
A Vertex Separator-based Algorithm for
Hypergraph Bipartitioning

Enli Zhang
School of Computer Science and Technology, Xidian University, Xi’an, China

Email:yuleeo@163.com

Lin Gao
School of Computer Science and Technology, Xidian University, Xi’an, China

Email: lgao@mail.xidian.edu.cn

Abstract—Hypergraph partitioning is critical for
dividing and conquering intractable problems in
many complex systems, which is an NP-hard problem.
In the paper, a novel hypergraph bipartitioning
algorithm is proposed, which partitions the
hypergraph by separating the intersection graph. The
new approach completely eliminates the adverse
effects of hyperedges with large cardinality on the
performance of the vertex-oriented refinement
algorithms, and enhances the hill-climbing ability of
the move-based refinement algorithms. Our approach
also simplifies the vertex designation. Experiments on
the industrial testing benchmark datasets indicate
that our approach achieves an average of 7%
improvement in performance over FM family
partitioning algorithms.

Index Terms—Hypergraph Bipartitioning, Multileve
Algorithm, Vertex Separator

І. INTRODUCTION

Hypergraph is a type of generalized graph and its
appearance fulfilled the demand of representing various
complex informations in the mathematical and computer
science problems, including Boolean Satisfiability,
Numerical Linear Algebra, Machine Learning, Data
Mining etc. Hypergraph partitioning is an important
technology for dividing and conquering intractable
problems in many complex systems. It is an NP-hard
problem[2]. However, being promoted by some practical
applications over the past half century, especially the
electronic design automation (EDA), this problem has
been attracting many researchers’ attention, and a large
number of heuristic algorithms have been developed.
According to the various strategies used, the heuristic
algorithms available can be roughly categorized into two
classes: move-based approaches and mathematic
approaches. The surveys by Alpert and Khang [3] and by
David A. Papa and Igor L. Markov[4] provided detailed
descriptions and comparisons of such various schemes.

The move-based approaches have been used widely.
With an initial solution, these algorithms explore the

solution space by locally perturbing the current solution
and greedily exchange vertices that are most likely to
improve the quality of the current solution. The earliest
move-based algorithm was introduced to partitioning a
graph by Kernighan and Lin (Abbr. KL Algorithm)[5] in
1970, and then this algorithm was adapted for solving the
problem of circuit partitioning by other members of their
group. Although the KL algorithm can produce good
solutions, it is time-consuming. Fiduccia and Mattheyses
(Abbr. FM Algorithm)[6] proposed a fast partitioning
algorithm, which has improved the storage structure of
the gain data and reduced the number of exchanged
vertices, thus greatly improving its efficiency and
allowing it can work nearly in linear time. Because of its
simple implementation and low complexity of time, FM
algorithm has become a widely used refinement tool in
other move-based partitioning algorithms. Almost all
algorithms of this class work directly in the hypergraph
model, where hyperedges link typically to more than two
vertices, and therefore the movement of one or more
vertices need not instantly reduce the cut value, thus
increasing the chance of strapped into local minima. As a
result, it is difficult for the move-based refinement
algorithms to remove the cut hyperedges with large
cardinality, which straddle the partition with many
vertices on both sides. Many researchers concentrate on
the removal of the hyperedges that straddle the partition
and have developed a lot of enhanced refinement
algorithms, such as LA[7], CLIP/CDIP[8], LSR[9],
PROP[10] , and so on. As they observed, it is more
effective to move hyperedges than to move vertices,
which leads to another approach to solve the problem of
hypergraph partitioning, and our approach also
concentrate on partitioning hyperedges directly.
Furthermore, combining with stochastic optimizing
strategies, many move-based hybrid partitioning
algorithms have been proposed, including Simulated
Annealing[11], Evolutionary Algorithms[12-15], Ant
Colony Algorithm[16], Tabu Search[17]and the
multi-start strategy. Although these stochastic algorithms
have ability of global searching and can produce global
optimum solution if given enough time, they take too
long time to converge and hardly can be applied in

1886 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.8.1886-1896

practice.
The mathematic approaches directly construct the

partitions by using mathematic methods, such as graph
spectral algorithms [18,19,32] , mathematic programming,
and network flowing (maxflow-mincut)[20]. As an
important branch, spectral algorithms have been widely
studied and applied in industrial fields. According to the
graph spectral theory, the second smallest eigenvalue of
the Laplace Matrix establishes a stable relationship with
the optimal ratio cut partition and the corresponding
eigenvector is referred as indicating vector. Generally, the
spectral algorithms can produce global optimal solutions
with natural partitioning border, but it is more suitable for
ratio-cut metric. However, the construction of Laplace
Matrix and the computing of indicating vector are two
tricky things for spectral algorithms. One classic method
is to convert hypergraph into weighted graph by replacing
hyperedges with cliques and assigning each link a weight
of 1/(| | 1)e − ,where e is the cardinality of hyperedge
[18]. However, this conversion only produces an
approximately graph representation of the hypergraph,
and it significantly increases the density of the resulting
weighted graph. The computing of the main eigenvector
is too expensive on time and space, which greatly hurts
its applicability, even using fast Lanczos algorithm.

With the development of technology and the explosive
growth of information, a latest technique for partitioning
large scale hypergraphs, multilevel partitioning[21,22,23],
was developed, which combines clustering algorithm
with traditional move-based partitioning algorithm. The
early multilevel partitioning algorithm only consists of
two phases, namely, coarsening phase and partitioning
phase. It uses clustering algorithm to coarse hypergraph
by contracting groups of vertices into a series of single
vertex, and then produces a coarsen hypergraph whose
size is greatly reduced. During the partitioning phase, it
directly partitions the coarsen hypergraph. Karypis and
Kumar[21] adapted the early multilevel paradigm and
proposed a three-phase algorithm, to which he introduced
an uncoarsening and refinement process. Consequently, it
is required to construct a sequence of successively
coarser graphs during coarsening phase, after which a
partition of the coarsest graph is produced. As the
partition of next level inherits from the upper coarser
hypergraph, the FM refinement algorithm is used to
further refine the current partition at each level, which
makes the multilevel paradigm even more robust.
Furthermore, in their paper a hyperedge-oriented
clustering method was proposed for speeding up the
contraction of large hyperedges. Based on such new
schemes, they developed the best known algorithm,
hMetis. Since clustering can greatly reduce the size of
hypergraphs, the performance of the hypergraph
partitioning algorithms based on multilevel paradigm has
been substantially improved. The multilevel algorithms
are often two orders of magnitude faster than hitherto
state-of-the-art partitioning algorithms. However, the
performance of multilevel hypergraph partitioning
algorithms depends heavily upon the quality of the
clustering.

