
A Vertex Separator-based Algorithm for 
Hypergraph Bipartitioning 

 

Enli Zhang 
School of Computer Science and Technology, Xidian University, Xi’an, China 

Email:yuleeo@163.com 
 

Lin Gao 
School of Computer Science and Technology, Xidian University, Xi’an, China 

Email: lgao@mail.xidian.edu.cn 
 
 
 
Abstract—Hypergraph partitioning is critical for 
dividing and conquering intractable problems in 
many complex systems, which is an NP-hard problem. 
In the paper, a novel hypergraph bipartitioning 
algorithm is proposed, which partitions the 
hypergraph by separating the intersection graph. The 
new approach completely eliminates the adverse 
effects of hyperedges with large cardinality on the 
performance of the vertex-oriented refinement 
algorithms, and enhances the hill-climbing ability of 
the move-based refinement algorithms. Our approach 
also simplifies the vertex designation. Experiments on 
the industrial testing benchmark datasets indicate 
that our approach achieves an average of 7% 
improvement in performance over FM family 
partitioning algorithms. 

Index Terms—Hypergraph Bipartitioning, Multileve 
Algorithm, Vertex Separator 

І. INTRODUCTION 

Hypergraph is a type of generalized graph and its 
appearance fulfilled the demand of representing various 
complex informations in the mathematical and computer 
science problems, including Boolean Satisfiability, 
Numerical Linear Algebra, Machine Learning, Data 
Mining etc. Hypergraph partitioning is an important 
technology for dividing and conquering intractable 
problems in many complex systems. It is an NP-hard 
problem[2]. However, being promoted by some practical 
applications over the past half century, especially the 
electronic design automation (EDA), this problem has 
been attracting many researchers’ attention, and a large 
number of heuristic algorithms have been developed. 
According to the various strategies used, the heuristic 
algorithms available can be roughly categorized into two 
classes: move-based approaches and mathematic 
approaches. The surveys by Alpert and Khang [3] and by 
David A. Papa and Igor L. Markov[4] provided detailed 
descriptions and comparisons of such various schemes. 

The move-based approaches have been used widely. 
With an initial solution, these algorithms explore the 

solution space by locally perturbing the current solution 
and greedily exchange vertices that are most likely to 
improve the quality of the current solution. The earliest 
move-based algorithm was introduced to partitioning a 
graph by Kernighan and Lin (Abbr. KL Algorithm)[5] in 
1970, and then this algorithm was adapted for solving the 
problem of circuit partitioning by other members of their 
group. Although the KL algorithm can produce good 
solutions, it is time-consuming. Fiduccia and Mattheyses 
(Abbr. FM Algorithm)[6] proposed a fast partitioning 
algorithm, which has improved the storage structure of 
the gain data and reduced the number of exchanged 
vertices, thus greatly improving its efficiency and 
allowing it can work nearly in linear time. Because of its 
simple implementation and low complexity of time, FM 
algorithm has become a widely used refinement tool in 
other move-based partitioning algorithms. Almost all 
algorithms of this class work directly in the hypergraph 
model, where hyperedges link typically to more than two 
vertices, and therefore the movement of one or more 
vertices need not instantly reduce the cut value, thus 
increasing the chance of strapped into local minima. As a 
result, it is difficult for the move-based refinement 
algorithms to remove the cut hyperedges with large 
cardinality, which straddle the partition with many 
vertices on both sides. Many researchers concentrate on 
the removal of the hyperedges that straddle the partition 
and have developed a lot of enhanced refinement 
algorithms, such as LA[7], CLIP/CDIP[8], LSR[9], 
PROP[10] , and so on. As they observed, it is more 
effective to move hyperedges than to move vertices, 
which leads to another approach to solve the problem of 
hypergraph partitioning, and our approach also 
concentrate on partitioning hyperedges directly. 
Furthermore, combining with stochastic optimizing 
strategies, many move-based hybrid partitioning 
algorithms have been proposed, including Simulated 
Annealing[11], Evolutionary Algorithms[12-15], Ant 
Colony Algorithm[16], Tabu Search[17]and the 
multi-start strategy. Although these stochastic algorithms 
have ability of global searching and can produce global 
optimum solution if given enough time, they take too 
long time to converge and hardly can be applied in 
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practice. 
The mathematic approaches directly construct the 

partitions by using mathematic methods, such as graph 
spectral algorithms [18,19,32] , mathematic programming, 
and network flowing (maxflow-mincut)[20]. As an 
important branch, spectral algorithms have been widely 
studied and applied in industrial fields. According to the 
graph spectral theory, the second smallest eigenvalue of 
the Laplace Matrix establishes a stable relationship with 
the optimal ratio cut partition and the corresponding 
eigenvector is referred as indicating vector. Generally, the 
spectral algorithms can produce global optimal solutions 
with natural partitioning border, but it is more suitable for 
ratio-cut metric. However, the construction of Laplace 
Matrix and the computing of indicating vector are two 
tricky things for spectral algorithms. One classic method 
is to convert hypergraph into weighted graph by replacing 
hyperedges with cliques and assigning each link a weight 
of 1/(| | 1)e − ,where e is the cardinality of hyperedge 
[18]. However, this conversion only produces an 
approximately graph representation of the hypergraph, 
and it significantly increases the density of the resulting 
weighted graph. The computing of the main eigenvector 
is too expensive on time and space, which greatly hurts 
its applicability, even using fast Lanczos algorithm. 

