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Abstract—Using computer programs to predict protein 
structures from a mass of protein sequences is promising for 
discovering the relationship between the protein 
construction and their functions. In the area of 
computational protein structure analysis, the hydrophobic-
polar (HP) model is one of the most commonly applied 
models. The protein folding problem based on HP model has 
been shown as NP-hard, to handle such an NP-hard 
problem, this paper proposes a discrete particle swarm 
optimization algorithm (DPSOHP) to solve various 2D and 
3D HP lattice models-based protein folding problems. The 
discrete particle swarm optimization method used in 
DPSOHP is based on the set concept and the possibility 
theory from a set-based PSO (S-PSO). A selection strategy 
incorporating heuristic information and possibilities is 
adopted in DPSOHP. A particle’s positions in the algorithm 
are defined as a set of elements and the velocities of a 
particle are defined as a set of elements associated with 
possibilities. The experimental results on a series of 2D and 
3D protein sequences show that DPSOHP is promising and 
performs better than various competitive state-of-the-art 
evolutionary algorithms. 
 
Index Terms—Bioinformatics, Computational intelligence, 
Discrete particle swarm optimization, Hydrophobic-polar 
(HP) model, Lattice protein folding 
 

I.  INTRODUCTION 

The structure of a protein has a direct impact on its 
expressive functionalities in nature. Although protein 
sequencing has become easier in bioinformatics, the 
relationship between the protein sequence and its 
structure is still an open problem. Experimental methods 
such as X-ray crystallography and nuclear magnetic 
resonance (NMR) for finding the structure of a protein 
are still quite expensive and time-consuming. As the 
development of molecular dynamics, several theories 
have been proposed to explain the conformation of a 
protein based on its sequences [1, 2]. One of the most 

influential findings is that given a protein sequence, the 
structure of the protein is unique under suitable 
conditions and forms a minimum free energy (MFE) 
conformation [1]. This observation has been widely 
accepted and acts as the basis for the modern prediction 
methods of protein structures based on its sequences [3, 4, 
5]. 

Several computational models for constructing the 
MFE conformations have been proposed, such as the 
hydrophobic-hydrophilic (HP) square lattice model [2], 
toy model [6], functional model [7], and HP side chain 
model [8], etc. The HP model is the most simplified 
model [3, 4, 5, 9, 10]. In HP model, all amino acids in a 
protein are classified as hydrophobic amino acids (H) and 
hydrophilic polar amino acids (P). Hydrophobic amino 
acids have aliphatic side chains and avoid water. So they 
generally form a protein core in the middle of the protein. 
In contrast, hydrophilic amino acids, also termed as polar 
amino acids, have an affinity with the solvent and tend to 
remain in the outer surface of the protein.  According to 
the considered dimensions, an HP model can be in two 
dimensions (2D) or three dimensions (3D). A two 
dimensional square lattice is simulated in the 2D HP 
model, whereas a three dimensional cubic lattice is used 
in a 3D HP model. The protein folds in the lattice with 
each amino acid being placed in one cell of the lattice. 
Even though HP model is simple, the protein folding 
problem (PFP) based on HP model has been proved to be 
NP-hard [11, 12]. 

Computational intelligence (CI) algorithms are 
promising for solving the PFP with HP model. They are 
stochastic and heuristics-based methods and have been 
successfully applied in various NP-hard problems. For 
the PFP with HP model, traditional CI methods such as 
Monte Carlo-based algorithms [13, 14, 15], genetic 
algorithms (GAs) [16, 17, 18, 19, 20, 21], immune 
algorithms (IMs) [3, 22], differential evolution [23, 24], 
ant colony optimization (ACO) algorithms [4, 25, 26, 27], 
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and estimation of distribution algorithms (EDAs) [5, 28] 
have been proposed. Among the above algorithms, the 
flexible ant colony (FAC) algorithm [4] used a special 
heuristic method and a path retrieval mechanism. The 
EDAs proposed in [5] used explicit probability models to 
construct protein conformations.  For example, the 
Markov-EDA (MK-EDA) adopted a Markov probabilistic 
model and the Tree-EDA was based on a tree 
probabilistic model. The MT-EDA used a mixture of trees 
and the experimental results showed that it performed 
better than Tree-EDA for some protein sequences. 
Although there are many CI algorithms that have been 
proposed to solve the PFP, the performance is still 
unsatisfactory.  

In this paper, a particle swarm optimization (PSO) is 
proposed for solving the PFP.  PSO [29] is a swarm-
based CI algorithm and has been proven to obtain good 
performance in continuous domains [30, 31, 32]. A 
discrete roulette-based PSO is employed in PFP in [33] 
and the experiments are conducted on 6 proteins. In [34] 
the authors employed a set-based PSO to the RNA 
secondary structure prediction successfully. For discrete 
optimization, the authors in [35] introduced the set 
concept to PSO and applied to data clustering effectively. 
Recently, the researchers in [36] proposed an updated set-
based PSO (S-PSO) for solving discrete optimization 
problems. The main difference between the newly 
proposed S-PSO and the previous ones [37, 38, 39] is that 
the new one incorporated possibilities to velocity set 
elements for each particle. This update helped to guide 
the movements of particles towards the optima. S-PSO 
used traveling salesman problems (TSP) and knapsack 
problems as examples to demonstrate the good 
performance of the algorithm. S-PSO is in effect a 
combination of PSO learning mechanisms and set 
operations involving probabilistic distributions. Since we 
can construct the 2D and 3D HP lattice model in a lattice 
board, the construction path of the folding process could 
be considered similarly as in TSP. By following the 
framework of S-PSO, a novel algorithm based on it for 
solving PFP is proposed in this paper. The algorithm is 
termed as DPSOHP and it hybridizes the heuristic 
information and the retrieval strategy in FAC and the 
possibility concepts in S-PSO to construct the solutions. 
In the proposed DPSOHP algorithm, a selection strategy 
using both heuristic information and possibilities is 
adopted. A position of a particle is defined as a set of 
elements and a particle’s velocity is defined as a set of 
elements associated with possibilities.  

The performance of DPSOHP will be investigated 
thoroughly and compared with the most competitive CI 
algorithms for solving PFP. The rest of the paper is 
organized as follows.  Section 2 makes a brief overview 
of the HP model in PFP and introduces the traditional 
framework of PSO. In Section 3, some basic concepts and 
operations for PFP in the S-PSO framework are described. 
Section 4 presents the implementation of the proposed 
DPSOHP for solving PFP. Experimental analysis to the 
characteristics of DPSOHP and its performance compared 
with other state-of-the-art CI algorithms are discussed in 

Section 5. Section 6 concludes the paper. 