During the past decades, there appeared a minority
who proposed a class of partitioning algorithms that
partition the hypergraph by partitioning the hyperedges.
The intersection graph of hyperedges (Abbr. IG graph) is
used for the graph representation of a hypergraph, and the
partition of hyperedges is directly computed in the IG
graph. So far, there are only several literatures casting
little effort on this approach. Kahng [24] provided a
breath-first-searching method for searching the diameter
of the IG graph and then yielding an approximate
hyperedge partition. Hagen[25] used classic spectral
partitioning algorithm directly to partition the IG graph.
Cong [26] proposed a new way to construct the adjacent
matrix of the IG graph and used the IG-matched method
for determining the winner-loser of hyperedges. Recently,
Cong[27] tried to implement a multi-way hypergraph
partitioning by using a k-FM algorithm to partition the
hyperedges in a hybrid hypergraph, which combines the
IG graph with the dual hypergraph representation
together. In his paper, a max-flow based method is
adopted to solve the K-MC (K-Way Module Contention)
problem. The hyperedge-oriented partitioning algorithm
presents another efficient approach to hypergraph
partitioning, as the IG graph is a precise graph
representation of hypergraph.

In this paper, we propose a novel multilevel heuristic
partitioning algorithm for hypergraph partitioning, and
show that the vertex separator problem in the intersection
graph representation is the dual problem of hypergraph
partitioning. The new approach is a net-based multilevel
partitioning algorithm using the IG graph representation
of hypergraph. A move-based vertex separating algorithm
is implemented to partition the IG graph for the
hyperedges partition, and a community based coarsening
scheme is introduced into the multilevel vertex separation.
The proposed algorithm is experimentally shown to be
readily applicable within the framework of intersection
graph and computationally feasible.

The rest of this paper is organized as follows. Section 2
presents a formal description of the hypergraph
bipartitioning problem and vertex separator. The
necessary background of vertex separation also is given.
Section 3 describes the proposed algorithm in detail. In
section 4, a comparative qualitative analysis is made with
experimental results given. Finally, Section 5 provides
some concluding remarks and further research
suggestions.

II. PRELIMINARIES

A. Hypergraph Bipartitioning
A hypergraph is a subsystem of the finite sets in

combinatorics [1] and its conception derives from that of
graph. A hypergraph (,)H V E= is defined as a set of
vertices V and a set of hyperedges E. Each hyperedge of
the hypergraph is a subset of vertices and its cardinality is
not limited in 2. Formally, a graph is a simple hypergraph
whose edges own cardinality of 2. The partitioning of
hypergraph is very similar to graph partitioning, and a
large number of algorithms treat hypergraph partitioning

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1887

© 2014 ACADEMY PUBLISHER

as graph partitioning. For various applications, several
metrics for hypergraph partitioning have been developed,
and three basic partitioning formulations [3] are described
as follows:

Minimum Width Bisection: Given a hypergraph H, the
bisection is to partition its vertices V into two disjoint
subsets A and B with | | | - | || 1A B ≤ , denoted as
P2={A,B}, such that the number of hyperedges crossed
the two partitions is minimized, denoted as

2() { | , , }E P e e E e A e B= ∈ ≠ ∅ ≠ ∅∩ ∩ .
Minimum Balanced Cut: Given a hypergraph H, the

bipartition is to separate its vertices V into two disjoint
subsets A and B, such that 2()E P is minimized, subject
to the balance constrain

()
v A

w vL U
∈

≤ ≤∑ , ()
v B

w vL U
∈

≤ ≤∑

where w(v) is the weight of vertex v , L and U denoted as
the lower bound and upper bound respectively. Given a
balance tolerance factor r,

 (1 -) / 2L r W= , (1) / 2U r W= + ,
where W is the total vertex weight of the hypergraph.

Minimum Ratio-Cut: Given a hypergraph H, the
bipartition is to separate its vertices V into two disjoint

subsets A and B, such that
2()

() ()

E P

W A W B⋅
is minimized,

where ()W A and ()W B are the total vertex weights of
the two partitions respectively.

Generally, one reasonable metric for hypergraph
partitioning always count the cost between the cut value
and the size of the disconnected partitions, and it often
depends on specific applications. The above three metrics
have different requirements for balance criteria. Bisection
is the strictest partitioning, which constrains the deviation
of two parts within one unit. This rigorous requirement is
often unnecessary in practice and only leads to more
complicated implements. On the contrary, the ratio cut
metric greatly loosens requirements on balance criteria.
Intuitively, the ratio cut metric allows partitioning
algorithms to find optimum partition freely because the
objective function makes a tradeoff between cut value
and parts’ size, which gives a soft penalty for uneven
partition while capturing the minimum-cut. Since the size
of the cut is on the numerator, it has more intensive effect
on the objective value than the penalty does. Thus the
ratio cut metric is apt to extremely unbalanced partition
with smallest cut. While the balanced cut metric has a
moderate balance criteria, which limits a legal area range
by giving a balance tolerance factor, if the deviation of a
partition is within the tolerance, it is regarded as a legal
and acceptable solution. Practically, the balanced-cut
metric is more flexible to meet different requirements of
various applications by adjusting the balance factor.
Therefore, it has been widely adopted by most hierarchal
partitioning algorithms. Our approach also focuses on it.

B. Intersection Graph and Vertex Separator
Firstly, we consider the graph representation of a

hypergraph. Practically, there are two types of graph that

are widely used. One is a common weighted graph which
is converted from the original hypergraph by replacing
each hyperedge with a weighted clique, as [18] does. It is
mostly used to construct the adjacent matrix in spectral
partitioning algorithms, where each edge is assigned a
connection weight. Actually, the weighted graph is a
vertex intersection graph of the hypergraph, not an
equivalent representation for hypergraph on the problem
of partitioning, as mentioned above. Another is the
hyperedge intersection graph which contains only the
original hyperedges and their intersection information
(Normally, we always refer to the hyperedge intersection
graph as IG graph). It can be shown that the problem of
hypergraph partitioning is really equivalent to the vertex
separator problem in the IG graph, and they are a dual
problem. The conversion from hypergraph to IG graph is
as follows:

Given a hypergraph (,)H V E= with |V|=m and
|E|=n, consider a graph with n vertices, denoted as

(' , ')G V E= , such that the vertices 'V of G
represents the hyperedges E of H, one for each
hyperedge, and the edges 'E of G represents the
intersection information between the corresponding
hyperedges of H, i.e., if there is an edge between two
vertices of G , in the original hypergraph H the
intersection of the two corresponding hyperedges must
not be empty, as Figure 2 demonstrates. G is defined as
the hyperedge intersection graph of the hypergraph H.
Note that this conversion is not bidirectional, and for a
given hypergraph H, G is unique; however, the reverse is
not true.

