
3D HP lattice models-based protein folding problems. The
discrete particle swarm optimization method used in
DPSOHP is based on the set concept and the possibility
theory from a set-based PSO (S-PSO). A selection strategy
incorporating heuristic information and possibilities is
adopted in DPSOHP. A particle’s positions in the algorithm
are defined as a set of elements and the velocities of a
particle are defined as a set of elements associated with
possibilities. The experimental results on a series of 2D and
3D protein sequences show that DPSOHP is promising and
performs better than various competitive state-of-the-art
evolutionary algorithms.

Index Terms—Bioinformatics, Computational intelligence,
Discrete particle swarm optimization, Hydrophobic-polar
(HP) model, Lattice protein folding

I. INTRODUCTION

The structure of a protein has a direct impact on its
expressive functionalities in nature. Although protein
sequencing has become easier in bioinformatics, the
relationship between the protein sequence and its
structure is still an open problem. Experimental methods
such as X-ray crystallography and nuclear magnetic
resonance (NMR) for finding the structure of a protein
are still quite expensive and time-consuming. As the
development of molecular dynamics, several theories
have been proposed to explain the conformation of a
protein based on its sequences [1, 2]. One of the most

influential findings is that given a protein sequence, the
structure of the protein is unique under suitable
conditions and forms a minimum free energy (MFE)
conformation [1]. This observation has been widely
accepted and acts as the basis for the modern prediction
methods of protein structures based on its sequences [3, 4,
5].

Several computational models for constructing the
MFE conformations have been proposed, such as the
hydrophobic-hydrophilic (HP) square lattice model [2],
toy model [6], functional model [7], and HP side chain
model [8], etc. The HP model is the most simplified
model [3, 4, 5, 9, 10]. In HP model, all amino acids in a
protein are classified as hydrophobic amino acids (H) and
hydrophilic polar amino acids (P). Hydrophobic amino
acids have aliphatic side chains and avoid water. So they
generally form a protein core in the middle of the protein.
In contrast, hydrophilic amino acids, also termed as polar
amino acids, have an affinity with the solvent and tend to
remain in the outer surface of the protein. According to
the considered dimensions, an HP model can be in two
dimensions (2D) or three dimensions (3D). A two
dimensional square lattice is simulated in the 2D HP
model, whereas a three dimensional cubic lattice is used
in a 3D HP model. The protein folds in the lattice with
each amino acid being placed in one cell of the lattice.
Even though HP model is simple, the protein folding
problem (PFP) based on HP model has been proved to be
NP-hard [11, 12].

Computational intelligence (CI) algorithms are
promising for solving the PFP with HP model. They are
stochastic and heuristics-based methods and have been
successfully applied in various NP-hard problems. For
the PFP with HP model, traditional CI methods such as
Monte Carlo-based algorithms [13, 14, 15], genetic
algorithms (GAs) [16, 17, 18, 19, 20, 21], immune
algorithms (IMs) [3, 22], differential evolution [23, 24],
ant colony optimization (ACO) algorithms [4, 25, 26, 27],

1904 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.8.1904-1913

and estimation of distribution algorithms (EDAs) [5, 28]
have been proposed. Among the above algorithms, the
flexible ant colony (FAC) algorithm [4] used a special
heuristic method and a path retrieval mechanism. The
EDAs proposed in [5] used explicit probability models to
construct protein conformations. For example, the
Markov-EDA (MK-EDA) adopted a Markov probabilistic
model and the Tree-EDA was based on a tree
probabilistic model. The MT-EDA used a mixture of trees
and the experimental results showed that it performed
better than Tree-EDA for some protein sequences.
Although there are many CI algorithms that have been
proposed to solve the PFP, the performance is still
unsatisfactory.

In this paper, a particle swarm optimization (PSO) is
proposed for solving the PFP. PSO [29] is a swarm-
based CI algorithm and has been proven to obtain good
performance in continuous domains [30, 31, 32]. A
discrete roulette-based PSO is employed in PFP in [33]
and the experiments are conducted on 6 proteins. In [34]
the authors employed a set-based PSO to the RNA
secondary structure prediction successfully. For discrete
optimization, the authors in [35] introduced the set
concept to PSO and applied to data clustering effectively.
Recently, the researchers in [36] proposed an updated set-
based PSO (S-PSO) for solving discrete optimization
problems. The main difference between the newly
proposed S-PSO and the previous ones [37, 38, 39] is that
the new one incorporated possibilities to velocity set
elements for each particle. This update helped to guide
the movements of particles towards the optima. S-PSO
used traveling salesman problems (TSP) and knapsack
problems as examples to demonstrate the good
performance of the algorithm. S-PSO is in effect a
combination of PSO learning mechanisms and set
operations involving probabilistic distributions. Since we
can construct the 2D and 3D HP lattice model in a lattice
board, the construction path of the folding process could
be considered similarly as in TSP. By following the
framework of S-PSO, a novel algorithm based on it for
solving PFP is proposed in this paper. The algorithm is
termed as DPSOHP and it hybridizes the heuristic
information and the retrieval strategy in FAC and the
possibility concepts in S-PSO to construct the solutions.
In the proposed DPSOHP algorithm, a selection strategy
using both heuristic information and possibilities is
adopted. A position of a particle is defined as a set of
elements and a particle’s velocity is defined as a set of
elements associated with possibilities.

The performance of DPSOHP will be investigated
thoroughly and compared with the most competitive CI
algorithms for solving PFP. The rest of the paper is
organized as follows. Section 2 makes a brief overview
of the HP model in PFP and introduces the traditional
framework of PSO. In Section 3, some basic concepts and
operations for PFP in the S-PSO framework are described.
Section 4 presents the implementation of the proposed
DPSOHP for solving PFP. Experimental analysis to the
characteristics of DPSOHP and its performance compared
with other state-of-the-art CI algorithms are discussed in

Section 5. Section 6 concludes the paper.

II. PRELIMINARIES OF THE HP MODEL AND PSO

This section first describes the definition of the HP
model in PFP, including existed methods for addressing
the model. Then the traditional PSO algorithms are
introduced.