II. PRELIMINARIES OF THE HP MODEL AND PSO 

This section first describes the definition of the HP 
model in PFP, including existed methods for addressing 
the model. Then the traditional PSO algorithms are 
introduced. 

A.  HP Model of PFP 
The HP model was first introduced by Dill [2]. In this 

model, the amino acid sequence of a protein is 
represented by a sequence of letters consisting of ‘H’ and 
‘P’, where ‘H’ stands for the hydrophobic amino acid and 
the letter ‘P’ stands for the hydrophilic amino acid. Fig. 1 
shows an example of a protein conformation in a 2D HP 
lattice. The black nodes denote H and the white nodes 
denote P. The dashed lines represent the H-H bounds. 
The number 1 indicates the first amino acid in the protein 
sequence. The conformation is optimal which has 
minimum free energy of -4. The energy of a protein 
conformation is defined as the number of adjacent 
hydrophobic amino acid pairs that are formed in the 
lattice but are not consecutive in the sequence. Between 
those two adjacent hydrophobic amino acids there is an 
H-H bound, which has free energy of -1. In Fig. 1, the 
conformation has a total free energy of -4 since it has 4 
H-H bounds. Given a protein sequence, the objective of 
the PFP with  HP model is to find conformations that 
have the minimum total free energy. For evolutionary 
algorithms, the objective function is to minimize the total 
free energy in HP lattice model. The particles in the 
proposed algorithm aim to find a conformation path of a 
protein sequence in the lattice. 

 
No matter in the 2D or 3D HP model, a protein 

sequence folds itself to form a self-avoiding path. We use 
absolute directions in a search space to represent the 
conformation.  For the 2D HP model, the absolute four 
directions are left (L), right (R), forward (F) and 
backward (B). In the 3D HP model, there are two more 
directions up (U) and down (D). A direction starts from 
one cell and points to one of its adjacent cells. The layout 
approach is similar to that in a travelling salesman 
problem, when the cells in the lattice are regarded as 
cities and the connections between cells are considered as 
arcs. So we can employ the discrete evolutionary 
algorithms that perform successfully in TSP to deal with 
the PFP with HP lattice model. 

 

Fig. 1.  A conformation of sequence 
HHPPPPPHHPPPHPPPHP in the 2D HP model. 
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One of the distinct features of PFP is to construct a 
self-avoiding path. To avoid overlaps of amino acids in 
the lattice, the algorithm in [25] used two mechanisms. 
First, a simple look-ahead mechanism was used to 
disallow placing any amino acids in a position that can 
cause stagnation except for the two ending amino acids. 
Second, if no placement can comply with the look-ahead 
mechanism, half of the already constructed path was 
released as retrieval.  Different from the method in [25], 
FAC[4] randomly chose a position and released the 
corresponding amino acids.  It also used a mechanism to 
ensure that the retrieval in the same direction cannot be 
performed twice consecutively. In DPSOHP, we follow the 
self-avoiding folding strategies of FAC[4].  

B.  Introduction to PSO 
PSO[29] is inspired by the interpretations of the 

movement of organisms in a school of flying birds. The 
birds are abstracted as particles which search for food. 
When searching solutions in a continuous space, each 
particle dynamically adjusts its flying velocities and 
positions iteratively according to its own experience and 
other particles’ experiences. Learning is a distinguished 
feature of PSO. Suppose there are m particles searching 
solutions in an n-dimensional continuous space. Each 
particle i (i=1,2,…,m) has two attributes: velocity and 
position, which are denoted as Vi = <vi

1,vi
2,…,vi

n> and Xi 
= <xi

1,xi
2,…,xi

n>, respectively. The basic velocity and 
position updating rules are defined as follows: 

 1 2( - ) ( - )j j j j j j j j
i i i i i i iv v c r pbest x c R gbest x= + +

 (1) 

 
j j j

i i ix x v= +   (2) 

where j (j=1,2,…,n) denotes the jth dimension of the 
particle i; c1 and c2 are the acceleration speed constants 
which weigh the importance of cognitive and social 
components respectively; ri

j and Ri
j are randomly 

generated numbers from [0,1]. The vector pbesti = 
<pbesti

1, pbesti
2,…, pbesti

n> is the best solution found by 
particle i so far and the vector gbest = <gbest1, gbest2,…, 
gbestn> is the best solutions found by all the particles so 
far. 

After the first PSO was proposed, many researchers 
developed variants of PSO to improve its performance. 
The authors in [30] introduced an inertia weight ω to the 
velocity updating rule as: 

 1 2( - ) ( - )j j j j j j j j
i i i i i i iv v c r pbest x c R gbest xω= + +  (3) 

They showed that the inertia weight ω had the effect 
to balance the global and local search ability of the 
algorithm. 

Another important variant is the comprehensive 
learning PSO (CLPSO) in [13]. The velocity updating 
rule is given by: 

 ( )( )
i

j j j j j
i i i f j iv v cr pbest xω= + −

 (4) 

where fi(j) defines which particle’s experience should be 
learnt from by particle i for dimension j.   

The value of fi(j) is computed as follows.  For each 
dimension j of particle i, a number is randomly generated 
from [0,1]. If the number is larger than a parameter Pc 
called learning probability, then fi(j) = i, which means 
particle i will learn from its own experience. Otherwise 
particle i will learn from another particle’s experience. 
Then the algorithm employs a tournament selection 
strategy to determine the value of fi(j). Two particles are 
randomly selected, and the value of fi(j) is the ID of the 
particle with higher fitness. In this way, all these 

j
jfi

pbest )(  can be derived from different particles’ 

pbest positions. To ensure that a particle learns from good 
directions and saves time on learning from poor 
directions, CLPSO does not use the learning strategy in 
every generation. When a particle stops improving for a 
certain number of generations which is called refreshing 
gap rg, CLPSO recalculates the value of fi for the particle. 
According to the discussions in [36], the velocity 
updating  strategies  in CLPSO were very effective. 