With the development of technology and the explosive 
growth of information, a latest technique for partitioning 
large scale hypergraphs, multilevel partitioning[21,22,23], 
was developed, which combines clustering algorithm 
with traditional move-based partitioning algorithm. The 
early multilevel partitioning algorithm only consists of 
two phases, namely, coarsening phase and partitioning 
phase. It uses clustering algorithm to coarse hypergraph 
by contracting groups of vertices into a series of single 
vertex, and then produces a coarsen hypergraph whose 
size is greatly reduced. During the partitioning phase, it 
directly partitions the coarsen hypergraph. Karypis and 
Kumar[21] adapted the early multilevel paradigm and 
proposed a three-phase algorithm, to which he introduced 
an uncoarsening and refinement process. Consequently, it 
is required to construct a sequence of successively 
coarser graphs during coarsening phase, after which a 
partition of the coarsest graph is produced. As the 
partition of next level inherits from the upper coarser 
hypergraph, the FM refinement algorithm is used to 
further refine the current partition at each level, which 
makes the multilevel paradigm even more robust. 
Furthermore, in their paper a hyperedge-oriented 
clustering method was proposed for speeding up the 
contraction of large hyperedges. Based on such new 
schemes, they developed the best known algorithm, 
hMetis. Since clustering can greatly reduce the size of 
hypergraphs, the performance of the hypergraph 
partitioning algorithms based on multilevel paradigm has 
been substantially improved. The multilevel algorithms 
are often two orders of magnitude faster than hitherto 
state-of-the-art partitioning algorithms. However, the 
performance of multilevel hypergraph partitioning 
algorithms depends heavily upon the quality of the 
clustering.  

During the past decades, there appeared a minority 
who proposed a class of partitioning algorithms that 
partition the hypergraph by partitioning the hyperedges. 
The intersection graph of hyperedges (Abbr. IG graph) is 
used for the graph representation of a hypergraph, and the 
partition of hyperedges is directly computed in the IG 
graph. So far, there are only several literatures casting 
little effort on this approach. Kahng [24] provided a 
breath-first-searching method for searching the diameter 
of the IG graph and then yielding an approximate 
hyperedge partition. Hagen[25] used classic spectral 
partitioning algorithm directly to partition the IG graph. 
Cong [26] proposed a new way to construct the adjacent 
matrix of the IG graph and used the IG-matched method 
for determining the winner-loser of hyperedges. Recently, 
Cong[27] tried to implement a multi-way hypergraph 
partitioning by using a k-FM algorithm to partition the 
hyperedges in a hybrid hypergraph, which combines the 
IG graph with the dual hypergraph representation 
together. In his paper, a max-flow based method is 
adopted to solve the K-MC (K-Way Module Contention) 
problem. The hyperedge-oriented partitioning algorithm 
presents another efficient approach to hypergraph 
partitioning, as the IG graph is a precise graph 
representation of hypergraph.  

In this paper, we propose a novel multilevel heuristic 
partitioning algorithm for hypergraph partitioning, and 
show that the vertex separator problem in the intersection 
graph representation is the dual problem of hypergraph 
partitioning. The new approach is a net-based multilevel 
partitioning algorithm using the IG graph representation 
of hypergraph. A move-based vertex separating algorithm 
is implemented to partition the IG graph for the 
hyperedges partition, and a community based coarsening 
scheme is introduced into the multilevel vertex separation. 
The proposed algorithm is experimentally shown to be 
readily applicable within the framework of intersection 
graph and computationally feasible. 

The rest of this paper is organized as follows. Section 2 
presents a formal description of the hypergraph 
bipartitioning problem and vertex separator. The 
necessary background of vertex separation also is given. 
Section 3 describes the proposed algorithm in detail. In 
section 4, a comparative qualitative analysis is made with 
experimental results given. Finally, Section 5 provides 
some concluding remarks and further research 
suggestions. 

II. PRELIMINARIES 

A. Hypergraph Bipartitioning 
A hypergraph is a subsystem of the finite sets in 

combinatorics [1] and its conception derives from that of 
graph. A hypergraph ( , )H V E=  is defined as a set of 
vertices V and a set of hyperedges E. Each hyperedge of 
the hypergraph is a subset of vertices and its cardinality is 
not limited in 2. Formally, a graph is a simple hypergraph 
whose edges own cardinality of 2. The partitioning of 
hypergraph is very similar to graph partitioning, and a 
large number of algorithms treat hypergraph partitioning 
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as graph partitioning. For various applications, several 
metrics for hypergraph partitioning have been developed, 
and three basic partitioning formulations [3] are described 
as follows: 

Minimum Width Bisection: Given a hypergraph H, the 
bisection is to partition its vertices V into two disjoint 
subsets A and B with | | | - | || 1A B ≤ , denoted as 
P2={A,B}, such that the number of hyperedges crossed 
the two partitions is minimized, denoted as 

2( ) { | , , }E P e e E e A e B= ∈ ≠ ∅ ≠ ∅∩ ∩ . 
Minimum Balanced Cut: Given a hypergraph H, the 

bipartition is to separate its vertices V into two disjoint 
subsets A and B, such that 2( )E P  is minimized, subject 
to the balance constrain 

( )
v A

w vL U
∈

≤ ≤∑ , ( )
v B

w vL U
∈

≤ ≤∑  

where w(v) is the weight of vertex v , L and U denoted as 
the lower bound and upper bound respectively. Given a 
balance tolerance factor r, 

 (1 - ) / 2L r W= ,  (1 ) / 2U r W= + , 
where W is the total vertex weight of the hypergraph.  