A. HP Model of PFP
The HP model was first introduced by Dill [2]. In this

model, the amino acid sequence of a protein is
represented by a sequence of letters consisting of ‘H’ and
‘P’, where ‘H’ stands for the hydrophobic amino acid and
the letter ‘P’ stands for the hydrophilic amino acid. Fig. 1
shows an example of a protein conformation in a 2D HP
lattice. The black nodes denote H and the white nodes
denote P. The dashed lines represent the H-H bounds.
The number 1 indicates the first amino acid in the protein
sequence. The conformation is optimal which has
minimum free energy of -4. The energy of a protein
conformation is defined as the number of adjacent
hydrophobic amino acid pairs that are formed in the
lattice but are not consecutive in the sequence. Between
those two adjacent hydrophobic amino acids there is an
H-H bound, which has free energy of -1. In Fig. 1, the
conformation has a total free energy of -4 since it has 4
H-H bounds. Given a protein sequence, the objective of
the PFP with HP model is to find conformations that
have the minimum total free energy. For evolutionary
algorithms, the objective function is to minimize the total
free energy in HP lattice model. The particles in the
proposed algorithm aim to find a conformation path of a
protein sequence in the lattice.

No matter in the 2D or 3D HP model, a protein

sequence folds itself to form a self-avoiding path. We use
absolute directions in a search space to represent the
conformation. For the 2D HP model, the absolute four
directions are left (L), right (R), forward (F) and
backward (B). In the 3D HP model, there are two more
directions up (U) and down (D). A direction starts from
one cell and points to one of its adjacent cells. The layout
approach is similar to that in a travelling salesman
problem, when the cells in the lattice are regarded as
cities and the connections between cells are considered as
arcs. So we can employ the discrete evolutionary
algorithms that perform successfully in TSP to deal with
the PFP with HP lattice model.

Fig. 1. A conformation of sequence
HHPPPPPHHPPPHPPPHP in the 2D HP model.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1905

© 2014 ACADEMY PUBLISHER

One of the distinct features of PFP is to construct a
self-avoiding path. To avoid overlaps of amino acids in
the lattice, the algorithm in [25] used two mechanisms.
First, a simple look-ahead mechanism was used to
disallow placing any amino acids in a position that can
cause stagnation except for the two ending amino acids.
Second, if no placement can comply with the look-ahead
mechanism, half of the already constructed path was
released as retrieval. Different from the method in [25],
FAC[4] randomly chose a position and released the
corresponding amino acids. It also used a mechanism to
ensure that the retrieval in the same direction cannot be
performed twice consecutively. In DPSOHP, we follow the
self-avoiding folding strategies of FAC[4].

B. Introduction to PSO
PSO[29] is inspired by the interpretations of the

movement of organisms in a school of flying birds. The
birds are abstracted as particles which search for food.
When searching solutions in a continuous space, each
particle dynamically adjusts its flying velocities and
positions iteratively according to its own experience and
other particles’ experiences. Learning is a distinguished
feature of PSO. Suppose there are m particles searching
solutions in an n-dimensional continuous space. Each
particle i (i=1,2,…,m) has two attributes: velocity and
position, which are denoted as Vi = <vi

1,vi
2,…,vi

n> and Xi
= <xi

1,xi
2,…,xi

n>, respectively. The basic velocity and
position updating rules are defined as follows:

 1 2(-) (-)j j j j j j j j
i i i i i i iv v c r pbest x c R gbest x= + +

 (1)

j j j

i i ix x v= + (2)

where j (j=1,2,…,n) denotes the jth dimension of the
particle i; c1 and c2 are the acceleration speed constants
which weigh the importance of cognitive and social
components respectively; ri

j and Ri
j are randomly

generated numbers from [0,1]. The vector pbesti =
<pbesti

1, pbesti
2,…, pbesti

n> is the best solution found by
particle i so far and the vector gbest = <gbest1, gbest2,…,
gbestn> is the best solutions found by all the particles so
far.

After the first PSO was proposed, many researchers
developed variants of PSO to improve its performance.
The authors in [30] introduced an inertia weight ω to the
velocity updating rule as:

 1 2(-) (-)j j j j j j j j
i i i i i i iv v c r pbest x c R gbest xω= + + (3)

They showed that the inertia weight ω had the effect
to balance the global and local search ability of the
algorithm.

Another important variant is the comprehensive
learning PSO (CLPSO) in [13]. The velocity updating
rule is given by:

 ()()
i

j j j j j
i i i f j iv v cr pbest xω= + −

 (4)

where fi(j) defines which particle’s experience should be
learnt from by particle i for dimension j.

The value of fi(j) is computed as follows. For each
dimension j of particle i, a number is randomly generated
from [0,1]. If the number is larger than a parameter Pc
called learning probability, then fi(j) = i, which means
particle i will learn from its own experience. Otherwise
particle i will learn from another particle’s experience.
Then the algorithm employs a tournament selection
strategy to determine the value of fi(j). Two particles are
randomly selected, and the value of fi(j) is the ID of the
particle with higher fitness. In this way, all these

j
jfi

pbest)(can be derived from different particles’

pbest positions. To ensure that a particle learns from good
directions and saves time on learning from poor
directions, CLPSO does not use the learning strategy in
every generation. When a particle stops improving for a
certain number of generations which is called refreshing
gap rg, CLPSO recalculates the value of fi for the particle.
According to the discussions in [36], the velocity
updating strategies in CLPSO were very effective.

III. BASIC CONCEPTS AND OPERATIONS FOR PFP IN THE
S-PSO FRAMEWORK

A. Solution Representation
According to the S-PSO[36] framework, candidate

solutions are in effect crisp subsets out of a universal set
E of elements. In the 2D HP model for PFP, each element
is denoted as an arc (j, d), where j is the amino acid index
(j = 1,2,…,n,); n is the number of amino acids and
d ∈ {L,R,F,B} is the folding direction. There are n
dimensions E1, E2, …, En in the PFP with Ej ⊆ E and n is
equal to the number of amino acids. Each dimension Ej
comprises four arcs that are connected with j, and can be
denoted as Ej = {(j,L), (j,R), (j,F), (j,B)}. Each candidate
solution X is composed of an element in Ej with j =
1,2,…,n and the arcs must be connected to form a protein
folding conformation. X is feasible only when it forms a
self-avoiding path.