(a) (b)

Net1

Net2 Net4

Net7

Net3 Net8

Net5

Net6

Figure 1. A hypergraph and its hyperedge intersection graph

As mentioned earlier, the objective of the hypergraph
partitioning is to find a minimal cut, where the vertices
are divided into two disjoint balanced parts. From another
perspective, excluding the cut hyperedges that span two
parts, the rest of the hyperedges also are divided into two
disconnected parts in a partition. Therefore, a hypergraph
partition can be obtained by separating its hyperedges
rather than directly partitioning its vertices.

Given a partition of the hypergraph, the vertices are
divided into two disconnected parts M and N, where the
hyperedges are divided into three groups accordingly,
with C as the cut hyperedges that straddle the partition, A
and B as the hyperedges that are completely contained
within the two disconnected parts M and N respectively.
In the IG graph, the vertices corresponding to the group
of hyperedges C form a separator, whose removal divides
the rest vertices into two disconnected components
corresponding to A and B respectively. On the contrary,
suppose C is a separator of the IG graph, then the vertices
are divided into two disconnected parts A and B by C.
Projecting the partition about A, B and C to the original

1888 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

hypergraph, the hyperedges are divided into three
corresponding parts. By assigning vertices that contained
in the corresponding hyperedges of A and B to two
vertices sets M and N respectively, the vertices of the
hypergraph are divided into two parts, excluding few
neutral unassigned vertices contained only in the
hyperedges corresponding to separator C. Hence, it is
easy to produce a partition for a separator of the IG graph.
Therefore, considering hypergraph partitioning in terms
of hyperedges, a separator of the IG graph corresponds
uniquely to a hypergraph partition and the cut value of
the hypergraph partition is completely consistent with the
size of the separator. In conclusion, the problem of
hypergraph partitioning is equivalent to the vertex
separator problem in the IG graph, which means that they
are a dual problem.

In balanced partitioning, the partition of the IG graph
should satisfy such a balance constraint as guarantees the
total weights of the vertices contained in the two
corresponding hyperedges parts being equivalent. In this
paper, we construct a weight IG graph by giving each
vertex in the IG graph a capacity which approximately
represents its weight, so that a balanced partition just
requires that the total capacity of A and B approximately
be equal. The balance constraint and vertex assignment
are discussed in the next section. Since the vertex
separator problem (VSP) is another important problem of
graph partitioning and is also NP-Hard[28], it is
intractable to find the minimal size vertex separators even
in graphs with nodes having a maximum degree of three,
to which we propose a novel move-based heuristic
approach.

III. MULTILEVEL HYPERGRAPH BIPARTITIONING

Our approach VSHPA(Vertex Separator based
Hypergraph Partitioning Algorithm) is based on
multilevel separator model and applies the intersection
graph representation of the hypergraph. As Figure 2
shows, the whole framework of VSHPA has five phases:
IG graph construction, coarsening, initial separator,
uncoarsening and refinement and partition projection.

hypergraph

Intersection
Grap

Intersection
Grap

Dual Conversen Projection

Coarsening Phase

Initial Separator

Uncoarsening and
Refinement Phase

Figure 2. The various phases of VSHPA

At the preceding stage, the IG graph of the hypergraph
needs to be constructed. One simple way is to replace
hyperedges linked to one vertex with a clique in the IG
graph. It takes O(md2) time to complete the whole
conversion, where m is the number of vertices and d is
the average degree of the vertices. Another fast

conversion method is to search each hyperedge and its
vertices one time, and add edge only to its adjacent
hyperedges whose number is greater than itself. This
method can avoid adding repeated edges and consumes
time by O(nd2), where n is the number of hyperedges.

The intermediate three phases compose a multilevel
vertex separating algorithm, and thus the whole
procedure operate directly on the hyperedges in terms of
graph vertices. In the coarsening phase, a
community-based clustering method is used to coarsen
the IG graph. Then an initial separator is produced by a
fast agglomerating algorithm. A move-based heuristic
algorithm is proposed specifically for refining the vertex
separator in the uncoarsening and refinement phase.

At the last partition projection stage, a solution of the
hypergraph partitioning is produced by assigning the
vertices of hypergraph into partitions according to the
hyperedge partitions projected from the minimal
separator of the IG graph. In addition, we adopt an
approximately statistic schemes to enforce the balance
criteria in every cycle, including initial separator,
refinement process and last vertex assignment. Several
crucial methods are discussed in details in the following.

A. Community-based Coarsening Method
During the coarsening phase, groups of vertices are

contracted into single vertices and a series of smaller
coarsened graphs are produced, which greatly reduces the
scale of the graph. However, the quality of clusters might
greatly influence the final quality of the solution. Similar
to the hypergraph representation, the IG graph preserves
its hierarchical structure. Therefore, a community based
clustering scheme is adopted for vertex separating, in
which a group of vertices with maximal quality value are
merged into an single hard core excluding boundary
vertices adjacent to the rest of the graph, as Figure 3
shows.

1

7

4
2 5

3

6

8

9
10 14

16
15

11
13

12 18

23

24

19

20
22 21

25

26

17

7

5

3

14

13

12

23

24

21

7

5

3

23

24

21

(b) (c)

(a)

Figure 3. Illustration of the community based clustering scheme for
vertex separation. The subsets of vertices circled by dashed lines are

communities. The dark dots are the hard cores and the blue dots are the
boundary vertices.

In the community based clustering scheme, the quality
value of community is defined as 1 / rVQ s v= − , where
s is the number of the boundary vertices, v is the size of
the community, and r is a control parameter for the size
of the community denoted as /r kd d= , where d is the
density of the community, d is the average density of

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1889

© 2014 ACADEMY PUBLISHER

the graph, and k is a preference parameter for r. This
definition aims to find a densely connected community
with few boundary vertices, such that VQ reaches local
maximal. Here parameter r can dynamically adjust the
size of the community, which takes the density of the
community into account, so denser community may have
larger size. Getting such a community, we contract its
internal vertices into a single hard core excluding the
boundary vertices, which means that the vertices in the
core are undividable and cannot be selected into separator,
and that only the boundary vertices are potential members
of the separator, even the last separator.