Minimum Ratio-Cut: Given a hypergraph H, the 
bipartition is to separate its vertices V into two disjoint 

subsets A and B, such that 
2( )

( ) ( )

E P

W A W B⋅
is minimized,  

where ( )W A  and ( )W B  are the total vertex weights of 
the two partitions respectively. 

Generally, one reasonable metric for hypergraph 
partitioning always count the cost between the cut value 
and the size of the disconnected partitions, and it often 
depends on specific applications. The above three metrics 
have different requirements for balance criteria. Bisection 
is the strictest partitioning, which constrains the deviation 
of two parts within one unit. This rigorous requirement is 
often unnecessary in practice and only leads to more 
complicated implements. On the contrary, the ratio cut 
metric greatly loosens requirements on balance criteria. 
Intuitively, the ratio cut metric allows partitioning 
algorithms to find optimum partition freely because the 
objective function makes a tradeoff between cut value 
and parts’ size, which gives a soft penalty for uneven 
partition while capturing the minimum-cut. Since the size 
of the cut is on the numerator, it has more intensive effect 
on the objective value than the penalty does. Thus the 
ratio cut metric is apt to extremely unbalanced partition 
with smallest cut. While the balanced cut metric has a 
moderate balance criteria, which limits a legal area range 
by giving a balance tolerance factor, if the deviation of a 
partition is within the tolerance, it is regarded as a legal 
and acceptable solution. Practically, the balanced-cut 
metric is more flexible to meet different requirements of 
various applications by adjusting the balance factor. 
Therefore, it has been widely adopted by most hierarchal 
partitioning algorithms. Our approach also focuses on it. 

B. Intersection Graph and Vertex Separator 
Firstly, we consider the graph representation of a 

hypergraph. Practically, there are two types of graph that 

are widely used. One is a common weighted graph which 
is converted from the original hypergraph by replacing 
each hyperedge with a weighted clique, as [18] does. It is 
mostly used to construct the adjacent matrix in spectral 
partitioning algorithms, where each edge is assigned a 
connection weight. Actually, the weighted graph is a 
vertex intersection graph of the hypergraph, not an 
equivalent representation for hypergraph on the problem 
of partitioning, as mentioned above. Another is the 
hyperedge intersection graph which contains only the 
original hyperedges and their intersection information 
(Normally, we always refer to the hyperedge intersection 
graph as IG graph). It can be shown that the problem of 
hypergraph partitioning is really equivalent to the vertex 
separator problem in the IG graph, and they are a dual 
problem. The conversion from hypergraph to IG graph is 
as follows: 

Given a hypergraph  (  , )H V E= with |V|=m and 
|E|=n, consider a graph with n vertices, denoted as 

( '  , ')G V E= , such that the vertices 'V  of G 
represents the hyperedges E of H, one for each 
hyperedge, and the edges 'E of G represents the 
intersection information between the corresponding 
hyperedges of H, i.e., if there is an edge between two 
vertices of G , in the original hypergraph H the 
intersection of the two corresponding hyperedges must 
not be empty, as Figure 2 demonstrates. G is defined as 
the hyperedge intersection graph of the hypergraph H. 
Note that this conversion is not bidirectional, and for a 
given hypergraph H, G is unique; however, the reverse is 
not true.  

(a) (b)

Net1

Net2 Net4

Net7

Net3 Net8

Net5

Net6

 
Figure 1. A hypergraph and its hyperedge intersection graph 

As mentioned earlier, the objective of the hypergraph 
partitioning is to find a minimal cut, where the vertices 
are divided into two disjoint balanced parts. From another 
perspective, excluding the cut hyperedges that span two 
parts, the rest of the hyperedges also are divided into two 
disconnected parts in a partition. Therefore, a hypergraph 
partition can be obtained by separating its hyperedges 
rather than directly partitioning its vertices.  

Given a partition of the hypergraph, the vertices are 
divided into two disconnected parts M and N, where the 
hyperedges are divided into three groups accordingly, 
with C as the cut hyperedges that straddle the partition, A 
and B as the hyperedges that are completely contained 
within the two disconnected parts M and N respectively. 
In the IG graph, the vertices corresponding to the group 
of hyperedges C form a separator, whose removal divides 
the rest vertices into two disconnected components 
corresponding to A and B respectively. On the contrary, 
suppose C is a separator of the IG graph, then the vertices 
are divided into two disconnected parts A and B by C. 
Projecting the partition about A, B and C to the original 
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hypergraph, the hyperedges are divided into three 
corresponding parts. By assigning vertices that contained 
in the corresponding hyperedges of A and B to two 
vertices sets M and N respectively, the vertices of the 
hypergraph are divided into two parts, excluding few 
neutral unassigned vertices contained only in the 
hyperedges corresponding to separator C. Hence, it is 
easy to produce a partition for a separator of the IG graph. 
Therefore, considering hypergraph partitioning in terms 
of hyperedges, a separator of the IG graph corresponds 
uniquely to a hypergraph partition and the cut value of 
the hypergraph partition is completely consistent with the 
size of the separator. In conclusion, the problem of 
hypergraph partitioning is equivalent to the vertex 
separator problem in the IG graph, which means that they 
are a dual problem. 

In balanced partitioning, the partition of the IG graph 
should satisfy such a balance constraint as guarantees the 
total weights of the vertices contained in the two 
corresponding hyperedges parts being equivalent. In this 
paper, we construct a weight IG graph by giving each 
vertex in the IG graph a capacity which approximately 
represents its weight, so that a balanced partition just 
requires that the total capacity of A and B approximately 
be equal. The balance constraint and vertex assignment 
are discussed in the next section. Since the vertex 
separator problem (VSP) is another important problem of 
graph partitioning and is also NP-Hard[28], it is 
intractable to find the minimal size vertex separators even 
in graphs with nodes having a maximum degree of three, 
to which we propose a novel move-based heuristic 
approach. 