Fig. 2 shows an example of the representation of the
folding conformation. The solid nodes are amino acids in
the protein sequence. The solution by particle i is
represented as Xi = {(2,B), (3,R), (4,R), (5,F), (6,L)}.
Suppose a particle i chooses the first amino acid as the
starting point for folding the protein sequence. Then
both E1 and X1 are empty sets. The amino acids with
indices from 2 to 6 have non-empty dimensions and an
element is chosen from each dimension to form a self-
avoiding path. The representation of the folding
conformation in Fig. 2 is described as follows: Xi =
{(2,B), (3,R), (4,R), (5,F), (6,L)}.

In the remainder of this paper, we also use position to
represent a feasible solution found by a particle. The
position of a particle i is the same as its solution

},...,,{ 21 n
iiii XXXX = and the jth dimension of its

position is j
iX .

1906 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

Fig. 2. An example of the representation scheme in S_PSO for the

protein folding problem.

B. Folding Velocity
In S-PSO, a velocity is defined as a set of possibilities,

which are used to guide the movements of particles
towards the optima. Given a universal set E, the velocity
V is defined as:

 }|)(/{ EeepeV ∈= (5)

where]1,0[)(∈ep is the possibility for selecting the
element e. We use a subscript i to denote the velocity Vi
for each particle i, and thus the velocity of dimension j is
denoted as j

iV , j = 1,2,…,n.

Fig. 3 illustrates the velocity 2
iV of particle i for

selecting an element in dimension 2 in the PFP. The
dashed lines are the possible folding directions. Folding
backward has the largest possibility for being chosen by
the particle, whereas folding left has the smallest
possibility. In the subsequent section, the method for
adaptively updating the possibilities in the velocity will
be presented.

C. Calculation Operations

Traditional PSOs for continuous optimization involve
several arithmetical operations for updating the positions
of particles and their velocities. However, for discrete
optimization, operations such as additions and
subtractions are needed to be redefined. Here we describe
the operations for PFP based on the S-PSO framework.

1) Coefficient×Velocity:
Multiply a coefficient by a velocity, the result is also a

velocity. Given a coefficient c(c≥0) and a velocity
V={e/p(e)|e∈E} defined on E, the product is:

 { /) | }cV e p e e E= ∈´((6)

If the multiplication is greater than 1, p’(e) is simply
truncated to 1. For example, when
Vi

2={(2,L)/0.2,(2,R)/0.4,(2,F)/0.6,(2,B)/0.8},
suppose c=2.0, then we have

cVi
2={(2,L)/0.4,(2,R)/0.8,(2,F)/1.0,(2,B)/1.0}.
2) Velocity + Velocity:
Given two velocities V1={e/p1(e)|e ∈ E} and

V2={e/p2(e)|e∈E}, V1 plus V2 is defined as

 }|))(),(max(/{ 2121 EeepepeVV ∈=+ (7)

The possibility after the summation of two velocities
equals to the larger possibility of the two velocities. For
example, suppose V1

2 = {(2,L)/0.2, (2,R)/0.4, (2,F)/0.6,
(2,B)/0.8} and V2

2 = {(2,L)/0.3, (2,R)/0.1, (2,F)/0.6,
(2,B)/0.9}, then V1

2+V2
2 = {(2,L)/0.3, (2,R)/0.4, (2,F)/0.6,

(2,B)/0.9}.
3) Position- Position:
The minus operator between the positions of two

particles is defined the same as the subtraction of two
crisp sets, as

 }and|{ BeAeeBA ∉∈=− (8)

For example, given Xi
2 = {(2,L)} and pbesti

2 =
{(2,R)}, then pbesti

2 − Xi
2 = {(2,R)}. If Xi

2 = {(2,R)},
then pbesti

2 − Xi
2 = ∅ .

4) Coefficient×Position:
Multiplying a coefficient by a position is defined as a

velocity. Given a coefficient c (c ≥ 0) and a position A,
the product is defined as follows:

 }|)(/{ EeepecA ∈= (9)

where

⎪
⎩

⎪
⎨

⎧

∉
≤≤∈

>∈
=

Aeif
candAeifc

candAeif
ep

,0
10,

1,1
)(

(10)

For example, given Xi
2 = {(2,L)} and c = 0.5,

multiplying c by Xi
2, then cXi

2 = {(2,L)/0.5}, which is a
velocity.

IV. IMPLEMENTATION OF THE PROPOSED DPSOHP FOR
SOLVING PFP

This section describes the implementation of the
proposed DPSOHP in solving PFP in detail. First, we
outline the overall framework of the algorithm. Then the
velocity updating and position updating processes are
described. For simplicity, we only present examples in
2D space for the position updating process. At last, we
present the method for extending the algorithm to 3D
space.

A. Framework of DPSOHP
The overall framework of DPSOHP is presented as

Algorithm 1. In the following subsections, we will
describe the special velocity updating and position
updating processes of DPSOHP.

Algorithm 1 DPSOHP algorithm
1: Initialization
2: While termination not met
3: for each particle i (i=1,2,…,m)

Fig. 3. An example of a velocity.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1907

© 2014 ACADEMY PUBLISHER

4: velocity updating
5: position updating
6: end for
7: End While

B. Velocity Updating
In S_PSO, the authors showed that the velocity

updating strategies in CLPSO obtained the best results in
discrete domains. Accordingly, in DPSOHP, we use the
velocity updating rule in CLPSO with the redefinitions in
S_PSO. The arithmetic operators in the velocity updating
rule of DPSOHP can be summarized as the following
seven steps.

(1) Calculate ωvi
j by Equation (6);

(2) Calculate the value of fi(j) by the method
mentioned in Section II B;;

(3) Calculate ()i

j j
f j ipbest x− by Equation (8);

(4) Generate a random number rij from [0,1];
(5) Calculate ()()

i

j j j
i f j icr pbest x− by Equation (9);

(6) Calculate ()()
i

j j j j
i i f j iv cr pbest xω + − by Equation (7);

(7) Updating vi
j by the result calculated in step (6).