III. BASIC CONCEPTS AND OPERATIONS FOR PFP IN THE 
S-PSO FRAMEWORK 

A.  Solution Representation 
According to the S-PSO[36] framework, candidate 

solutions are in effect crisp subsets out of a universal set 
E of elements. In the 2D HP model for PFP, each element 
is denoted as an arc (j, d), where j is the amino acid index 
(j = 1,2,…,n,); n is the number of amino acids and 
d ∈ {L,R,F,B} is the folding direction. There are n 
dimensions E1, E2, …, En in the PFP with Ej ⊆ E and n is 
equal to the number of amino acids. Each dimension Ej 
comprises four arcs that are connected with j, and can be 
denoted as Ej = {(j,L), (j,R), (j,F), (j,B)}. Each candidate 
solution X is composed of an element in Ej with j = 
1,2,…,n and the arcs must be connected to form a protein 
folding conformation. X is feasible only when it forms a 
self-avoiding path. 

Fig. 2 shows an example of the representation of the 
folding conformation. The solid nodes are amino acids in 
the protein sequence. The solution by particle i is 
represented as Xi = {(2,B), (3,R), (4,R), (5,F), (6,L)}. 
Suppose a particle i chooses the first amino acid as the 
starting point for folding the protein sequence.  Then 
both E1 and X1 are empty sets. The amino acids with 
indices from 2 to 6 have non-empty dimensions and an 
element is chosen from each dimension to form a self-
avoiding path. The representation of the folding 
conformation in Fig. 2 is described as follows: Xi = 
{(2,B), (3,R), (4,R), (5,F), (6,L)}. 

In the remainder of this paper, we also use position to 
represent a feasible solution found by a particle. The 
position of a particle i is the same as its solution  

},...,,{ 21 n
iiii XXXX =  and the jth dimension of its 

position is j
iX . 
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Fig. 2. An example of the representation scheme in S_PSO for the 

protein folding problem. 

B.  Folding Velocity 
In S-PSO, a velocity is defined as a set of possibilities, 

which are used to guide the movements of particles 
towards the optima. Given a universal set E, the velocity 
V is defined as: 

 }|)(/{ EeepeV ∈=  (5) 

where ]1,0[)( ∈ep  is the possibility for selecting the 
element e. We use a subscript i to denote the velocity Vi 
for each particle i, and thus the velocity of dimension j is 
denoted as j

iV , j = 1,2,…,n. 

Fig. 3 illustrates the velocity 2
iV  of particle i for 

selecting an element in dimension 2 in the PFP. The 
dashed lines are the possible folding directions. Folding 
backward has the largest possibility for being chosen by 
the particle, whereas folding left has the smallest 
possibility. In the subsequent section, the method for 
adaptively updating the possibilities in the velocity will 
be presented. 

 
C.  Calculation Operations 

Traditional PSOs for continuous optimization involve 
several arithmetical operations for updating the positions 
of particles and their velocities. However, for discrete 
optimization, operations such as additions and 
subtractions are needed to be redefined. Here we describe 
the operations for PFP based on the S-PSO framework. 

1) Coefficient×Velocity: 
Multiply a coefficient by a velocity, the result is also a 

velocity. Given a coefficient c(c≥0) and a velocity 
V={e/p(e)|e∈E} defined on E, the product is: 

 { / ) | }cV e p e e E= ∈´(  (6) 

If the multiplication is greater than 1, p’(e) is simply 
truncated to 1. For example, when 
Vi

2={(2,L)/0.2,(2,R)/0.4,(2,F)/0.6,(2,B)/0.8},  
suppose c=2.0, then we have 

cVi
2={(2,L)/0.4,(2,R)/0.8,(2,F)/1.0,(2,B)/1.0}. 
2) Velocity + Velocity: 
Given two velocities V1={e/p1(e)|e ∈ E} and 

V2={e/p2(e)|e∈E}, V1 plus V2 is defined as 

 }|))(),(max(/{ 2121 EeepepeVV ∈=+  (7) 

The possibility after the summation of two velocities 
equals to the larger possibility of the two velocities. For 
example, suppose V1

2 = {(2,L)/0.2, (2,R)/0.4, (2,F)/0.6, 
(2,B)/0.8} and V2

2 = {(2,L)/0.3, (2,R)/0.1, (2,F)/0.6, 
(2,B)/0.9}, then V1

2+V2
2 = {(2,L)/0.3, (2,R)/0.4, (2,F)/0.6, 

(2,B)/0.9}. 
3) Position- Position: 
The minus operator between the positions of two 

particles is defined the same as the subtraction of two 
crisp sets, as 

 }and|{ BeAeeBA ∉∈=−  (8) 

For example, given Xi
2 = {(2,L)} and pbesti

2 = 
{(2,R)}, then pbesti

2 − Xi
2 = {(2,R)}. If Xi

2 = {(2,R)}, 
then pbesti

2 − Xi
2 = ∅ . 

4) Coefficient×Position: 
Multiplying a coefficient by a position is defined as a 

velocity. Given a coefficient c (c ≥ 0) and a position A, 
the product is defined as follows: 

 }|)(/{ EeepecA ∈=  (9) 

where 

 
⎪
⎩

⎪
⎨

⎧

∉
≤≤∈

>∈
=

Aeif
candAeifc

candAeif
ep

,0
10,

1,1
)(

 

(10) 

For example, given Xi
2 = {(2,L)} and c = 0.5, 

multiplying c by Xi
2, then cXi

2 = {(2,L)/0.5}, which is a 
velocity. 

IV. IMPLEMENTATION OF THE PROPOSED DPSOHP FOR 
SOLVING PFP 

This section describes the implementation of the 
proposed DPSOHP in solving PFP in detail. First, we 
outline the overall framework of the algorithm. Then the 
velocity updating and position updating processes are 
described. For simplicity, we only present examples in 
2D space for the position updating process. At last, we 
present the method for extending the algorithm to 3D 
space. 

A.  Framework of DPSOHP  
The overall framework of DPSOHP is presented as 

Algorithm 1. In the following subsections, we will 
describe the special velocity updating and position 
updating processes of DPSOHP. 

 
Algorithm 1  DPSOHP algorithm 
1:  Initialization 
2:  While termination not met 
3:    for each particle i (i=1,2,…,m) 

Fig. 3. An example of a velocity. 
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4:       velocity updating 
5:       position updating 
6:    end for                     
7:  End While 

B.  Velocity Updating 
In S_PSO, the authors showed that the velocity 

updating strategies in CLPSO obtained the best results in 
discrete domains. Accordingly, in DPSOHP, we use the 
velocity updating rule in CLPSO with the redefinitions in 
S_PSO. The arithmetic operators in the velocity updating 
rule of DPSOHP can be summarized as the following 
seven steps. 