III. MULTILEVEL HYPERGRAPH BIPARTITIONING 

Our approach VSHPA(Vertex Separator based 
Hypergraph Partitioning Algorithm) is based on 
multilevel separator model and applies the intersection 
graph representation of the hypergraph. As Figure 2 
shows, the whole framework of VSHPA has five phases: 
IG graph construction, coarsening, initial separator, 
uncoarsening and refinement and partition projection. 

hypergraph

Intersection 
Grap

Intersection 
Grap

Dual Conversen Projection

Coarsening Phase

Initial Separator

Uncoarsening and 
Refinement Phase

 

 
Figure 2. The various phases of VSHPA 

At the preceding stage, the IG graph of the hypergraph 
needs to be constructed. One simple way is to replace 
hyperedges linked to one vertex with a clique in the IG 
graph. It takes O(md2) time to complete the whole 
conversion, where m is the number of vertices and d is 
the average degree of the vertices. Another fast 

conversion method is to search each hyperedge and its 
vertices one time, and add edge only to its adjacent 
hyperedges whose number is greater than itself. This 
method can avoid adding repeated edges and consumes 
time by O(nd2), where n is the number of hyperedges.  

The intermediate three phases compose a multilevel 
vertex separating algorithm, and thus the whole 
procedure operate directly on the hyperedges in terms of 
graph vertices. In the coarsening phase, a 
community-based clustering method is used to coarsen 
the IG graph. Then an initial separator is produced by a 
fast agglomerating algorithm. A move-based heuristic 
algorithm is proposed specifically for refining the vertex 
separator in the uncoarsening and refinement phase.  

At the last partition projection stage, a solution of the 
hypergraph partitioning is produced by assigning the 
vertices of hypergraph into partitions according to the 
hyperedge partitions projected from the minimal 
separator of the IG graph. In addition, we adopt an 
approximately statistic schemes to enforce the balance 
criteria in every cycle, including initial separator, 
refinement process and last vertex assignment. Several 
crucial methods are discussed in details in the following. 

A. Community-based Coarsening Method  
During the coarsening phase, groups of vertices are 

contracted into single vertices and a series of smaller 
coarsened graphs are produced, which greatly reduces the 
scale of the graph. However, the quality of clusters might 
greatly influence the final quality of the solution. Similar 
to the hypergraph representation, the IG graph preserves 
its hierarchical structure. Therefore, a community based 
clustering scheme is adopted for vertex separating, in 
which a group of vertices with maximal quality value are 
merged into an single hard core excluding boundary 
vertices adjacent to the rest of the graph, as Figure 3 
shows.  
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Figure 3. Illustration of the community based clustering scheme for 
vertex separation. The subsets of vertices circled by dashed lines are 

communities. The dark dots are the hard cores and the blue dots are the 
boundary vertices. 

In the community based clustering scheme, the quality 
value of community is defined as 1 / rVQ s v= − , where 
s is the number of the boundary vertices, v is the size of 
the community, and r is a control parameter for the size 
of the community denoted as /r kd d= , where d is the 
density of the community, d  is the average density of 
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the graph, and k is a preference parameter for r. This 
definition aims to find a densely connected community 
with few boundary vertices, such that VQ reaches local 
maximal. Here parameter r can dynamically adjust the 
size of the community, which takes the density of the 
community into account, so denser community may have 
larger size. Getting such a community, we contract its 
internal vertices into a single hard core excluding the 
boundary vertices, which means that the vertices in the 
core are undividable and cannot be selected into separator, 
and that only the boundary vertices are potential members 
of the separator, even the last separator.  

The clustering procedure has two stages. In the first 
stage, every vertex is visited and all the communities with 
maximal VQ are found. In the second stage, an 
agglomerative scheme is used to combine the 
communities to produce much coarser graph rather than 
to combine vertices. The communities with maximal VQ 
value are identified with the following procedures. 
1) Randomly select an unvisited vertex, set it as the 

internal vertices and all its neighboring nodes as the 
boundary vertices; 

2) Perform a loop over all boundary vertices to 
compute their fitness 'if VQ VQ= − ; 

3) Add the boundary vertex with the largest fitness to 
the core with its unvisited neighboring nodes 
absorbed as new boundary vertices, yielding a larger 
community; 

4) Repeat from step 2, until the quality value of the 
community reaches local maximal and there are no 
boundary vertices with positive fitness; 

5) Cluster the core of the community into a hard core 
and mark all the vertices of the community as 
visited. 

At the first stage, we repeat this procedure until all the 
vertices are visited. Such a coarsening progress turns the 
original intersection graph into a coarse graph consisting 
of many communities. The following stage continues to 
combine communities to produce a series of smaller 
coarse graphs until the smallest one reach the required 
size. During this process, pairs of communities with 
maximal fitness are selected to combine together if and 
only if the size of the new cluster meets the balance limit. 
To avoid big-bigger effect that bigger cluster is apt to 
absorb its adjacent cluster and grows up into supper large 
cluster, an upper limit is set to limit the size of the biggest 
cluster at every level. 

B. Initial Separator 
Generally speaking, the initial separator is not so 

important as it does not directly determine the last 
solution and might vary greatly during the uncoarsening 
and refinement process. It is a feasible way to execute the 
coarsening operation until only two communities are left, 
whose boundary vertices can be used as an initial 
separator, but it is hard to reach a balanced partition. 
Since the coarsest graph usually has a few vertices, it is 
easy for any separating algorithm to find a separator in 
seconds. In this paper, a fast agglomerating algorithm is 
used to compute the initial separator.  