The clustering procedure has two stages. In the first
stage, every vertex is visited and all the communities with
maximal VQ are found. In the second stage, an
agglomerative scheme is used to combine the
communities to produce much coarser graph rather than
to combine vertices. The communities with maximal VQ
value are identified with the following procedures.
1) Randomly select an unvisited vertex, set it as the

internal vertices and all its neighboring nodes as the
boundary vertices;

2) Perform a loop over all boundary vertices to
compute their fitness 'if VQ VQ= − ;

3) Add the boundary vertex with the largest fitness to
the core with its unvisited neighboring nodes
absorbed as new boundary vertices, yielding a larger
community;

4) Repeat from step 2, until the quality value of the
community reaches local maximal and there are no
boundary vertices with positive fitness;

5) Cluster the core of the community into a hard core
and mark all the vertices of the community as
visited.

At the first stage, we repeat this procedure until all the
vertices are visited. Such a coarsening progress turns the
original intersection graph into a coarse graph consisting
of many communities. The following stage continues to
combine communities to produce a series of smaller
coarse graphs until the smallest one reach the required
size. During this process, pairs of communities with
maximal fitness are selected to combine together if and
only if the size of the new cluster meets the balance limit.
To avoid big-bigger effect that bigger cluster is apt to
absorb its adjacent cluster and grows up into supper large
cluster, an upper limit is set to limit the size of the biggest
cluster at every level.

B. Initial Separator
Generally speaking, the initial separator is not so

important as it does not directly determine the last
solution and might vary greatly during the uncoarsening
and refinement process. It is a feasible way to execute the
coarsening operation until only two communities are left,
whose boundary vertices can be used as an initial
separator, but it is hard to reach a balanced partition.
Since the coarsest graph usually has a few vertices, it is
easy for any separating algorithm to find a separator in
seconds. In this paper, a fast agglomerating algorithm is
used to compute the initial separator.

Firstly, two notations about the adjacent set of a vertex
subset and the average out-degree of a separating vertex
should be informed. The adjacent set of vertex subset X
among vertex subset Y in a graph is defined
as (,) { | , , , , , 1.. }N X Y v v X v Y v v E i j nj i j i j= ∈ ∈ < >∈ = . Given a
graph G, suppose C is a separator about A and B, for each
separating vertex s in C, the average out-degree is defined
as

1
()

| (,) |(,)
sAod

N v Cv N s B
= ∑

∈

.

The agglomerating algorithm starts with a randomly
selected core vertex and sets the core as the internal
vertex and all its boundary vertices as a separator. Each
time, it selects a separating vertex with minimal average
out-degree from the separator to combine with the
internal vertices, and updates the separator. In moving a
separating vertex, if its adjacent vertex is a contracted
core, the core vertex should be uncut and must be moved
immediately. The moving process continues until half of
the vertices are moved into internal section or the total
capacities of the internal vertices reach the upper balance
limit. At that point, the vertices belonging to the internal
section are assigned to the first partition, and the rest of
the vertices are assigned to the second partition excluding
the separator. The whole process of the algorithm can be
summarized as follows:

1) Initialize an internal vertex set S = ∅ and a
separator C = ∅ ;

2) Randomly select a core vertex as the seed, add it to
S and its adjacent set (, -)N S G S to C, and then
produce a new separator about S and - -G S C ;

3) Compute the average out-degree for all the
separating vertices in C, select the vertex vi with
smallest value to move into S and add its adjacent
set (, - -)iN v G S C to separator C;

4) Repeat step 3 until the size of S satisfies the
requirement, and output the separator.

Since the initial separating algorithm is a randomized
method, the quality of the separators is quite unstable and
depends heavily on the seed vertex. In order to improve
the quality of the partition, we start the next process with
a small number of initial separators and drop some bad
solutions during the uncoarsening and refinement phase.
On one hand, the partition in the coarsest graph is just a
proximate solution to lower level coarsen graph and will
be substantially modified during the uncoarsening and
refinement phase, and thus the optimal initial separator of
the coarsest graph does not necessarily produce the
smallest separator in the end. However, increasing the
number of initial separator may potentially improve the
quality of the final partitioning. On the other hand, a large
number of initial separators will greatly increase the
running time. Based on the observation that the size of
coarser graph usually is very small and the refinement
operation may be very fast, it is a wise decision to drop
some bad solutions in the graph uncoarsening, which can
effectively reduce the refinement time without substantial
damage to the quality of the final solution.

1890 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

C. Refinement Algorithm for Vertex Separator
A move-based heuristic refinement algorithm VSR is

implemented for vertex separator, which is a FM-liked
stochastic refinement algorithm and directly optimizes
the vertex separator, not the edge cut. Let C be a
separator of graph G about two partitions R and L.
Consider a subset Y of the separator C, move Y into
L(here suppose vertices move from R to L), then the set

' (-) (,)C C Y NY R= ∪ is the new separator of the two partitions
' - (,)R R N Y R= and 'L L Y= ∪ . For | (,) | | |N Y R Y< ,

| ' | | |C C< . It is the theoretic foundation of the refinement
algorithms for vertex separator. J.W.H. Liu [29] provides
first a Bipartite Graph Matching (BGM) algorithm in his
paper. It uses the augment-path method to find a
maximum matching between the Y and (,)N Y R . In
finding the maximum matching, if there are uncovered
vertices in Y and no augmenting paths, the vertex subset
Y must satisfy the inequation | (,) | | |N Y R Y< . The
BGM algorithm is a greedy searching algorithm and
easily stuck into local minimal. As Figure 5 illustrates,
the BGM algorithm can easily find the set C1 and P1.
Upon replacing P1 with C1, the size of the separator is
decreased by one. But it is difficult to find the set P2.
Intuitively, successively moving C2 and P2 to L
section,the subset C2 is replaced by P2′ and the size of
the new separator 2 2 2' (-) (,)C C C N P R P= ∪ − is also reduced
by one.

Figure 4. Illustration of the theory of refinement scheme for vertex

separator

Based on such a fact, the theorem is extended to the
general case: Suppose P is a vertex subset of R section, if
| (,) | | (, -) |N P C N P R P> and ((,),)N N P C R P⊆ , move P to L
section, and the separator is improved. Since the
determination of such a vertex set P is intractable, a
heuristic refinement approach is adopted for vertex
separation. In our approach, a scoring scheme for each
vertex is used to encourage closely adjacent groups of
vertices to move together. This scheme is implemented as
follows. Firstly, every vertex is given a relative score.
Each time one vertex with maximal score is selected and
moved, the scores of all the related vertices are updated
by adding delta s. Suppose a vertex v is selected and
moved into separator C, all the related vertices

((,),)N N v C R need to be updated. A detailed illustration
of the various steps of the refinement algorithm on a
subgraph with 9 vertices is presented in Figure 5.