(1) Calculate ωvi
j by Equation (6); 

(2) Calculate the value of fi(j) by the method 
mentioned in Section II B;; 

(3) Calculate ( )i

j j
f j ipbest x−  by Equation (8); 

(4) Generate a random number rij from [0,1]; 
(5) Calculate ( )( )

i

j j j
i f j icr pbest x−  by Equation (9); 

(6) Calculate ( )( )
i

j j j j
i i f j iv cr pbest xω + −  by Equation (7); 

(7) Updating vi
j by the result calculated in step (6). 

In the construction phase, there are only four directions 
for a particle to choose. With the effect of inertia weight, 
the possibility of a direction may decrease very fast. It 
means that the probability to choose the direction will be 
very low. As a result, the algorithm can be easily trapped 
in a local optimum. To address this problem, we define a 
lowest possibility pmin. When a possibility is lower than 
pmin, it will be adjusted to pmin. 

C.  Position Updating  
Each particle uses the newly updated velocity to adjust 

its position in order to improve its solution quality. Since 
the number of elements in each dimension is limited in 
the discrete space, a particle needs to reconstruct the path 
for adjusting the position. Given a protein sequence with 
length n, i.e. n amino acids, a square lattice board with 
n+2 rows and n+2 columns is used for the 2D HP model 
as in Fig.4. Each cell in the lattice is indexed according to 
their positions on the board from the top left cell 0 to the 
bottom right cell (n+2)2-1. In this way, when a protein 
sequence folds to the left, right, forward, or backward, the 
corresponding increments of the cell index is -1, 1,-(n+2), 
and n+2. Let ⎡ ⎤2/nMid = , the indices of the two 
central cells are Mid×(n+2)+Mid and Mid×(n+2)+Mid+1, 
and they are termed as the ‘left start cell’ and the ‘right 
start cell’, respectively. The construction of solutions is 
based on the lattice board. In the following, the path 
construction process is described, including a path 
retrieval strategy for fixing infeasible solutions and its 
extension to 3D HP model. 

 
Fig. 4. The square lattice for a protein with n amino acids. 

1) Path Construction 
The path construction process is similar to the method 

in [4]. For a protein sequence, the indices of the two 
middle amino acids are Mid-1 and Mid, respectively. At 
the beginning of the construction phase, each particle 
chooses the two middle amino acids and places them in 
the two central cells in the lattice board. After that, the 
particles randomly choose to fold the left part or right 
part of the protein sequence. Fig. 4 gives part of the 
folding conformation of a protein in the square lattice 
after several construction steps. The numbers in the figure 
indicate the indices of the cells. 

During the construction process, heuristic information 
is used to bias the search.  Because the mission for PFP 
is to find the conformation with the minimum energy, a 
direction that can result more H-H bounds will have a 
higher probability to be chosen to fold the protein. For 
hydrophobic amino acids, the heuristic values are 
calculated as: 

 1+= jdjd hη  (11) 

where hjd is the number of new H-H bounds obtained by 
placing sj with direction d.  For example, in 2D HP 
model, hjd could be 0, 1, 2, or 3. In order to ensure that ηjd 
is greater than 0, we plus 1 to hjd. This is important to not 
exclude any directions in the construction phase by 
making sure that the probability calculated in equation 
(13) is greater than 0. 

For polar amino acids, the heuristic values are 
influenced by the density of grids and the number of new 
P-P bounds as: 

   1jd jd jdv hη = + +´
 (12) 

where vjd is the number of directions that the next amino 
acid can choose after placing sj and h´jd is the number of 
new P-P bounds obtained. Polar amino acids tend to 
surround hydrophobic amino acids and contact water 
molecules directly. Therefore, it is better to fold them to 
the grids that involve more vacant grids. Although polar 
amino acids contribute no new H-H bounds, forming new 
P-P bounds can increase the chances for the formation of 
other new H-H bounds. 

To choose the direction in each construction step, the 
proportional selection method is used. Each direction d 
for folding an amino acid sj is determined both by the 
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heuristic information and the possibilities of the elements 
as calculated as following: 

 

jd jd
jd

jq jqq allowed

p
pro

p

β

β

η
η

∈

×
=

×∑
 

(13) 

where β is a parameter for controlling the relative 
importance of the heuristic information. pjd is the 
pheromones that are released on the directed virtual 
connections between adjacent squares, where 
i=0,1,2,..,(n+2)2-1 and d=L, R, F, B. 
2) Path Retrieval 

During the path construction, an amino acid cannot be 
placed if all possible locations are already occupied by 
other amino acids. In that case, the protein cannot be 
folded any more during the construction phase and it is 
termed stagnation. Therefore, a path retrieval strategy is 
used to adjust an infeasible solution into a feasible one. 

A position is randomly been chosen and the 
corresponding amino acids are released when stagnation 
happens. A mechanism is also used to ensure that the 
retrieval in the same direction is not performed twice 
consecutively. The retrieval strategy employed in 
DPSOHP is described as follows. Given a sub-sequence 
{sleft,..., sstartL, sstartR,..., sright}, left and right are the indices 
of the left most and right most amino acids that have 
already been constructed; startL and startR are the 
indices of the two middle amino acids. If the stagnation 
happens on the left path of the protein sequence, the 
procedure of left path retrieval is performed, whereas the 
procedure of right path retrieval is performed for the right 
stagnation. Fig. 5 illustrates the flowchart for performing 
path retrieval to relieve stagnation. 

 
Fig. 5. Flow chart of path retrieval. 

 
For example, when the stagnation happens on the right 

path currently, if startR<right and the last retrieval is not 
performed on the right path, the right part of the sequence 
is released (the left part of Fig. 5). To retrieve the right 
part of the sequence, an index j is generated randomly 
from [startR+1, right-1] and then the sub-sequence 
{sj+1,..., sright} is released. However, if startR ≥ right or 
the last retrieval is performed on the right path, the left 

part of the sequence is released. An index j is generated 
randomly from [left+1, startL-1] and then the sub-
sequence {sleft,...,sj-1} is released. 

Fig. 6 shows an example for the retrieval where the 
black nodes denote the two middle amino acids. For 
folding a No. 3 amino acid, the sequence stagnates on the 
left path (Fig. 6a), so the left path retrieval is performed. 
Suppose a random integer j=6 is generated, then the 
amino acids from indices 4 to 5 are released. Fig. 6b 
shows the path after the retrieval. It can be seen that the 
stagnation is not cleared because the left stagnation will 
happen again after several construction steps. Fig. 6c 
shows the conformation when the left stagnation happens 
again. Since the left path retrieval has been performed 
before, the right path retrieval is performed this time. 
Suppose the randomly generated integer j=13, then amino 
acids from indices 14 to 20 are released. The path after 
the retrieval is shown in Fig. 6d and it can be seen that 
the stagnation is now cleared. 