In the construction phase, there are only four directions
for a particle to choose. With the effect of inertia weight,
the possibility of a direction may decrease very fast. It
means that the probability to choose the direction will be
very low. As a result, the algorithm can be easily trapped
in a local optimum. To address this problem, we define a
lowest possibility pmin. When a possibility is lower than
pmin, it will be adjusted to pmin.

C. Position Updating
Each particle uses the newly updated velocity to adjust

its position in order to improve its solution quality. Since
the number of elements in each dimension is limited in
the discrete space, a particle needs to reconstruct the path
for adjusting the position. Given a protein sequence with
length n, i.e. n amino acids, a square lattice board with
n+2 rows and n+2 columns is used for the 2D HP model
as in Fig.4. Each cell in the lattice is indexed according to
their positions on the board from the top left cell 0 to the
bottom right cell (n+2)2-1. In this way, when a protein
sequence folds to the left, right, forward, or backward, the
corresponding increments of the cell index is -1, 1,-(n+2),
and n+2. Let ⎡ ⎤2/nMid = , the indices of the two
central cells are Mid×(n+2)+Mid and Mid×(n+2)+Mid+1,
and they are termed as the ‘left start cell’ and the ‘right
start cell’, respectively. The construction of solutions is
based on the lattice board. In the following, the path
construction process is described, including a path
retrieval strategy for fixing infeasible solutions and its
extension to 3D HP model.

Fig. 4. The square lattice for a protein with n amino acids.

1) Path Construction
The path construction process is similar to the method

in [4]. For a protein sequence, the indices of the two
middle amino acids are Mid-1 and Mid, respectively. At
the beginning of the construction phase, each particle
chooses the two middle amino acids and places them in
the two central cells in the lattice board. After that, the
particles randomly choose to fold the left part or right
part of the protein sequence. Fig. 4 gives part of the
folding conformation of a protein in the square lattice
after several construction steps. The numbers in the figure
indicate the indices of the cells.

During the construction process, heuristic information
is used to bias the search. Because the mission for PFP
is to find the conformation with the minimum energy, a
direction that can result more H-H bounds will have a
higher probability to be chosen to fold the protein. For
hydrophobic amino acids, the heuristic values are
calculated as:

 1+= jdjd hη (11)

where hjd is the number of new H-H bounds obtained by
placing sj with direction d. For example, in 2D HP
model, hjd could be 0, 1, 2, or 3. In order to ensure that ηjd
is greater than 0, we plus 1 to hjd. This is important to not
exclude any directions in the construction phase by
making sure that the probability calculated in equation
(13) is greater than 0.

For polar amino acids, the heuristic values are
influenced by the density of grids and the number of new
P-P bounds as:

 1jd jd jdv hη = + +´
 (12)

where vjd is the number of directions that the next amino
acid can choose after placing sj and h´jd is the number of
new P-P bounds obtained. Polar amino acids tend to
surround hydrophobic amino acids and contact water
molecules directly. Therefore, it is better to fold them to
the grids that involve more vacant grids. Although polar
amino acids contribute no new H-H bounds, forming new
P-P bounds can increase the chances for the formation of
other new H-H bounds.

To choose the direction in each construction step, the
proportional selection method is used. Each direction d
for folding an amino acid sj is determined both by the

1908 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

heuristic information and the possibilities of the elements
as calculated as following:

jd jd
jd

jq jqq allowed

p
pro

p

β

β

η
η

∈

×
=

×∑

(13)

where β is a parameter for controlling the relative
importance of the heuristic information. pjd is the
pheromones that are released on the directed virtual
connections between adjacent squares, where
i=0,1,2,..,(n+2)2-1 and d=L, R, F, B.
2) Path Retrieval

During the path construction, an amino acid cannot be
placed if all possible locations are already occupied by
other amino acids. In that case, the protein cannot be
folded any more during the construction phase and it is
termed stagnation. Therefore, a path retrieval strategy is
used to adjust an infeasible solution into a feasible one.

A position is randomly been chosen and the
corresponding amino acids are released when stagnation
happens. A mechanism is also used to ensure that the
retrieval in the same direction is not performed twice
consecutively. The retrieval strategy employed in
DPSOHP is described as follows. Given a sub-sequence
{sleft,..., sstartL, sstartR,..., sright}, left and right are the indices
of the left most and right most amino acids that have
already been constructed; startL and startR are the
indices of the two middle amino acids. If the stagnation
happens on the left path of the protein sequence, the
procedure of left path retrieval is performed, whereas the
procedure of right path retrieval is performed for the right
stagnation. Fig. 5 illustrates the flowchart for performing
path retrieval to relieve stagnation.

Fig. 5. Flow chart of path retrieval.

For example, when the stagnation happens on the right

path currently, if startR<right and the last retrieval is not
performed on the right path, the right part of the sequence
is released (the left part of Fig. 5). To retrieve the right
part of the sequence, an index j is generated randomly
from [startR+1, right-1] and then the sub-sequence
{sj+1,..., sright} is released. However, if startR ≥ right or
the last retrieval is performed on the right path, the left

part of the sequence is released. An index j is generated
randomly from [left+1, startL-1] and then the sub-
sequence {sleft,...,sj-1} is released.

Fig. 6 shows an example for the retrieval where the
black nodes denote the two middle amino acids. For
folding a No. 3 amino acid, the sequence stagnates on the
left path (Fig. 6a), so the left path retrieval is performed.
Suppose a random integer j=6 is generated, then the
amino acids from indices 4 to 5 are released. Fig. 6b
shows the path after the retrieval. It can be seen that the
stagnation is not cleared because the left stagnation will
happen again after several construction steps. Fig. 6c
shows the conformation when the left stagnation happens
again. Since the left path retrieval has been performed
before, the right path retrieval is performed this time.
Suppose the randomly generated integer j=13, then amino
acids from indices 14 to 20 are released. The path after
the retrieval is shown in Fig. 6d and it can be seen that
the stagnation is now cleared.

Fig. 6. An example of path retrieval.