Figure 5. The refinement process of VSR in a simple subgraph with 9

vertices

At the beginning of the refinement process, the
movements of selected vertices usually produce little
reduction until a number of vertices are successively
moved, which is known as the hill-climbing effect.
Normally, the algorithm is likely to climb out of a local
minimal and reaches a better solution after a number of
vertices are moved. However, it is experimentally shown
that too long a sequence of vertex moves rarely achieves
an improvement of the separator. Usually, an adjustable
parameter β is set to limit the number of such void
moves and stop the refinement pass as soon as the void
moves reach the upper limit. By adjusting the value of
β in different refinement stage, the solution scope for
refinement algorithm to search is dynamically changed.
Since the initial solution may has lower quality at the
beginning of the refinement process, a larger value for
β can enlarge the searching scope for the refinement
algorithm; whereas the solution derived from the upper
level is finer in the lower level coarsen graph, a smaller
value for β can limit the number of vertex moves, which
can effectively speeds up refinement process.

Let C be a separator of graph G about two vertex sets
R and L, the refinement algorithm for vertex separator
works as follows:

1) Select the refining direction according to the size of
the two partitions, and for R LA A> , select R side as
the starting partition;

2) Initialize the adjacent vertices queue Q by (,)N C R
and set all the scores as zero;

3) Randomly select one vertex v from Q and move it to
the separator C, add the unloaded neighbors
in (,)N v R to Q with zero score, and update the
separator C and the queue Q;

4) Select the vertex v with maximal score to move into
the separator C, add the unloaded neighbors
in (,)N v R to Q with zero score, and update the
separator C and the queue Q;

5) Repeat step 4 until the total capacity of L section
reach the upper limit or the void moves exceed the
permitted number, put back all invalid moves and
set them as inactive vertices to forbid them being
selected as seed vertices again.

6) If there is no active vertex, current refinement
process exit; else go to step 3 and continue.

D. Balance Constraint and Vertex Assignment
During the process of partitioning and refinement, the

size of each partition must satisfy the balance constraint.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1891

© 2014 ACADEMY PUBLISHER

In the IG graph, each vertex represents a hyperedge and
one move means that a hyperedge is moved and a group
of related vertices reassigned. Furthermore, there might
be some neutral vertices that can be assigned to any
partitions. It is hard to accurately compute the size of
each partition. Therefore, it is feasible to approximately
control the size of each partition during the IG graph
separation. In this paper, a weighted IG graph is used to
approximately compute the partition size by assigning
each vertex a capacity Ai. For each vertex of the
hypergraph, the average-degree-weight is defined as its
average weight for each degree, and then the capacity of
each hyperedge equals the total average-degree-weight of
its vertices. Experimental data indicate that the weight of
one vertex is proportional to its degree and the capacities
of hyperedges can approximately represent its vertices’
weights. It suffices to compute the capacity of each
hyperedge once at the beginning of the partitioning,
which greatly reduces the running time.

In the last process, the minimal separator of the IG
graph is used to construct a hypergraph partition by
assigning all the vertices of the hypergraph into partitions.
A simple way is to assign the vertices according to the
hyperedges’ partition. One thing that has been left
unspecified is how to assign the neutral vertices
exclusively contained in the hyperedges of the separator.
Because the assignations of the neutral vertices do not
affect the cut value, they usually are assigned into the
smaller partition to improve the balance condition.

IV. EXPERIMENTAL RESULTS

The proposed algorithms are extensively tested on a
large number of hypergraphs. The test data come mainly
from the MCNC and ISPD98 standard benchmark suites

[30, 31] and are widely used in ACM/SIGDA for testing
hypergraph partitioning algorithms. Comparison between
our approach and several known partitioning algorithms
is performed with comprehensive results provided.
Furthermore, supplementary experiments on community
based clustering scheme are also made.

A. Hypergraph Test Benchmark
During the past decades, hypergraph partitioning has

received enough attention from the Design Automation
community and a large number of heuristic algorithms
have been developed. Consequently, the requirement for
appropriate testing data becomes stronger and hundreds
of publications have used circuit benchmark suites to
compare and validate their algorithms. There are a large
number of circuits originally released by the
Microelectronics Center of North Carolina (MCNC) and
sponsored by ACM/SIGDA [30]. For convenient
comparison of the quality of solutions, part of the MCNC
and ISPD98 benchmark suites are selected to test our
algorithm.

Table 4.1 presents the characteristics of 29 circuits of
MCNC benchmark. The first 11 small scale circuits were
introduced by MCNC before 1993 and are often used in
the Physical Design Workshop. The latter 18 circuits of
the ISPD98 benchmark suites [31] were introduced by

Charles J. Alpert, member of IBM Austin Research
Laboratory, in 1998. These selected circuits have a large
range in scale, from 123 to 210,000 modules, and all are
generated from real IBM internal designs. As the table
shows, each circuit consists of cells, pads, pins and
signals. Cells are the internal objects and occupy some
circuit area, pads are the external objects of very small
size (perhaps just external signal pins), and cell and pad
are called the circuit module. Signals are the wires
connecting circuit modules and transmitting electric
signals, while pins are the feet points of circuit modules
for connecting signals. The last column, Total Area,
represents the size of circuits, i.e. the sum of all its
modules’ size. Using the hypergraph representation, each
circuit can be naturally represented by a hypergraph, the
vertices of the hypergraph representing the circuit
modules and the hyperedges the signals. When using the
real module’s area, each vertex of the hypergraph is given
a weight with the size of corresponding module.