 
Fig. 6. An example of path retrieval. 

 
3) Further Extension to the 3D model 

To extend the algorithm to the 3D HP model, some 
changes are listed as follows. First, there are two more 
absolute directions up (U) and down (D) in the 3D model. 
The lattice board is changed to be a cubic lattice with the 
size of (n+2)3. The cells in the lattice are indexed from 0 
to ((n+2)3-1). When a particle chooses to go up or down, 
the corresponding increments of the cell index is -(n+2)2 
and (n+2)2. The indices of the two central cells are 
Mid×[(n+2)2+n+3] and Mid×[(n+2)2+n+3]+1 respectively. 

V. EXPERIMENTAL ANALYSIS 

In this section, we first investigate the influence of 
different parameter settings for the performance of 
DPSOHP. The performances of DPSOHP in solving 2D HP 
PFP and 3D HP PFP are then analyzed and compared 
with some state-of-the-art computational intelligence 
algorithms such as IA, EMC, GA, and EDAs. 

Table 1 tabulates the benchmark HP protein sequences 
used in this paper, where l is the number of amino acids 
in the protein sequence and E* is the best-known free 
energy of the sequence. The default parameter settings of 
the experiments are set as c=2.0, ω=0.95, β=3, pmin=0.05, 
m=50. We follow the CLPSO [29] to set the refreshing 
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gap rg=7 and: 

 

10( 1)exp( ) 1
10.05 0.45

exp(10) 1i

i
mPc

− −
−= + ×

−  
(14) 

where i is the index of the particle and m is the swarm 
size. DPSOHP was implemented in C++ language on a PC 
with 2.0GHz Intel Pentium E2180 CPU. The 
experimental results of all the other compared algorithms 
were obtained from the reference papers. We set the same 
evaluation numbers as the compared algorithms did and 
test DPSOHP on those protein sequences which were 
tested in the compared algorithms. 

TABLE 1.  
BENCHMARKS OF PROTEIN SEQUENCES 

No. l E* protein sequence 

1 20 -9 HPHP2H2PHP2HPH2P2HPH 
2 24 -9 H2P2(HP2)6H2 
3 25 -8 P2HP2(H2P4)3H2 
4 36 -14 P3H2P2H2P5H7P2H2P4H2P2HP2 
5 48 -23 P2H(P2H2)2P5H10P6(H2P2)2HP2H5 
6 50 -21 H2(PH)3PH4P(HP3)2HP4(HP3)2HPH4(PH)3PH2 
7 60 -36 P2H3PH8P3H10PHP3H12P4H6PH2PHP 
8 64 -42 H12(PH)2((P2H2)2P2H)3(PH)2H11 
9 85 -53 H4P4H12P6(H12P3)3HP2(H2P2)2HPH 

10 100 -48 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10PH2PH7P11H7P2

HPH3P6HPH2 

11 100 -50 P3H2P2H4P2H3(PH2)2PH4P8H6P2H6P9HPH2PH11P2H3P
H2PHP2HPH3P6H3 

A.  Investigations of Parameter Settings in DPSOHP  
The influence of the heuristic reinforcement value β 

and the inertia weight ω in DPSOHP is analyzed by the 
average run-time. Each group of parameters is tested for 
30 independent trials. The average run-time required for 
reaching the optimal solution is recorded for each trial. 
Fig. 7 illustrates the influence of different parameter 
settings β and ω for the sequences 1, 2, and 3. Panels 
from row 1 to row 3 illustrate influences of sequences 1-3. 
Panels on the left illustrate influences for β, and panels on 
the right illustrate influences for ω. The other parameter 
values are fixed. The characteristics of the two 
parameters to the performance can be concluded as: 
(1) When the heuristic reinforcement value β increases, 
the time needed to reach the optima becomes shorter for 
sequences 1 and 2. For sequence 3, the best result is 
obtained when β=3. 
(2) When the inertia weigh ω is about 0.95, the 
performance of the algorithm is good in most of the test 
cases. Overall, the influence of ω is not so important as β. 

According to the above experimental analysis, we set 
β=3 and ω=0.95 in all of our experiments. 

 
Fig. 7. Influence of different parameters values for β and ω on the 

average run-time. 
 

B.  Experiments in the 2D HP Model 
In the first experiments we compare DPSOHP with IA 

[3, 25], EMC [13], GA [21], and some EDAs [5] in 
solving PFP with 2D HP model. Sequences 1 to 8 in 
Table 1 are used as the test instances for comparing 
DPSOHP with IA, EMC, and GA, where sequences 1 to 
11 are used for comparing with the EDAs in [5]. 
1) Comparison with IA, EMC and GA 

The parameter settings of EMC and GA can be referred 
to [13, 21]. IA used memory B cells, with the aging 
values τB=1 and τBmem=5. All the algorithms were tested 
for 30 independent trials with a maximum number of 
energy evaluations 107. The results are tabulated in Table 
2 to Table 4. The best results are represented in bold in 
the tables.  

Table 2 compares the average number of energy 
evaluations and success rates of IA and DPSOHP. AE 
indicates the average number of energy evaluations and 
SR indicates the percentage of times which the optimal 
solution is found in all trials. For short sequences 1-4 
(l≤36), DPSOHP and IA both find the optimal solutions in 
all trials successfully. However, the average number of 
energy evaluations used by DPSOHP is much smaller than 
those in IA for all short sequences. For sequences 5, 7 and 
8, DPSOHP can find the optimal solutions with higher 
success rates than IA can. Especially for sequences 7 and 
8, IA cannot find the optimal solutions in any one trial, 
whereas DPSOHP obtains the success rate 43.33% and 
40% respectively. For sequence 6, IA with a success rate 
100% performs better than DPSOHP with a success rate of 
90%. 
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TABLE 2.  

COMPARISONS OF AVERAGE NUMBER OF ENERGY EVALUATIONS AND 
SUCCESS RATE.  

No. 
DPSOHP IA 

AE SR AE SR 

1 2174 100 23710 100 
2 6525 100 69816.7 100 
3 39173 100 269513.9 100 
4 46007 100 2032504 100 
5 1044558 100 6403985.3 56.67 
6 3088689 90 778906.4 100 
7 4009735 43.33 - 0 
8 4995706 40 - 0 

- indicates that the algorithm can’t obtain the optimal solution in all 
trials. 