3) Further Extension to the 3D model

To extend the algorithm to the 3D HP model, some
changes are listed as follows. First, there are two more
absolute directions up (U) and down (D) in the 3D model.
The lattice board is changed to be a cubic lattice with the
size of (n+2)3. The cells in the lattice are indexed from 0
to ((n+2)3-1). When a particle chooses to go up or down,
the corresponding increments of the cell index is -(n+2)2
and (n+2)2. The indices of the two central cells are
Mid×[(n+2)2+n+3] and Mid×[(n+2)2+n+3]+1 respectively.

V. EXPERIMENTAL ANALYSIS

In this section, we first investigate the influence of
different parameter settings for the performance of
DPSOHP. The performances of DPSOHP in solving 2D HP
PFP and 3D HP PFP are then analyzed and compared
with some state-of-the-art computational intelligence
algorithms such as IA, EMC, GA, and EDAs.

Table 1 tabulates the benchmark HP protein sequences
used in this paper, where l is the number of amino acids
in the protein sequence and E* is the best-known free
energy of the sequence. The default parameter settings of
the experiments are set as c=2.0, ω=0.95, β=3, pmin=0.05,
m=50. We follow the CLPSO [29] to set the refreshing

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1909

© 2014 ACADEMY PUBLISHER

gap rg=7 and:

10(1)exp() 1
10.05 0.45

exp(10) 1i

i
mPc

− −
−= + ×

−
(14)

where i is the index of the particle and m is the swarm
size. DPSOHP was implemented in C++ language on a PC
with 2.0GHz Intel Pentium E2180 CPU. The
experimental results of all the other compared algorithms
were obtained from the reference papers. We set the same
evaluation numbers as the compared algorithms did and
test DPSOHP on those protein sequences which were
tested in the compared algorithms.

TABLE 1.
BENCHMARKS OF PROTEIN SEQUENCES

No. l E* protein sequence

1 20 -9 HPHP2H2PHP2HPH2P2HPH
2 24 -9 H2P2(HP2)6H2
3 25 -8 P2HP2(H2P4)3H2
4 36 -14 P3H2P2H2P5H7P2H2P4H2P2HP2
5 48 -23 P2H(P2H2)2P5H10P6(H2P2)2HP2H5
6 50 -21 H2(PH)3PH4P(HP3)2HP4(HP3)2HPH4(PH)3PH2
7 60 -36 P2H3PH8P3H10PHP3H12P4H6PH2PHP
8 64 -42 H12(PH)2((P2H2)2P2H)3(PH)2H11
9 85 -53 H4P4H12P6(H12P3)3HP2(H2P2)2HPH

10 100 -48 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10PH2PH7P11H7P2

HPH3P6HPH2

11 100 -50 P3H2P2H4P2H3(PH2)2PH4P8H6P2H6P9HPH2PH11P2H3P
H2PHP2HPH3P6H3

A. Investigations of Parameter Settings in DPSOHP
The influence of the heuristic reinforcement value β

and the inertia weight ω in DPSOHP is analyzed by the
average run-time. Each group of parameters is tested for
30 independent trials. The average run-time required for
reaching the optimal solution is recorded for each trial.
Fig. 7 illustrates the influence of different parameter
settings β and ω for the sequences 1, 2, and 3. Panels
from row 1 to row 3 illustrate influences of sequences 1-3.
Panels on the left illustrate influences for β, and panels on
the right illustrate influences for ω. The other parameter
values are fixed. The characteristics of the two
parameters to the performance can be concluded as:
(1) When the heuristic reinforcement value β increases,
the time needed to reach the optima becomes shorter for
sequences 1 and 2. For sequence 3, the best result is
obtained when β=3.
(2) When the inertia weigh ω is about 0.95, the
performance of the algorithm is good in most of the test
cases. Overall, the influence of ω is not so important as β.

According to the above experimental analysis, we set
β=3 and ω=0.95 in all of our experiments.

Fig. 7. Influence of different parameters values for β and ω on the

average run-time.

B. Experiments in the 2D HP Model
In the first experiments we compare DPSOHP with IA

[3, 25], EMC [13], GA [21], and some EDAs [5] in
solving PFP with 2D HP model. Sequences 1 to 8 in
Table 1 are used as the test instances for comparing
DPSOHP with IA, EMC, and GA, where sequences 1 to
11 are used for comparing with the EDAs in [5].
1) Comparison with IA, EMC and GA

The parameter settings of EMC and GA can be referred
to [13, 21]. IA used memory B cells, with the aging
values τB=1 and τBmem=5. All the algorithms were tested
for 30 independent trials with a maximum number of
energy evaluations 107. The results are tabulated in Table
2 to Table 4. The best results are represented in bold in
the tables.

Table 2 compares the average number of energy
evaluations and success rates of IA and DPSOHP. AE
indicates the average number of energy evaluations and
SR indicates the percentage of times which the optimal
solution is found in all trials. For short sequences 1-4
(l≤36), DPSOHP and IA both find the optimal solutions in
all trials successfully. However, the average number of
energy evaluations used by DPSOHP is much smaller than
those in IA for all short sequences. For sequences 5, 7 and
8, DPSOHP can find the optimal solutions with higher
success rates than IA can. Especially for sequences 7 and
8, IA cannot find the optimal solutions in any one trial,
whereas DPSOHP obtains the success rate 43.33% and
40% respectively. For sequence 6, IA with a success rate
100% performs better than DPSOHP with a success rate of
90%.

1910 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

TABLE 2.

COMPARISONS OF AVERAGE NUMBER OF ENERGY EVALUATIONS AND
SUCCESS RATE.

No.
DPSOHP IA

AE SR AE SR

1 2174 100 23710 100
2 6525 100 69816.7 100
3 39173 100 269513.9 100
4 46007 100 2032504 100
5 1044558 100 6403985.3 56.67
6 3088689 90 778906.4 100
7 4009735 43.33 - 0
8 4995706 40 - 0

- indicates that the algorithm can’t obtain the optimal solution in all
trials.

Table 3 compares the best energy values obtained by
EMC, IA, GA, and DPSOHP. DPSOHP can find the
optimal solutions for all the eight sequences, whereas the
other algorithms cannot find the optimal solutions for
sequences 7 and 8.