Firstly, two notations about the adjacent set of a vertex 
subset and the average out-degree of a separating vertex 
should be informed. The adjacent set of vertex subset X 
among vertex subset Y in a graph is defined 
as ( , ) { | , , , , , 1.. }N X Y v v X v Y v v E i j nj i j i j= ∈ ∈ < >∈ = . Given a 
graph G, suppose C is a separator about A and B, for each 
separating vertex s in C, the average out-degree is defined 
as 

1
( )

| ( , ) |( , )
sAod

N v Cv N s B
= ∑

∈

. 

The agglomerating algorithm starts with a randomly 
selected core vertex and sets the core as the internal 
vertex and all its boundary vertices as a separator. Each 
time, it selects a separating vertex with minimal average 
out-degree from the separator to combine with the 
internal vertices, and updates the separator. In moving a 
separating vertex, if its adjacent vertex is a contracted 
core, the core vertex should be uncut and must be moved 
immediately. The moving process continues until half of 
the vertices are moved into internal section or the total 
capacities of the internal vertices reach the upper balance 
limit. At that point, the vertices belonging to the internal 
section are assigned to the first partition, and the rest of 
the vertices are assigned to the second partition excluding 
the separator. The whole process of the algorithm can be 
summarized as follows: 

1) Initialize an internal vertex set S = ∅  and a 
separator C = ∅ ; 

2) Randomly select a core vertex as the seed, add it to 
S and its adjacent set ( , - )N S G S to C, and then 
produce a new separator about S and - -G S C ; 

3) Compute the average out-degree for all the 
separating vertices in C, select the vertex vi with 
smallest value to move into S and add its adjacent 
set ( , - - )iN v G S C  to separator C; 

4) Repeat step 3 until the size of S satisfies the 
requirement, and output the separator. 

Since the initial separating algorithm is a randomized 
method, the quality of the separators is quite unstable and 
depends heavily on the seed vertex. In order to improve 
the quality of the partition, we start the next process with 
a small number of initial separators and drop some bad 
solutions during the uncoarsening and refinement phase. 
On one hand, the partition in the coarsest graph is just a 
proximate solution to lower level coarsen graph and will 
be substantially modified during the uncoarsening and 
refinement phase, and thus the optimal initial separator of 
the coarsest graph does not necessarily produce the 
smallest separator in the end. However, increasing the 
number of initial separator may potentially improve the 
quality of the final partitioning. On the other hand, a large 
number of initial separators will greatly increase the 
running time. Based on the observation that the size of 
coarser graph usually is very small and the refinement 
operation may be very fast, it is a wise decision to drop 
some bad solutions in the graph uncoarsening, which can 
effectively reduce the refinement time without substantial 
damage to the quality of the final solution. 
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C. Refinement Algorithm for Vertex Separator 
A move-based heuristic refinement algorithm VSR is 

implemented for vertex separator, which is a FM-liked 
stochastic refinement algorithm and directly optimizes 
the vertex separator, not the edge cut. Let C be a 
separator of graph G about two partitions R and L. 
Consider a subset Y of the separator C, move Y into 
L(here suppose vertices move from R to L), then the set 

' ( - ) ( , )C C Y NY R= ∪  is the new separator of the two partitions 
' - ( , )R R N Y R=  and 'L L Y= ∪ . For | ( , ) |   | |N Y R Y< , 

| ' | | |C C< . It is the theoretic foundation of the refinement 
algorithms for vertex separator. J.W.H. Liu [29] provides 
first a Bipartite Graph Matching (BGM) algorithm in his 
paper. It uses the augment-path method to find a 
maximum matching between the Y and ( , )N Y R . In 
finding the maximum matching, if there are uncovered 
vertices in Y and no augmenting paths, the vertex subset 
Y must satisfy the inequation | ( , ) |   | |N Y R Y< . The 
BGM algorithm is a greedy searching algorithm and 
easily stuck into local minimal. As Figure 5 illustrates, 
the BGM algorithm can easily find the set C1 and P1. 
Upon replacing P1 with C1, the size of the separator is 
decreased by one. But it is difficult to find the set P2. 
Intuitively, successively moving C2 and P2 to L 
section,the subset C2 is replaced by P2′ and the size of 
the new separator 2 2 2' ( - ) ( , )C C C N P R P= ∪ −  is also reduced 
by one. 

 
Figure 4. Illustration of the theory of refinement scheme for vertex 

separator 

Based on such a fact, the theorem is extended to the 
general case: Suppose P is a vertex subset of R section, if 
| ( , ) | | ( , - ) |N P C N P R P>  and ( ( , ), )N N P C R P⊆ , move P to L 
section, and the separator is improved. Since the 
determination of such a vertex set P is intractable, a 
heuristic refinement approach is adopted for vertex 
separation. In our approach, a scoring scheme for each 
vertex is used to encourage closely adjacent groups of 
vertices to move together. This scheme is implemented as 
follows. Firstly, every vertex is given a relative score. 
Each time one vertex with maximal score is selected and 
moved, the scores of all the related vertices are updated 
by adding delta s. Suppose a vertex v is selected and 
moved into separator C, all the related vertices 

( ( , ), )N N v C R  need to be updated. A detailed illustration 
of the various steps of the refinement algorithm on a 
subgraph with 9 vertices is presented in Figure 5. 