Table 3 compares the best energy values obtained by 
EMC, IA, GA, and DPSOHP.  DPSOHP can find the 
optimal solutions for all the eight sequences, whereas the 
other algorithms cannot find the optimal solutions for 
sequences 7 and 8. 

Table 4 compares the number of energy evaluations 
required for the best trial to achieve the optima by 
DPSOHP, IA, EMC and GA. DPSOHP obtains the optimal 
results with the lowest number of energy evaluations 
except for sequence 6. 
2) Comparison with EDAs 

Because three more sequences number 9 to 11 with 
longer lengths are used in this comparative experiment, a 
larger number of energy evaluations are conducted. The 
EDAs in [5] use a population size of m=5000 individuals, 
a maximum of g=5000 generations, and the truncation 
selection T=0.1. Since the EDAs use the best elitism, the 
maximum number of energy evaluations can be 
calculated as m+m(1-T)(g-1), which is slightly larger than 
2×107. Hence, we run DPSOHP with a maximum number 
of energy evaluations 2×107 in comparisons with the 
EDAs in [5]. All the algorithms are tested for 50 
independent trials. 

TABLE 3.  
COMPARISONS OF BEST ENERGY VALUES 

No. E* DPSOHP IA EMC GA 

1 -9 -9 -9 -9 -9 
2 -9 -9 -9 -9 -9 
3 -8 -8 -8 -8 -8 
4 -14 -14 -14 -14 -14 
5 -23 -23 -23 -23 -23 
6 -21 -21 -21 -21 -21 
7 -36 -36 -35 -34 -35 
8 -42 -42 -39 -37 -39 

 
TABLE 4.  

COMPARISONS OF BEST NUMBER OF ENERGY EVALUATIONS 

No. DPSOHP IA EMC GA 

1 217 1925 9374 30492 
2 350 2479 6929 30491 
3 1780 4212 7202 20400 
4 2754 43416 12447 301339 
5 21486 37269 165791 126547 
6 153984 18919 74613 592887 

Table 5 compares the performance of DPSOHP and 
EDAs with BV indicating the best energy value obtained 
in the test trials. For sequences 1 and 2, all algorithms can 
find the optimal solutions in all trials successfully. For 
sequences 3, only DPSOHP and MK-EDA can find the 
optimal solution in all trials successfully. For sequences 
4-6, DPSOHP can find the optimal solutions in all trials 
successfully, whereas the EDAs fail in some trials. 
Especially for sequences 4 and 5, EDAs can only find the 
optimal solutions in less than 20% of all trails.  Note 
that DPSOHP can find the optimum -53 of sequence 9, 
compared to MK-EDA which can only find the best 
energy value of -52. For the longest sequences 10 and 11 
with the optima -48 and -50 respectively, DPSOHP and 
MT-EDA can both find the near optima -47 and -48, 
whereas DPSOHP has higher success rates to find the near 
optima.  

C.  Experiments in the 3D HP Model  
In these experiments, the performances of DPSOHP in 
solving PFP with 3D HP lattice model are analyzed. 
DPSOHP is compared with a hybrid GA [21], IA [3, 22], 
and EDAs [5]. The hybrid GA uses an absolute encoding 
and a repair-based approach. Sequences 1-8 in Table 1 are 
used as the test instances for the 3D model. All the 
algorithms are tested for 50 independent trials with a 
maximum number of energy evaluations 105. To our best 
knowledge, the optimum energy values for the tested 
sequences in 3D HP lattice model are yet known. We 
consider that the less energy values an algorithm obtained, 
the better the algorithm is. The best values, means, and 
standard deviations (σ ) are shown in Table 6. The best 
results among the compared algorithms are marked in 
bold. 

TABLE 5.  
RESULTS OF DPSOHP AND EDAS IN 2D HP MODEL 

No. E*
DPSOHP MK-EDA Tree-EDA MT-EDA

BV S BV S BV S BV S

1 -9 -9 100 -9 100 -9 100 -9 100
2 -9 -9 100 -9 100 -9 100 -9 100
3 -8 -8 100 -8 100 -8 88 -8 90
4 -14 -14 100 -14 8 -14 4 -14 16
5 -23 -23 100 -23 14 -23 18 -23 4
6 -21 -21 100 -21 86 -21 98 -21 96
7 -36 -36 50 -35 10 -35 12 -35 18
8 -42 -42 60 -42 6 -41 10 -42 12
9 -53 -53 2 -52 4 -51 2 -50 4

10 -48 -47 8 -46 6 -46 16 -47 2
11 -50 -48 4 -47 2 -47 12 -48 2

 
TABLE 6.  

RESULTS OF DPSOHP, HYBRID GA, IA AND TREE-EDA IN 3D HP 
MODEL 

No.
DPSOHP hybrid GA IA Tree-EDA 

BV mean±σ BV mean±σ BV mean±σ BV mean±σ 

1 -11 -11.00±0.00 -11 -9.84±0.86 -11 -10.90±0.32 -11 -11.00±0.00
2 -13 -13.00±0.00 -11 -10.00±0.87 -13 -12.22±0.65 -13 -12.86±0.16
3 -9 -9.00±0.00 -9 -8.64±0.69 -9 -8.88±0.48 -9 -8.90±0.09
4 -18 -18.00±0.00 -18 -13.72±1.41 -18 -16.08±1.02 -18 -16.34±0.51
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5 -31 -28.50±0.91 -28 -18.90±2.08 -28 -24.82±0.71 -27 -23.62±1.83
6 -30 -24.78±1.11 -22 -19.06±1.46 -23 -22.08±1.43 -30 -26.00±2.82
7 -51 -48.94±0.87 -38 -32.28±3.09 -41 -39.02±0.50 -37 -32.94±1.53
8 -54 -48.14±2.05 -36 -30.84±2.55 -42 -39.07±1.20 -44 -34.70±6.87

 
It can be seen in Table 6 that not only the best energy 

values but also the mean energy values reached by 
DPSOHP are the best in all algorithms except for the 
sequence 6. For sequences 1 to 4, DPSOHP obviously 
outperforms the other algorithms since it can find the 
optimal energy values in all trails. It is remarkable that 
DPSOHP achieves lower energy values in sequences 5, 7, 
and 8. In these sequences, the best energy values obtained 
by the other algorithms are -28, -41, and -44 respectively, 
whereas DPSOHP obtains the much better results of -31, -
51, and -54. For sequence 6, DPSOHP can still obtain the 
same best value as that by Tree-EDA but with a slightly 
poorer mean energy value. 