TABLE 4.1

CHARACTERISTICS OF 29 CIRCUITS IN THE MCNC AND ISPD98 CIRCUIT
TEST BENCHMARK

Benchmark Cells Pads Signals Pins Total Area
ami33 33 - 123 388 1156449
ami49 49 - 408 912 35445424
fract 125 - 163 454 225504
g2 199 - 377 925 9596023

primary1 833 - 1266 3272 26607000
struct 1952 - 1920 5407 2850352

industry1 2271 - 2479 8025 4403352
primary2 3014 - 3817 12007 53457000
biomed 6514 - 5742 22253 13062992

industry2 12637 - 13419 47657 10404768
industry3 15406 - 21923 65610 360933376

ibm01 12752 246 14111 50566 4230016
ibm02 19601 259 19584 81199 8458336
ibm03 23136 283 27401 93573 9842880
ibm04 27507 287 31970 105859 9294944
ibm05 29347 1201 28446 126308 4471520
ibm06 32498 166 34826 128182 8577791
ibm07 45926 287 48117 175639 11829856
ibm08 51309 286 50513 204890 13449888
ibm09 53395 285 60902 222088 17529312
ibm10 69429 744 75196 297567 47534336
ibm11 70558 406 81454 280786 21237408
ibm12 71076 637 77240 317760 36974848
ibm13 84199 490 99666 357075 25061568
ibm14 147605 517 152772 546816 28727296
ibm15 161570 383 186608 715823 36534944
ibm16 183484 504 190048 778823 52592704
ibm17 185495 743 189581 860036 42187712
ibm18 210613 272 201920 819697 33686560

B. Clustering Results
During hypergraph partitioning, clustering is an

important technology for reducing the size of the
hypergraph, but how to judge the quality of the clusters
has received little attention and there is no uniform
criterion available. However, a versatile clustering
scheme could effectively find tensely connected vertices
and hyperedges subset and contract them into one vertex
that should not be divided in most solutions. On the
contrary, the hyperedges often cut in partitions should not
be contracted, which are particularly helpful in searching
the optimal solution by move-based refinement
algorithms. Thus, it might be feasible to validate the

1892 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

clustering algorithms by analyzing and comparing the
ratio of contracted hyperedges in a coarsen hypergraph.
Our approach directly contracts communities in IG graph,
which corresponds to directly contracting a group of
tensely connected hyperedges together in the original
hypergraph. For comparing the performance with other
vertex-based clustering approach, Table 4.2 presents the
ratios of contracted hyperedges when the vertices of a
hypergraph are reduced to 80% by using heavy-edge
matching(HEM), hMetis[21] and CMC respectively.

TABLE 4.2
COMPARISON OF HYPEREDGE CONTRACTED RATIOS AMONG HEM,

HMETIS AND CMC.

Benchmark Number of
Hyperedge

Hyperedge Contracted Ratio (%)

HEM hMetis CMC

ibm01 14111 90.46 89.17 85.72
ibm02 19584 89.21 87.32 84.37
ibm03 27401 90.83 88.94 86.55
ibm04 31970 89.42 87.23 84.27
ibm05 28446 89.68 88.25 85.14
ibm06 34826 90.35 88.34 86.42
ibm07 48117 90.54 89.08 87.50
ibm08 50513 91.63 88.76 85.73
ibm09 60902 89.27 86.14 85.90
ibm10 75196 88.12 85.41 84.62
ibm11 81454 91.29 88.06 84.82
ibm12 77240 90.89 87.52 86.03
ibm13 99666 92.74 89.37 87.55
ibm14 152772 90.36 88.94 87.01
ibm15 186608 91.21 87.75 86.46
ibm16 190048 89.65 88.33 85.07
ibm17 189581 89.38 87.85 86.74
ibm18 201920 89.44 87.49 85.31

As Table 4.2 shows, our approach acquires the lowest
overall hyperedge contraction ratio, indicating that it can
effectively contract tensely connected vertices together
while leaving more free hyperedges. We conjecture that
the left hyperedges are the boundary vertices of
communities in the IG graph, which are usually cut in
local partitioning solutions.

Figure 6. Communities and hierarchy in the intersection graph of

circuit ami33.

In order to validate this conjecture, the IG graph of
ami33 is extensively analyzed, as shown in Figure 6.
There are 123 vertices in the IG graph. Specially, the two
stars represent the ground and power signal, which link to
all the other vertices of the graph; and the four triangles

represent control signals that link to all vertices on the
right of the dashed line. For a clear perspective, the links
to the six vertices are hidden. Objectively, different from
random systems, circuits are special manmade artifacts
and they possess hierarchy structure and many highly
structured communities, and therefore the community
based clustering scheme can be applied in the IG graph.

C. Partitioning Comparison
To compare the quality of the solutions, we run three

partitioners published earlier (Fiduccia-Mattheyses (FM)
[6], IG-Match [26], hMetis [21]) and our VSHPA on the
standard testing circuits. FM and hMetis are two
vertex-oriented partitioners that work directly on
hypergraph. FM is an industrial standard iterative
exchange heuristic and its implementations use a LIFO
bucket structure as [6] described. hMetis is a multilevel
partitioner, whose executable program is obtained by the
authors of [21] and whose adaptable parameters use the
default schemes. Furthermore, for comparing the
performance of different refinement schemes, we
implement three different versions of VSHPA:
VSHPABMP, VSHPAFlat and VSHPAML. VSHPABMP is a
common flat hypergraph partitioning algorithm adopting
the BMP refinement method. VSHPAFlat is also a flat
algorithm, but it uses the move-based refinement method
to directly improve the separator. VSHPAML is the
multilevel version of VSHPAFlat and adopts the
community based clustering method to coarsen the IG
graph.

Firstly, we ran the six partitioners on the benchmarks
under the unweighted hypergraph model (all circuit
modules are regarded as standard cells with unit area).
For each circuit, all the results allow up to 10% deviation
from exact bisection, i.e., each partition must have an
area between 45% and 55% of the total. Each partitioner
ran 30 times and the best solutions are reported in Table
4.3. The column labeled “Hypergraph Model” shows that
the contained partitioners work directly on hypergraphs,
and the column labeled “Intersection Graph Model”
indicates that the contained partitioners use the IG graphs
of hypergraphs.

All the hyperedge-oriented algorithms perform better
than the vertex-oriented algorithms. For flat partitioners,
the quality of the solutions produced by VSHPABMP,
VSHPAFlat and IG-match are better than that by FM
algorithm with 6%, 17% and 3% improvement
respectively, which further demonstrates that the cut
hyperedges with large cardinality are are difficult to
remove by the vertex-oriented refinement algorithms. For
multilevel partitioners, the quality of the solutions
produced by VSHPAML is as good as that by hMetis, or
even better, such as ibm03, ibm15, ibm17. Furthermore,
hMetis perform better than FM algorithm, which hints
that clustering scheme can effectively reduce the
hyperedges’ size and greatly improve the global searching
ability of the vertex-oriented refinement algorithms.
Generally speaking, our refinement algorithm performs
better than FM and BMP based refinement algorithms.
When the size of the test data is less than 1000, the three
refinement algorithm all produce much better solutions,

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1893

© 2014 ACADEMY PUBLISHER

but the quality of the solutions produced by FM
algorithm rapidly get worse with increasing size of the
test data, which shows that the global searching ability of
FM algorithm is worse on large scale data. Although the
BMP based refinement algorithm also has better global
searching ability, it is a greedily searching algorithm and
easily trapped into local minimal. Our refinement
algorithm has much better climbing ability than BMP.