Table 4 compares the number of energy evaluations
required for the best trial to achieve the optima by
DPSOHP, IA, EMC and GA. DPSOHP obtains the optimal
results with the lowest number of energy evaluations
except for sequence 6.
2) Comparison with EDAs

Because three more sequences number 9 to 11 with
longer lengths are used in this comparative experiment, a
larger number of energy evaluations are conducted. The
EDAs in [5] use a population size of m=5000 individuals,
a maximum of g=5000 generations, and the truncation
selection T=0.1. Since the EDAs use the best elitism, the
maximum number of energy evaluations can be
calculated as m+m(1-T)(g-1), which is slightly larger than
2×107. Hence, we run DPSOHP with a maximum number
of energy evaluations 2×107 in comparisons with the
EDAs in [5]. All the algorithms are tested for 50
independent trials.

TABLE 3.
COMPARISONS OF BEST ENERGY VALUES

No. E* DPSOHP IA EMC GA

1 -9 -9 -9 -9 -9
2 -9 -9 -9 -9 -9
3 -8 -8 -8 -8 -8
4 -14 -14 -14 -14 -14
5 -23 -23 -23 -23 -23
6 -21 -21 -21 -21 -21
7 -36 -36 -35 -34 -35
8 -42 -42 -39 -37 -39

TABLE 4.

COMPARISONS OF BEST NUMBER OF ENERGY EVALUATIONS

No. DPSOHP IA EMC GA

1 217 1925 9374 30492
2 350 2479 6929 30491
3 1780 4212 7202 20400
4 2754 43416 12447 301339
5 21486 37269 165791 126547
6 153984 18919 74613 592887

Table 5 compares the performance of DPSOHP and
EDAs with BV indicating the best energy value obtained
in the test trials. For sequences 1 and 2, all algorithms can
find the optimal solutions in all trials successfully. For
sequences 3, only DPSOHP and MK-EDA can find the
optimal solution in all trials successfully. For sequences
4-6, DPSOHP can find the optimal solutions in all trials
successfully, whereas the EDAs fail in some trials.
Especially for sequences 4 and 5, EDAs can only find the
optimal solutions in less than 20% of all trails. Note
that DPSOHP can find the optimum -53 of sequence 9,
compared to MK-EDA which can only find the best
energy value of -52. For the longest sequences 10 and 11
with the optima -48 and -50 respectively, DPSOHP and
MT-EDA can both find the near optima -47 and -48,
whereas DPSOHP has higher success rates to find the near
optima.

C. Experiments in the 3D HP Model
In these experiments, the performances of DPSOHP in
solving PFP with 3D HP lattice model are analyzed.
DPSOHP is compared with a hybrid GA [21], IA [3, 22],
and EDAs [5]. The hybrid GA uses an absolute encoding
and a repair-based approach. Sequences 1-8 in Table 1 are
used as the test instances for the 3D model. All the
algorithms are tested for 50 independent trials with a
maximum number of energy evaluations 105. To our best
knowledge, the optimum energy values for the tested
sequences in 3D HP lattice model are yet known. We
consider that the less energy values an algorithm obtained,
the better the algorithm is. The best values, means, and
standard deviations (σ) are shown in Table 6. The best
results among the compared algorithms are marked in
bold.

TABLE 5.
RESULTS OF DPSOHP AND EDAS IN 2D HP MODEL

No. E*
DPSOHP MK-EDA Tree-EDA MT-EDA

BV S BV S BV S BV S

1 -9 -9 100 -9 100 -9 100 -9 100
2 -9 -9 100 -9 100 -9 100 -9 100
3 -8 -8 100 -8 100 -8 88 -8 90
4 -14 -14 100 -14 8 -14 4 -14 16
5 -23 -23 100 -23 14 -23 18 -23 4
6 -21 -21 100 -21 86 -21 98 -21 96
7 -36 -36 50 -35 10 -35 12 -35 18
8 -42 -42 60 -42 6 -41 10 -42 12
9 -53 -53 2 -52 4 -51 2 -50 4

10 -48 -47 8 -46 6 -46 16 -47 2
11 -50 -48 4 -47 2 -47 12 -48 2

TABLE 6.

RESULTS OF DPSOHP, HYBRID GA, IA AND TREE-EDA IN 3D HP
MODEL

No.
DPSOHP hybrid GA IA Tree-EDA

BV mean±σ BV mean±σ BV mean±σ BV mean±σ

1 -11 -11.00±0.00 -11 -9.84±0.86 -11 -10.90±0.32 -11 -11.00±0.00
2 -13 -13.00±0.00 -11 -10.00±0.87 -13 -12.22±0.65 -13 -12.86±0.16
3 -9 -9.00±0.00 -9 -8.64±0.69 -9 -8.88±0.48 -9 -8.90±0.09
4 -18 -18.00±0.00 -18 -13.72±1.41 -18 -16.08±1.02 -18 -16.34±0.51

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1911

© 2014 ACADEMY PUBLISHER

5 -31 -28.50±0.91 -28 -18.90±2.08 -28 -24.82±0.71 -27 -23.62±1.83
6 -30 -24.78±1.11 -22 -19.06±1.46 -23 -22.08±1.43 -30 -26.00±2.82
7 -51 -48.94±0.87 -38 -32.28±3.09 -41 -39.02±0.50 -37 -32.94±1.53
8 -54 -48.14±2.05 -36 -30.84±2.55 -42 -39.07±1.20 -44 -34.70±6.87

It can be seen in Table 6 that not only the best energy

values but also the mean energy values reached by
DPSOHP are the best in all algorithms except for the
sequence 6. For sequences 1 to 4, DPSOHP obviously
outperforms the other algorithms since it can find the
optimal energy values in all trails. It is remarkable that
DPSOHP achieves lower energy values in sequences 5, 7,
and 8. In these sequences, the best energy values obtained
by the other algorithms are -28, -41, and -44 respectively,
whereas DPSOHP obtains the much better results of -31, -
51, and -54. For sequence 6, DPSOHP can still obtain the
same best value as that by Tree-EDA but with a slightly
poorer mean energy value.