Since the algorithm cannot obtain satisfying results 
within the predefined maximum number of energy 
evaluations for the longer protein sequences, we use a 
larger number of energy evaluations to investigate 
whether the performance of the algorithm can be better.  
The maximum number of energy evaluations 5×106 is 
used by DPSOHP and the results are compared with those 
of MK-EDA, Tree-EDA, and MT-EDA with the same 
maximum number of energy evaluations. The results are 
shown in Table 7. We can see that by using more energy 
evaluations, DPSOHP can find lower energy values for 
sequences 5-8. DPSOHP is more stable for obtaining high-
quality solutions than the compared EDAs. It can be seen 
that not only the best energy values, but also the mean 
energy values and the standard variances of DPSOHP 
become better and outperform the EDAs. 

 
TABLE 7.  

RESULTS OF DPSOHP AND EDAS IN THE 3D HP MODEL 

No. 
DPSOHP MK-EDA Tree-EDA MT-EDA 

BV mean±σ BV mean±σ BV mean±σ BV mean±σ 

1 -11 -11.00±0.00 -11 -10.82±0.38 -11 -10.68±0.51 -11 -10.84±0.37
2 -13 -13.00±0.00 -13 -12.02±0.94 -13 -11.30±0.85 -13 -11.88±0.93
3 -9 -9.00±0.00 -9 -8.96±0.19 -9 -8.92±0.27 -9 -9.00±0.00
4 -18 -18.00±0.00 -18 -16.40±0.80 -18 -16.24±0.83 -18 -16.50±0.96
5 -31 -30.97±0.18 -29 -27.24±0.92 -29 -26.88±0.93 -29 -27.06±1.08
6 -31 -29.43±0.63 -29 -25.70±1.26 -31 -25.94±1.58 -28 -25.74±1.22
7 -53 -52.23±0.57 -49 -46.30±2.04 -49 -43.78±3.10 -48 -42.00±6.76
8 -59 -55.07±1.26 -52 -46.78±2.28 -49 -43.72±2.43 -50 -45.64±2.03

VI. CONCLUSION 

This paper proposes a novel DPSOHP algorithm for 
solving PFP with 2D and 3D HP lattice models. The 
algorithm adopts the framework of S-PSO for solving 
discrete optimization problems. In DPSOHP, the PSO 
learning mechanisms and the set operations are 
incorporated to search for the optimal protein 
conformation of a protein sequence. Particles start from 
the center of the lattice board and construct the protein 
conformation from the middle of the protein sequence. A 
selection strategy using both heuristic information and 

possibilities is used in the algorithm. In this paper, the 
overall performance of DPSOHP has been analyzed in 
terms of solution quality and stability. The experimental 
results show that the proposed DPSOHP is promising and 
more effective than the other state-of-the-art evolutionary 
algorithms for solving the PFP with 2D and 3D HP lattice 
models. 

ACKNOWLEDGMENTS 

This work is partially supported by the National 
Natural Science Foundation of China (NSFC) projects 
with No. 61202296 and 61202130, the National High-
Technology Research and Development Program (“863” 
Program) of China under Grand No. 2013AA01A212, the 
Natural Science Foundation of Guangdong Province 
project with No. S2012030006242 and the State Key 
Laboratory of Software Engineering project with No. 
SKLSE2012-09-08. 

REFERENCES 
[1] C. B. Anfinsen, E. Haber, M. Sela and F. H. White, “The 

kinetics of the formation of native ribonuculease during 
oxidation of the reduced polypetide chain,” Proc Natl Acad 
Sci, 47, pp.1309–1314. 1961.  

[2] K. A. Dill, “Theory for the folding and stability of globular 
proteins,” Biochemistry, 24, pp.1501–1512. 1985. 

[3] V. Cutello and G. Nicosia, “An immune algorithm for 
protein structure prediction on lattice models,” IEEE T 
Evolut Comput, vol.11, no.1, pp.101–117, 2007. 

[4] X. M. Hu, J. Zhang, J. Xiao and Y. Li, “Protein folding in 
hydrophobic-polar lattice model: a flexible ant colony 
optimization approach,” Protein Peptide Lett, 15, pp.469–
477, 2008. 

[5] R. Santana, P. Larrañaga, and J. A. Lozano, “Protein 
folding in simplified models with estimation of distribution 
algorithms,” IEEE T Evolut Comput, vol 12, no 4, pp.418–
438, 2008. 

[6] F. H. Stillinger, T. H. Gordon, and C. L. Hirshfeld, “Toy 
model for protein folding,” Phys Rev E, vol 48, no 2, 
pp.1469–1477, 1993. 

[7] J. D. Hirst, “The evolutionary landscape of functional 
model proteins,” Protein Eng, 12, pp.721–726, 1999. 

[8] M. S. Li, D. K. Klimov and D. Thirumalai, “Folding in 
lattice models with side chains,” Comput Phys Commun, 
vol 147, no 1, pp.625–628, 2002. 

[9] B. Chen, L. Li and J. Lu, “A novel EDAs based method for 
HP model protein folding,” CEC’09, pp.309–315, 2009. 

[10] H. Lu and G. Yang, “Extremal Optimization for protein 
folding simulations on the lattice,” Comput Math Appl, 57, 
pp.1855–1861, 2009. 

[11] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, 
and M. Yannakakis, “On the complexity of protein 
folding,” J Comput Biol, vol 5, no 3, pp.423–466, 2008. 

[12] N. Krasnogor, W. E. Hart, J. Smith and D. A. Pelta, 
“Protein structure prediction with evolutionary 
algorithms,” GECCO, pp.1596–1601, 1999. 

[13] F. Liang and W. H. Wong, “Evolutionary Monte Carlo for 
protein folding simulations,” J Chem Phys, vol.115, no. 7, 
pp.3374–3380, 2001. 

[14] R. Ramakrishnan, J. F. Pekny, and B. Ramachandran, “A 
dynamic Monte Carlo algorithm for exploration of dense 
conformational spaces in heteropolymers,” J Chem Phys, 
vol. 106, no.6, pp.2418–2424, 1997. 

[15] JF. Liu, G. Li and J. Yu. “Protein-folding simulation of the 

1912 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER



hydrophobic-hydrophilic model by combining pull moves 
with energy landscape paving”, Phys Rev E, 84(3), 2011. 