TABLE 4.3
MIN-CUT BIPARTITIONING RESULTS UNDER THE UNWEIGHTED

HYPERGRAPH MODEL WITH UP TO 10% DEVIATION FROM EXACT
BISECTION. EACH VERTEX IS ASSIGNED THE UNIT AREA.

Benchmark
Hypergraph

Model Intersection Graph Model

FM hMetis IG-match VSHPABMP VSHPAFlat VSHPAML

ami33 10 9 9 10 10 9
ami49 47 46 46 49 49 46
fract 12 11 11 12 11 11
g2 29 16 24 36 29 18

primary1 68 47 53 72 60 41
struct 33 33 33 36 33 33

industry1 26 19 21 37 20 19
primary2 183 144 161 206 172 144
biomed 88 83 85 92 86 83

industry2 211 174 192 251 182 175
Industry3 273 264 283 242 187 260

ibm01 197 181 185 216 181 180
ibm02 266 262 294 293 264 262
ibm03 1151 956 1270 1481 1005 952
ibm04 602 537 611 1321 634 534
ibm05 1874 1739 1823 1935 1831 1723
ibm06 976 885 1061 1158 965 885
ibm07 1035 848 1084 1173 984 841
ibm08 1285 1142 1183 1276 1183 1148
ibm09 916 628 709 1082 709 626
ibm10 1502 1269 1518 1905 1517 1256
ibm11 1459 962 1296 1414 1209 962
ibm12 2258 1891 2273 2441 2219 1922
ibm13 1181 841 2126 2303 1025 840
ibm14 2961 1928 2469 3047 2490 1967
ibm15 5018 2748 4327 4423 3436 2597
ibm16 2363 1758 2383 2177 2383 2051
ibm17 3052 2341 3521 3839 3319 2206
ibm18 1708 1526 2128 2905 2549 1521

Table 4.4 presents bipartitioning results produced by
partitioners under the weighted hypergraph model, where
each vertex has actual module area. All the algorithms
perform under the same circumstances as above. Note
that the FM and IG-match algorithms sometimes produce
worse solutions than that under unit area model, e.g.,
ibm05, ibm12 and ibm15, which indicates that the
implementations are not particularly good at satisfying
balance criteria when the areas of modules vary greatly.
IG-match always forces all vertex moves to satisfy the
balance criteria. Actually, it is more suitable for ratio cut
metrics, under which it can find more natural partitions.
Indeed, the problem of finding an exact bisection is
NP-Complete under the weighted hypergraph model.

TABLE 4.4

MIN-CUT BIPARTITIONING RESULTS UNDER THE WEIGHTED HYPERGRAPH
MODEL WITH UP TO 10% DEVIATION FROM EXACT BISECTION. EACH

VERTEX IS ASSIGNED THE ACTUAL MODULE AREA.

Benchmark
Hypergraph

Model Intersection Graph Model

FM hMetis IG-match VSHPABMP VSHPAFlat VSHPAML

ami33 11 9 10 10 10 9
ami49 31 31 31 32 31 31
fract 12 11 11 12 11 11
g2 32 28 29 36 29 28

primary1 67 56 58 72 60 56
struct 34 33 33 36 33 33

industry1 23 20 20 37 20 20
primary2 198 161 202 206 172 160
biomed 88 83 88 92 86 83

industry2 252 168 211 351 182 166
Industry3 229 188 192 242 187 188

ibm01 272 216 251 216 181 216
ibm02 315 273 285 293 264 248
ibm03 1424 739 1009 1481 1005 694
ibm04 634 442 636 1321 634 440
ibm05 1878 1710 1922 1935 1831 1712
ibm06 1479 367 446 1158 965 363
ibm07 870 745 948 1573 984 716
ibm08 1411 1156 1249 1276 1183 1135
ibm09 750 522 708 2682 709 520
ibm10 982 734 1004 1905 1517 744
ibm11 1209 703 927 3414 1209 692
ibm12 2219 1988 2316 2441 2219 1975
ibm13 1196 874 911 2303 1025 850
ibm14 2015 1514 1930 5047 2490 1508
ibm15 3436 1802 3743 6423 3436 1781
ibm16 2173 1707 2039 4177 2383 1654
ibm17 2818 2247 3042 4839 3319 2253
ibm18 2604 1528 2511 2905 2549 1523

V. CONCLUSIONS AND FUTURE WORK

We present a new approach to hypergraph
bipartitioning based on the combination of vertex
separator and the IG graph representation of hypergraph.
It is shown that the problem of hypergraph bipartitioning
is the dual problem of vertex separation in the IG graph
of hypergraph. Our vertex separator based hypergraph
partitioning algorithm is hyperedge-oriented, which
completely avoids the removal of large cut hyperedges.
The results show that our approach performs better than
the vertex-oriented partitioning algorithms. Furthermore,
our approach greatly simplifies the vertex assignment
process.

However, there are a number of interesting issues
remain unsolved. According to the max-flow min-cut
theorem, the problem of minimum ratio cut and vertex
separator for some special graphs can be solved in time
O(7 / 6 2 / 3n m), but the problem of balanced vertex separator
is NP-Hard. Although our heuristic approach also can
produce high quality solutions, the randomized
optimizing method enhances its global searching ability
at the cost of its stability. It is feasible to improve its
performance by increasing attempt times, but it brings
more time complexity. Therefore, it is a promising
research to find deterministic refinement algorithms for
vertex separator. Since there are many special industrial
application requirements, the problem of multi-way graph
partitioning also deserves further study.

1894 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

ACKNOWLEDGEMENTS

This work was supported by the National Key Natural
Science Foundation of China (Grant No. 60933009),
Specialized Research Fund for the Doctoral Program of
Higher Education (Grant No. 200807010013) and the
National Natural Science Foundation of China (Grant
No.60970065). We would like to thank our colleagues at
our research labs for useful comments and assistance. Our
gratitude also goes to Professors George Karypis and
Vipin Kumar of University of Minnesota for supplying
the hMetis executable.

REFERENCES
[1] C. BERGE, Graphs and Hypergruphs[M]. North-Holland,

Amsterdam, 1973.
[2] M. R. Garey and D. S. Johnson.Computers and

Intractability: A Guide to the Theory of
NP-Completeness[M], San Francisco, CA: Freeman,1979.