 
Figure 5. The refinement process of VSR in a simple subgraph with 9 

vertices 

At the beginning of the refinement process, the 
movements of selected vertices usually produce little 
reduction until a number of vertices are successively 
moved, which is known as the hill-climbing effect. 
Normally, the algorithm is likely to climb out of a local 
minimal and reaches a better solution after a number of 
vertices are moved. However, it is experimentally shown 
that too long a sequence of vertex moves rarely achieves 
an improvement of the separator. Usually, an adjustable 
parameter β  is set to limit the number of such void 
moves and stop the refinement pass as soon as the void 
moves reach the upper limit. By adjusting the value of 
β  in different refinement stage, the solution scope for 
refinement algorithm to search is dynamically changed. 
Since the initial solution may has lower quality at the 
beginning of the refinement process, a larger value for 
β  can enlarge the searching scope for the refinement 
algorithm; whereas the solution derived from the upper 
level is finer in the lower level coarsen graph, a smaller 
value for β  can limit the number of vertex moves, which 
can effectively speeds up refinement process.  

Let C be a separator of graph G about two vertex sets 
R and L, the refinement algorithm for vertex separator 
works as follows: 

1) Select the refining direction according to the size of 
the two partitions, and for R LA A> , select R side as 
the starting partition; 

2) Initialize the adjacent vertices queue Q by ( , )N C R  
and set all the scores as zero; 

3) Randomly select one vertex v from Q and move it to 
the separator C, add the unloaded neighbors 
in ( , )N v R  to Q with zero score, and update the 
separator C and the queue Q; 

4) Select the vertex v with maximal score to move into 
the separator C, add the unloaded neighbors 
in ( , )N v R  to Q with zero score, and update the 
separator C and the queue Q; 

5) Repeat step 4 until the total capacity of L section 
reach the upper limit or the void moves exceed the 
permitted number, put back all invalid moves and 
set them as inactive vertices to forbid them being 
selected as seed vertices again. 

6) If there is no active vertex, current refinement 
process exit; else go to step 3 and continue. 

D. Balance Constraint and Vertex Assignment 
During the process of partitioning and refinement, the 

size of each partition must satisfy the balance constraint. 
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In the IG graph, each vertex represents a hyperedge and 
one move means that a hyperedge is moved and a group 
of related vertices reassigned. Furthermore, there might 
be some neutral vertices that can be assigned to any 
partitions. It is hard to accurately compute the size of 
each partition. Therefore, it is feasible to approximately 
control the size of each partition during the IG graph 
separation. In this paper, a weighted IG graph is used to 
approximately compute the partition size by assigning 
each vertex a capacity Ai. For each vertex of the 
hypergraph, the average-degree-weight is defined as its 
average weight for each degree, and then the capacity of 
each hyperedge equals the total average-degree-weight of 
its vertices. Experimental data indicate that the weight of 
one vertex is proportional to its degree and the capacities 
of hyperedges can approximately represent its vertices’ 
weights. It suffices to compute the capacity of each 
hyperedge once at the beginning of the partitioning, 
which greatly reduces the running time.  

In the last process, the minimal separator of the IG 
graph is used to construct a hypergraph partition by 
assigning all the vertices of the hypergraph into partitions. 
A simple way is to assign the vertices according to the 
hyperedges’ partition. One thing that has been left 
unspecified is how to assign the neutral vertices 
exclusively contained in the hyperedges of the separator. 
Because the assignations of the neutral vertices do not 
affect the cut value, they usually are assigned into the 
smaller partition to improve the balance condition.  

IV. EXPERIMENTAL RESULTS 

The proposed algorithms are extensively tested on a 
large number of hypergraphs. The test data come mainly 
from the MCNC and ISPD98 standard benchmark suites 

[30, 31]  and are widely used in ACM/SIGDA for testing 
hypergraph partitioning algorithms. Comparison between 
our approach and several known partitioning algorithms 
is performed with comprehensive results provided. 
Furthermore, supplementary experiments on community 
based clustering scheme are also made.  

A. Hypergraph Test Benchmark 
During the past decades, hypergraph partitioning has 

received enough attention from the Design Automation 
community and a large number of heuristic algorithms 
have been developed. Consequently, the requirement for 
appropriate testing data becomes stronger and hundreds 
of publications have used circuit benchmark suites to 
compare and validate their algorithms. There are a large 
number of circuits originally released by the 
Microelectronics Center of North Carolina (MCNC) and 
sponsored by ACM/SIGDA [30]. For convenient 
comparison of the quality of solutions, part of the MCNC 
and ISPD98 benchmark suites are selected to test our 
algorithm. 

Table 4.1 presents the characteristics of 29 circuits of 
MCNC benchmark. The first 11 small scale circuits were 
introduced by MCNC before 1993 and are often used in 
the Physical Design Workshop. The latter 18 circuits of 
the ISPD98 benchmark suites [31] were introduced by 

Charles J. Alpert, member of IBM Austin Research 
Laboratory, in 1998. These selected circuits have a large 
range in scale, from 123 to 210,000 modules, and all are 
generated from real IBM internal designs. As the table 
shows, each circuit consists of cells, pads, pins and 
signals. Cells are the internal objects and occupy some 
circuit area, pads are the external objects of very small 
size (perhaps just external signal pins), and cell and pad 
are called the circuit module. Signals are the wires 
connecting circuit modules and transmitting electric 
signals, while pins are the feet points of circuit modules 
for connecting signals. The last column, Total Area, 
represents the size of circuits, i.e. the sum of all its 
modules’ size. Using the hypergraph representation, each 
circuit can be naturally represented by a hypergraph, the 
vertices of the hypergraph representing the circuit 
modules and the hyperedges the signals. When using the 
real module’s area, each vertex of the hypergraph is given 
a weight with the size of corresponding module.  