[16] C. Cotta, “Protein structure prediction using evolutionary 
algorithms hybridized with backtracking,” Lect Notes 
Comput Sc, 2687, pp.321–328, 2003. 

[17] M. T. Hoque, M. Chetty and L. S.  Dooley, “Non-
isomorphic coding in lattice model and its impact for 
protein folding prediction using genetic algorithm,” IEEE 
CIBCB, pp.1–8, 2006. 

[18] T. Z. Jiang, Q. H. Cui, G. H. Shi and S. D. Ma, “Protein 
folding simulations of the hydrophobic-hydrophilic model 
by combining tabu search with genetic algorithms,” J 
Chem Phys, vol. 119, no. 8, pp.4592–4596, 2003. 

[19] M. V. Judy and K. S. Ravichandran, “A solution to protein 
folding problem using a genetic algorithm with modified 
keep best reproduction strategy,” CEC’07, pp.4776–4780, 
2007. 

[20] R. König and T. Dandekar, “Improving genetic algorithms 
for protein folding simulations by systematic crossover,” 
BioSystems, 50, pp.17–25, 1999. 

[21] R. Unger and J. Moult, “Genetic algorithms for protein 
folding simulation,” J Mol Biol, 231, pp.75-81, 1993. 

[22] V. Cutello, G. Nicosia and M. Pavone, “An immune 
algorithm with hyper-macromutations for the Dill‘s 2D 
hydrophobic-hydrophilic model,” CEC’04, pp.1074–1080, 
2004. 

[23] C. P. Almeida, R. A. Goncalves, M. C. Goldbarg, E. F. G. 
Goldbarg and M. R. Delgado, “TA-PFP: A transgenetic 
algorithm to solve the protein folding problem,” in 
Proceedings of the 7th IEEE International conference on 
Intelligent System Decision and Application, pp.163–168, 
2007. 

[24] R. Bitello and H. S. Lopes, “A differential evolution 
approach for protein folding,” IEEE CIBCB, pp.1–5, 2006. 

[25] A. Shmygelska, R. A. Hernāndez and H. H. Hoos, “An ant 
colony optimization algorithm for the 2D HP protein 
folding problem,” Lect Notes Comput Sc, 2463, pp.40–52, 
2002. 

[26] A. Shmygelska and H. H. Hoos, “An improved ant colony 
optimisation algorithm for the 2D HP protein folding 
problem,” Lect Notes Artif Intell, 2671, pp.400–417, 2003. 

[27] A. Shmygelska and H. H. Hoos, “An ant colony 
optimisation algorithm for the 2D and 3D hydrophobic 
polar protein folding problem,” BMC Bioinformatics, vol.6, 
no.30, pp.1–22, 2005. 

[28] R. Santana, P. Larrañaga and J. A. Lozano, “Protein folding 
in 2-dimensional lattices with estimation of distribution 
algorithms,” Lect Notes Comput Sc, 3337, pp.388–398, 
2004. 

[29] J. Kennedy and R. C. Eberhart, “Particle swarm 
optimization,” in Proceedings of the IEEE International 
Conference on Neural Networks, pp.1942–1948, 1995. 

[30] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, 
“Comprehensive learning particle swarm optimizer for 
global optimization of multimodal functions,” IEEE T 
Evolut  Comput, vol.10, no.3, pp.281–295, 2006. 

[31] Y. Shi and R. Eberhart, “A modified particle swarm 

optimizer,” in Proceedings of the IEEE International 
Conference on Evolutionary Computation, pp.69–73, 1998. 

[32] Z. H. Zhan, J. Zhang, Y. Li and S. H. Chung, “Adaptive 
particle swarm optimization,” IEEE T Syst Man Cy B, 
vol.39, no.6, pp.1362-1381, 2009. 

[33] A. Bãutu and H. Luchian. “Protein structure prediction in 
lattice models with particle swarm optimization”, in 
proceedings of the 7th international conference ANTS 2010, 
pp. 512-519. 

[34] M. Neethling and A. P. Engelbrecht, “Determining RNA 
secondary structure using set-based particle swarm 
optimization,” in Proceedings of the IEEE International 
Conference on Evolutionary Computation, pp.1670-1677, 
2006. 

[35] C. B. Veenhuis, “A set-based particle swarm optimization 
method,” Parallel Problem Solving from Nature - PPSN X, 
Lect Notes Comput Sc, vol. 5199, pp.971-980, 2008. 

[36] W. N. Chen, J. Zhang, S. H. Chung, W. L. Zhong, W. G. 
Wu and Y. Shi, “A novel set-based particle swarm 
optimization method for discrete optimization problems,” 
IEEE T Evolut Comput, vol.14, no.2, pp.278-300, 2010. 

[37] H. Zheng, M. Hou and Y. Wang, “An efficient hybrid 
clustering-PSO algorithm for anomaly intrusion detection,” 
J of Software, vol. 6, no. 12, pp. 2350-2360, 2011. 

[38] L. Shu and L. Yang, “A modified PSO to optimize 
manufacturers production and delivery,” J of Software, vol. 
7, No. 10, pp. 2325-2332, 2012. 

[39] D. Pan, Y. Ci, M. He and H. He, “An improved quantum-
behaved particle swarm optimization algorithm based on 
random weight,” J of Software, vol. 8, no. 6, pp. 1327-1332, 
2013. 

 
 
Jing Xiao received the B.S and M.S degrees in computer 
science from Wuhan University, Wuhan, China, in 1997 and 
2000, respectively, and the Ph.D. degree from the National 
University of Singapore, Singapore, in 2005. Now she is an 
associate professor in the School of Computer Science, South 
China Normal University, Guangzhou, China. Previously she 
was with the Department of Computer Science, Sun Yat-sen 
University. Her current research interests include evolutionary 
computation and text/bio-information mining. 
 
Liang-Ping Li received the B. S degree in computer science 
from the South China University of Science and Technology in 
2009 and the M. S degree from the Sun Yat-sen University in 
computer science in 2012. His research interest is evolutionary 
computation. 
 
Xiao-Min Hu received the bachelor’s degree in computer 
science and the PhD degree in computer science from the Sun 
Yat-sen University, Guangzhou, China, in 2006 and 2011, 
respectively. She is currently a lecturer with the School of 
Public Health, Sun Yat-sen University, China. Her research 
interests include evolutionary computation and its applications 
on bioinformatics. 

 

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1913

© 2014 ACADEMY PUBLISHER