Since the algorithm cannot obtain satisfying results
within the predefined maximum number of energy
evaluations for the longer protein sequences, we use a
larger number of energy evaluations to investigate
whether the performance of the algorithm can be better.
The maximum number of energy evaluations 5×106 is
used by DPSOHP and the results are compared with those
of MK-EDA, Tree-EDA, and MT-EDA with the same
maximum number of energy evaluations. The results are
shown in Table 7. We can see that by using more energy
evaluations, DPSOHP can find lower energy values for
sequences 5-8. DPSOHP is more stable for obtaining high-
quality solutions than the compared EDAs. It can be seen
that not only the best energy values, but also the mean
energy values and the standard variances of DPSOHP
become better and outperform the EDAs.

TABLE 7.

RESULTS OF DPSOHP AND EDAS IN THE 3D HP MODEL

No.
DPSOHP MK-EDA Tree-EDA MT-EDA

BV mean±σ BV mean±σ BV mean±σ BV mean±σ

1 -11 -11.00±0.00 -11 -10.82±0.38 -11 -10.68±0.51 -11 -10.84±0.37
2 -13 -13.00±0.00 -13 -12.02±0.94 -13 -11.30±0.85 -13 -11.88±0.93
3 -9 -9.00±0.00 -9 -8.96±0.19 -9 -8.92±0.27 -9 -9.00±0.00
4 -18 -18.00±0.00 -18 -16.40±0.80 -18 -16.24±0.83 -18 -16.50±0.96
5 -31 -30.97±0.18 -29 -27.24±0.92 -29 -26.88±0.93 -29 -27.06±1.08
6 -31 -29.43±0.63 -29 -25.70±1.26 -31 -25.94±1.58 -28 -25.74±1.22
7 -53 -52.23±0.57 -49 -46.30±2.04 -49 -43.78±3.10 -48 -42.00±6.76
8 -59 -55.07±1.26 -52 -46.78±2.28 -49 -43.72±2.43 -50 -45.64±2.03

VI. CONCLUSION

This paper proposes a novel DPSOHP algorithm for
solving PFP with 2D and 3D HP lattice models. The
algorithm adopts the framework of S-PSO for solving
discrete optimization problems. In DPSOHP, the PSO
learning mechanisms and the set operations are
incorporated to search for the optimal protein
conformation of a protein sequence. Particles start from
the center of the lattice board and construct the protein
conformation from the middle of the protein sequence. A
selection strategy using both heuristic information and

possibilities is used in the algorithm. In this paper, the
overall performance of DPSOHP has been analyzed in
terms of solution quality and stability. The experimental
results show that the proposed DPSOHP is promising and
more effective than the other state-of-the-art evolutionary
algorithms for solving the PFP with 2D and 3D HP lattice
models.

ACKNOWLEDGMENTS

This work is partially supported by the National
Natural Science Foundation of China (NSFC) projects
with No. 61202296 and 61202130, the National High-
Technology Research and Development Program (“863”
Program) of China under Grand No. 2013AA01A212, the
Natural Science Foundation of Guangdong Province
project with No. S2012030006242 and the State Key
Laboratory of Software Engineering project with No.
SKLSE2012-09-08.

REFERENCES
[1] C. B. Anfinsen, E. Haber, M. Sela and F. H. White, “The

kinetics of the formation of native ribonuculease during
oxidation of the reduced polypetide chain,” Proc Natl Acad
Sci, 47, pp.1309–1314. 1961.

[2] K. A. Dill, “Theory for the folding and stability of globular
proteins,” Biochemistry, 24, pp.1501–1512. 1985.

[3] V. Cutello and G. Nicosia, “An immune algorithm for
protein structure prediction on lattice models,” IEEE T
Evolut Comput, vol.11, no.1, pp.101–117, 2007.

[4] X. M. Hu, J. Zhang, J. Xiao and Y. Li, “Protein folding in
hydrophobic-polar lattice model: a flexible ant colony
optimization approach,” Protein Peptide Lett, 15, pp.469–
477, 2008.

[5] R. Santana, P. Larrañaga, and J. A. Lozano, “Protein
folding in simplified models with estimation of distribution
algorithms,” IEEE T Evolut Comput, vol 12, no 4, pp.418–
438, 2008.

[6] F. H. Stillinger, T. H. Gordon, and C. L. Hirshfeld, “Toy
model for protein folding,” Phys Rev E, vol 48, no 2,
pp.1469–1477, 1993.

[7] J. D. Hirst, “The evolutionary landscape of functional
model proteins,” Protein Eng, 12, pp.721–726, 1999.

[8] M. S. Li, D. K. Klimov and D. Thirumalai, “Folding in
lattice models with side chains,” Comput Phys Commun,
vol 147, no 1, pp.625–628, 2002.

[9] B. Chen, L. Li and J. Lu, “A novel EDAs based method for
HP model protein folding,” CEC’09, pp.309–315, 2009.

[10] H. Lu and G. Yang, “Extremal Optimization for protein
folding simulations on the lattice,” Comput Math Appl, 57,
pp.1855–1861, 2009.

[11] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni,
and M. Yannakakis, “On the complexity of protein
folding,” J Comput Biol, vol 5, no 3, pp.423–466, 2008.

[12] N. Krasnogor, W. E. Hart, J. Smith and D. A. Pelta,
“Protein structure prediction with evolutionary
algorithms,” GECCO, pp.1596–1601, 1999.

[13] F. Liang and W. H. Wong, “Evolutionary Monte Carlo for
protein folding simulations,” J Chem Phys, vol.115, no. 7,
pp.3374–3380, 2001.

[14] R. Ramakrishnan, J. F. Pekny, and B. Ramachandran, “A
dynamic Monte Carlo algorithm for exploration of dense
conformational spaces in heteropolymers,” J Chem Phys,
vol. 106, no.6, pp.2418–2424, 1997.

[15] JF. Liu, G. Li and J. Yu. “Protein-folding simulation of the

1912 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

hydrophobic-hydrophilic model by combining pull moves
with energy landscape paving”, Phys Rev E, 84(3), 2011.