TABLE 4.1  

CHARACTERISTICS OF 29 CIRCUITS IN THE MCNC AND ISPD98 CIRCUIT 
TEST BENCHMARK 

Benchmark Cells Pads Signals Pins Total Area 
ami33 33 - 123 388 1156449 
ami49 49 - 408 912 35445424 
fract 125 - 163 454 225504 
g2 199 - 377 925 9596023 

primary1 833 - 1266 3272 26607000 
struct 1952 - 1920 5407 2850352 

industry1 2271 - 2479 8025 4403352 
primary2 3014 - 3817 12007 53457000 
biomed 6514 - 5742 22253 13062992 

industry2 12637 - 13419 47657 10404768 
industry3 15406 - 21923 65610 360933376 

ibm01 12752 246 14111 50566 4230016 
ibm02 19601 259 19584 81199 8458336 
ibm03 23136 283 27401 93573 9842880 
ibm04 27507 287 31970 105859 9294944 
ibm05 29347 1201 28446 126308 4471520 
ibm06 32498 166 34826 128182 8577791 
ibm07 45926 287 48117 175639 11829856 
ibm08 51309 286 50513 204890 13449888 
ibm09 53395 285 60902 222088 17529312 
ibm10 69429 744 75196 297567 47534336 
ibm11 70558 406 81454 280786 21237408 
ibm12 71076 637 77240 317760 36974848 
ibm13 84199 490 99666 357075 25061568 
ibm14 147605 517 152772 546816 28727296 
ibm15 161570 383 186608 715823 36534944 
ibm16 183484 504 190048 778823 52592704 
ibm17 185495 743 189581 860036 42187712 
ibm18 210613 272 201920 819697 33686560 

B. Clustering Results 
During hypergraph partitioning, clustering is an 

important technology for reducing the size of the 
hypergraph, but how to judge the quality of the clusters 
has received little attention and there is no uniform 
criterion available. However, a versatile clustering 
scheme could effectively find tensely connected vertices 
and hyperedges subset and contract them into one vertex 
that should not be divided in most solutions. On the 
contrary, the hyperedges often cut in partitions should not 
be contracted, which are particularly helpful in searching 
the optimal solution by move-based refinement 
algorithms. Thus, it might be feasible to validate the 
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clustering algorithms by analyzing and comparing the 
ratio of contracted hyperedges in a coarsen hypergraph. 
Our approach directly contracts communities in IG graph, 
which corresponds to directly contracting a group of 
tensely connected hyperedges together in the original 
hypergraph. For comparing the performance with other 
vertex-based clustering approach, Table 4.2 presents the 
ratios of contracted hyperedges when the vertices of a 
hypergraph are reduced to 80% by using heavy-edge 
matching(HEM), hMetis[21] and CMC respectively. 

TABLE 4.2  
COMPARISON OF HYPEREDGE CONTRACTED RATIOS AMONG HEM, 

HMETIS AND CMC. 

Benchmark Number of 
Hyperedge 

Hyperedge Contracted Ratio (%) 

HEM hMetis CMC 

ibm01 14111 90.46 89.17 85.72 
ibm02 19584 89.21 87.32 84.37 
ibm03 27401 90.83 88.94 86.55 
ibm04 31970 89.42 87.23 84.27 
ibm05 28446 89.68 88.25 85.14 
ibm06 34826 90.35 88.34 86.42 
ibm07 48117 90.54 89.08 87.50 
ibm08 50513 91.63 88.76 85.73 
ibm09 60902 89.27 86.14 85.90 
ibm10 75196 88.12 85.41 84.62 
ibm11 81454 91.29 88.06 84.82 
ibm12 77240 90.89 87.52 86.03 
ibm13 99666 92.74 89.37 87.55 
ibm14 152772 90.36 88.94 87.01 
ibm15 186608 91.21 87.75 86.46 
ibm16 190048 89.65 88.33 85.07 
ibm17 189581 89.38 87.85 86.74 
ibm18 201920 89.44 87.49 85.31 

As Table 4.2 shows, our approach acquires the lowest 
overall hyperedge contraction ratio, indicating that it can 
effectively contract tensely connected vertices together 
while leaving more free hyperedges. We conjecture that 
the left hyperedges are the boundary vertices of 
communities in the IG graph, which are usually cut in 
local partitioning solutions.  

 
Figure 6. Communities and hierarchy in the intersection graph of 

circuit ami33. 

In order to validate this conjecture, the IG graph of 
ami33 is extensively analyzed, as shown in Figure 6. 
There are 123 vertices in the IG graph. Specially, the two 
stars represent the ground and power signal, which link to 
all the other vertices of the graph; and the four triangles 

represent control signals that link to all vertices on the 
right of the dashed line. For a clear perspective, the links 
to the six vertices are hidden. Objectively, different from 
random systems, circuits are special manmade artifacts 
and they possess hierarchy structure and many highly 
structured communities, and therefore the community 
based clustering scheme can be applied in the IG graph.  