[3] Charles J.Alpert and Andrew B.Kahang. Recent directions
in netlist partitioning [J], Integration, the VLSI Journal,
1995,19(1-2),1-81.

[4] David A. Papa and Igor L. Markov, Hypergraph
Partitioning and clustering.

[5] Kernighan B W, Lin S. An Efficient Heuristic Procedure
for Partitioning Graphs [J]. Bell System Technical Journal.
1970, 49(2):291-307.

[6] C. M. Fiduccia and R. M. Mattheyses. A Linear-Time
Heuristic for Improving Network Partitions[C].
Proceedings of the 19th Conference on Design
Automation, Piscataway, CA. 1982:175-181.

[7] B. Krishnamurthy. An improved mincut algorithm for
partitioning VLSI networks [J], IEEE Trans. on Computer,
1984, 33 (5), 438-446.

[8] S. Dutt and W. Deng. VLSI circuit partitioning by
cluster-removal using iterative improvement techniques
[M]. In Proc. Physical Design Workshop,1996.

[9] J. Cong, H. P. Li, S. K. Lim, T. Shibuya and D. Xu. Large
Scale Circuit Partitioning with Loose/Stable Net Removal
and Signal Flow Based Clustering[C]. IEEE/ACM
International Conference on Computer Aided Design, San
Jose, CA, USA. 1997, 441-446.

[10] S. Dutt and W. Deng. Probability-based approach to VLSI
circuit partitioning [J]. IEEE Trans. CAD, 2000, 19 (5):
534-549.

[11] D.S. Johnson, C.R. Aragon, L.A. McGeoch et al.
Optimization by Simulated Annealing: An Experimental
Evaluation, Part I, Graph Partitioning[J].Operations
Research, 1989(37): 865-892.

[12] Y.Saab and V.Rao. Fast effective heuristics for the graph
bisectioning problem [J]. IEEE Trans.Computer Aided
Design, 1990, 9(1):91-98.

[13] T.N. Bui and B.R. Moon. Genetic Algorithm and Graph
Partitioning [J].IEEE Trans. Computers, 1996(45):
841-855.

[14] Charles J Alpert, Lars W Hagen and Andrew B Kahng. A
hybrid multilevel genetic approchoach for circuit
partitioning[C]. Proceedings of IEEE Asia Pacific
Conference on Circuit and Systems, Las Vegas, Nevada,
USA. 1996:18~21.

[15] L.Tao, Y.C.Zhao, K. Thulasiraman, and M.N.S.Swamy.
An efficient tabu search algorithm for graph
bisectioning[C]. Proceedings of the First Great Lakes
Symposium on VLSI, Kalamazoo, Michigan, 1991:92-95.

[16] Lin Gao,Yan Zeng and Anguo Dong. An ant colony
algorithm for solving Max-cut problems [J]. Progress in
Natural Science, 2008, 18 (9):1173-1178

[17] E. Rolland, H. Pirkul, and F. Glover.Tabu Search for
Graph Partitioning [J]. Annals of Operational Research,
1996, 63(2): 209-232.

[18] T. Lengauer, Combinatorsal Algorithms for Integrated
Circuit Layout, Wiley-Teubner, 1990.

[19] L. Hagen and A. B. Kahng. Fast spectral methods for ratio
cut partitioning and clustering. In Proc. IEEE Intl. Conf.
Computer-Aided Design, pages 10-13, 1991.

[20] J. Hwang and A. El Gamal. Optimal replication for
min-cut partitioning. IEEE Trans. Computer-Aided
Design, 14(1):96-106, 1995.

[21] George Karypis, Rajat Aggarwal and Vipin Kumar.
Multilevel hypergraph partitioning: Application in VLSI
domain [J]. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. 1999, 3, 7(1). 69-79.

[22] Karypis George, Kumar Vipin. Multilevel k-way
hypergraph partitioning [J]. VLSI Design. 2000, 11(3).
285-300.

[23] Charles J. Alpert, Jen-Hsin Huang, and Andrew B. Kahng.
Multilevel Circuit Partitioning [J], IIEEE Trans.Computer
Aided Design, 1998, 17(8):655-667.

[24] A. B. Kahng, "Fast hypergraph partition," in Proc.
ACM/IEEE Design Automation Conf., 1989,pp. 762-764.

[25] L. Hagen and A. B. Kahng, "New Spectral Methods for
Ratio Cut Partitioning and Clustering", IEEE Trans. on
CAD, pp.1074-1085, Sept. 1992.

[26] J.Cong,L.Hagen,and A.B.Kahng. Net partitions yield
better module partitions[C].In Proc. IEEE 29th Design
Automation Conf. Anaheim, California, USA,1992:47-52.

[27] J. CONG, LABIO W. J., and SHIVAKUMAR N.
Multi-Way VLSI Circuit Partitioning Based on Dual Net
Representation [J]. IEEE Trans. Computer-aided design of
integrated circuits and systems, 1996, 15(4):396-409.

[28] Bui, T.N.; Jones, C. Finding good approximate vertex and
edge partitions is NP-hard. Information Processing Letters
1992, 42, 153-159.

[29] Liu J W H. A graph partitioning algorithm by node
separators [J]. ACM Trans on Mathematical Software,
1989, 15(3):198-219.

[30] http://www.ee.utulsa.edu/~tmanikas/MCNC/MCNC_Benc
hmark_Netlists.html.

[31] C. J. Alpert. The ISPD98 circuit benchmark suite[C]. In
Proc. of the Intl Symposium of Physical Design, Monterey,
CA USA, 1998(4): 80-85.

[32] Lliu X, Ma F, Lin H. Topic Detection with Hypergraph
Partition Algorithm [J]. Journal of Software, 2011, 6(12):
2407-2415.

Enli Zhang received the B.S. degree in
computer application from the Computer
Science and Technology Department,
Xi’an Technology Institute in 2001. He
is currently working toward the Ph.D.
degree in computer science at Xidian
University.
 His research interests include
partitioning and clustering in VLSI
circuit design, and the complex network

structure.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1895

© 2014 ACADEMY PUBLISHER

Lin Gao received the B.Sc. and M.Sc. in
Computational Mathematics from Xi’an
Jiaotong University and Northwest
University in 1987 and 1990,
respectively, and the Ph.D. degree in
Circuit and System from School of
Electronic Engineering, Xidian
University in 2003.

She was a visiting scholar at
University of Guelph, Canada from 2004 to 2005. Currently,
she is an academic leader and professor in the School of
Computer Science and Technology, Xidian University. Her
research interests include bioinformatics, data mining in
biological data, graph theory and intelligence computation.

1896 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