[16] C. Cotta, “Protein structure prediction using evolutionary
algorithms hybridized with backtracking,” Lect Notes
Comput Sc, 2687, pp.321–328, 2003.

[17] M. T. Hoque, M. Chetty and L. S. Dooley, “Non-
isomorphic coding in lattice model and its impact for
protein folding prediction using genetic algorithm,” IEEE
CIBCB, pp.1–8, 2006.

[18] T. Z. Jiang, Q. H. Cui, G. H. Shi and S. D. Ma, “Protein
folding simulations of the hydrophobic-hydrophilic model
by combining tabu search with genetic algorithms,” J
Chem Phys, vol. 119, no. 8, pp.4592–4596, 2003.

[19] M. V. Judy and K. S. Ravichandran, “A solution to protein
folding problem using a genetic algorithm with modified
keep best reproduction strategy,” CEC’07, pp.4776–4780,
2007.

[20] R. König and T. Dandekar, “Improving genetic algorithms
for protein folding simulations by systematic crossover,”
BioSystems, 50, pp.17–25, 1999.

[21] R. Unger and J. Moult, “Genetic algorithms for protein
folding simulation,” J Mol Biol, 231, pp.75-81, 1993.

[22] V. Cutello, G. Nicosia and M. Pavone, “An immune
algorithm with hyper-macromutations for the Dill‘s 2D
hydrophobic-hydrophilic model,” CEC’04, pp.1074–1080,
2004.

[23] C. P. Almeida, R. A. Goncalves, M. C. Goldbarg, E. F. G.
Goldbarg and M. R. Delgado, “TA-PFP: A transgenetic
algorithm to solve the protein folding problem,” in
Proceedings of the 7th IEEE International conference on
Intelligent System Decision and Application, pp.163–168,
2007.

[24] R. Bitello and H. S. Lopes, “A differential evolution
approach for protein folding,” IEEE CIBCB, pp.1–5, 2006.

[25] A. Shmygelska, R. A. Hernāndez and H. H. Hoos, “An ant
colony optimization algorithm for the 2D HP protein
folding problem,” Lect Notes Comput Sc, 2463, pp.40–52,
2002.

[26] A. Shmygelska and H. H. Hoos, “An improved ant colony
optimisation algorithm for the 2D HP protein folding
problem,” Lect Notes Artif Intell, 2671, pp.400–417, 2003.

[27] A. Shmygelska and H. H. Hoos, “An ant colony
optimisation algorithm for the 2D and 3D hydrophobic
polar protein folding problem,” BMC Bioinformatics, vol.6,
no.30, pp.1–22, 2005.

[28] R. Santana, P. Larrañaga and J. A. Lozano, “Protein folding
in 2-dimensional lattices with estimation of distribution
algorithms,” Lect Notes Comput Sc, 3337, pp.388–398,
2004.

[29] J. Kennedy and R. C. Eberhart, “Particle swarm
optimization,” in Proceedings of the IEEE International
Conference on Neural Networks, pp.1942–1948, 1995.

[30] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar,
“Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions,” IEEE T
Evolut Comput, vol.10, no.3, pp.281–295, 2006.

[31] Y. Shi and R. Eberhart, “A modified particle swarm

optimizer,” in Proceedings of the IEEE International
Conference on Evolutionary Computation, pp.69–73, 1998.

[32] Z. H. Zhan, J. Zhang, Y. Li and S. H. Chung, “Adaptive
particle swarm optimization,” IEEE T Syst Man Cy B,
vol.39, no.6, pp.1362-1381, 2009.

[33] A. Bãutu and H. Luchian. “Protein structure prediction in
lattice models with particle swarm optimization”, in
proceedings of the 7th international conference ANTS 2010,
pp. 512-519.

[34] M. Neethling and A. P. Engelbrecht, “Determining RNA
secondary structure using set-based particle swarm
optimization,” in Proceedings of the IEEE International
Conference on Evolutionary Computation, pp.1670-1677,
2006.

[35] C. B. Veenhuis, “A set-based particle swarm optimization
method,” Parallel Problem Solving from Nature - PPSN X,
Lect Notes Comput Sc, vol. 5199, pp.971-980, 2008.

[36] W. N. Chen, J. Zhang, S. H. Chung, W. L. Zhong, W. G.
Wu and Y. Shi, “A novel set-based particle swarm
optimization method for discrete optimization problems,”
IEEE T Evolut Comput, vol.14, no.2, pp.278-300, 2010.

[37] H. Zheng, M. Hou and Y. Wang, “An efficient hybrid
clustering-PSO algorithm for anomaly intrusion detection,”
J of Software, vol. 6, no. 12, pp. 2350-2360, 2011.

[38] L. Shu and L. Yang, “A modified PSO to optimize
manufacturers production and delivery,” J of Software, vol.
7, No. 10, pp. 2325-2332, 2012.

[39] D. Pan, Y. Ci, M. He and H. He, “An improved quantum-
behaved particle swarm optimization algorithm based on
random weight,” J of Software, vol. 8, no. 6, pp. 1327-1332,
2013.

Jing Xiao received the B.S and M.S degrees in computer
science from Wuhan University, Wuhan, China, in 1997 and
2000, respectively, and the Ph.D. degree from the National
University of Singapore, Singapore, in 2005. Now she is an
associate professor in the School of Computer Science, South
China Normal University, Guangzhou, China. Previously she
was with the Department of Computer Science, Sun Yat-sen
University. Her current research interests include evolutionary
computation and text/bio-information mining.

Liang-Ping Li received the B. S degree in computer science
from the South China University of Science and Technology in
2009 and the M. S degree from the Sun Yat-sen University in
computer science in 2012. His research interest is evolutionary
computation.

Xiao-Min Hu received the bachelor’s degree in computer
science and the PhD degree in computer science from the Sun
Yat-sen University, Guangzhou, China, in 2006 and 2011,
respectively. She is currently a lecturer with the School of
Public Health, Sun Yat-sen University, China. Her research
interests include evolutionary computation and its applications
on bioinformatics.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1913

© 2014 ACADEMY PUBLISHER