C. Partitioning Comparison 
To compare the quality of the solutions, we run three 

partitioners published earlier (Fiduccia-Mattheyses (FM) 
[6], IG-Match [26], hMetis [21]) and our VSHPA on the 
standard testing circuits. FM and hMetis are two 
vertex-oriented partitioners that work directly on 
hypergraph. FM is an industrial standard iterative 
exchange heuristic and its implementations use a LIFO 
bucket structure as [6] described. hMetis is a multilevel 
partitioner, whose executable program is obtained by the 
authors of [21] and whose adaptable parameters use the 
default schemes. Furthermore, for comparing the 
performance of different refinement schemes, we 
implement three different versions of VSHPA: 
VSHPABMP, VSHPAFlat and VSHPAML. VSHPABMP is a 
common flat hypergraph partitioning algorithm adopting 
the BMP refinement method. VSHPAFlat is also a flat 
algorithm, but it uses the move-based refinement method 
to directly improve the separator. VSHPAML is the 
multilevel version of VSHPAFlat and adopts the 
community based clustering method to coarsen the IG 
graph.  

Firstly, we ran the six partitioners on the benchmarks 
under the unweighted hypergraph model (all circuit 
modules are regarded as standard cells with unit area). 
For each circuit, all the results allow up to 10% deviation 
from exact bisection, i.e., each partition must have an 
area between 45% and 55% of the total. Each partitioner 
ran 30 times and the best solutions are reported in Table 
4.3. The column labeled “Hypergraph Model” shows that 
the contained partitioners work directly on hypergraphs, 
and the column labeled “Intersection Graph Model” 
indicates that the contained partitioners use the IG graphs 
of hypergraphs.  

All the hyperedge-oriented algorithms perform better 
than the vertex-oriented algorithms. For flat partitioners, 
the quality of the solutions produced by VSHPABMP, 
VSHPAFlat and IG-match are better than that by FM 
algorithm with 6%, 17% and 3% improvement 
respectively, which further demonstrates that the cut 
hyperedges with large cardinality are are difficult to 
remove by the vertex-oriented refinement algorithms. For 
multilevel partitioners, the quality of the solutions 
produced by VSHPAML is as good as that by hMetis, or 
even better, such as ibm03, ibm15, ibm17. Furthermore, 
hMetis perform better than FM algorithm, which hints 
that clustering scheme can effectively reduce the 
hyperedges’ size and greatly improve the global searching 
ability of the vertex-oriented refinement algorithms. 
Generally speaking, our refinement algorithm performs 
better than FM and BMP based refinement algorithms. 
When the size of the test data is less than 1000, the three 
refinement algorithm all produce much better solutions, 
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but the quality of the solutions produced by FM 
algorithm rapidly get worse with increasing size of the 
test data, which shows that the global searching ability of 
FM algorithm is worse on large scale data. Although the 
BMP based refinement algorithm also has better global 
searching ability, it is a greedily searching algorithm and 
easily trapped into local minimal. Our refinement 
algorithm has much better climbing ability than BMP. 

TABLE 4.3 
MIN-CUT BIPARTITIONING RESULTS UNDER THE UNWEIGHTED 

HYPERGRAPH MODEL WITH UP TO 10% DEVIATION FROM EXACT 
BISECTION. EACH VERTEX IS ASSIGNED THE UNIT AREA. 

Benchmark 
Hypergraph 

Model  Intersection Graph Model 

FM hMetis  IG-match VSHPABMP VSHPAFlat VSHPAML

ami33 10 9  9 10 10 9 
ami49 47 46  46 49 49 46 
fract 12 11  11 12 11 11 
g2 29 16  24 36 29 18 

primary1 68 47  53 72 60 41 
struct 33 33  33 36 33 33 

industry1 26 19  21 37 20 19 
primary2 183 144  161 206 172 144 
biomed 88 83  85 92 86 83 

industry2 211 174  192 251 182 175 
Industry3 273 264  283 242 187 260 

ibm01 197 181  185 216 181 180 
ibm02 266 262  294 293 264 262 
ibm03 1151 956  1270 1481 1005 952 
ibm04 602 537  611 1321 634 534 
ibm05 1874 1739  1823 1935 1831 1723 
ibm06 976 885  1061 1158 965 885 
ibm07 1035 848  1084 1173 984 841 
ibm08 1285 1142  1183 1276 1183 1148 
ibm09 916 628  709 1082 709 626 
ibm10 1502 1269  1518 1905 1517 1256 
ibm11 1459 962  1296 1414 1209 962 
ibm12 2258 1891  2273 2441 2219 1922 
ibm13 1181 841  2126 2303 1025 840 
ibm14 2961 1928  2469 3047 2490 1967 
ibm15 5018 2748  4327 4423 3436 2597 
ibm16 2363 1758  2383 2177 2383 2051 
ibm17 3052 2341  3521 3839 3319 2206 
ibm18 1708 1526  2128 2905 2549 1521 

Table 4.4 presents bipartitioning results produced by 
partitioners under the weighted hypergraph model, where 
each vertex has actual module area. All the algorithms 
perform under the same circumstances as above. Note 
that the FM and IG-match algorithms sometimes produce 
worse solutions than that under unit area model, e.g., 
ibm05, ibm12 and ibm15, which indicates that the 
implementations are not particularly good at satisfying 
balance criteria when the areas of modules vary greatly. 
IG-match always forces all vertex moves to satisfy the 
balance criteria. Actually, it is more suitable for ratio cut 
metrics, under which it can find more natural partitions. 
Indeed, the problem of finding an exact bisection is 
NP-Complete under the weighted hypergraph model.  

 

 

 
TABLE 4.4 

MIN-CUT BIPARTITIONING RESULTS UNDER THE WEIGHTED HYPERGRAPH 
MODEL WITH UP TO 10% DEVIATION FROM EXACT BISECTION. EACH 

VERTEX IS ASSIGNED THE ACTUAL MODULE AREA. 

Benchmark
Hypergraph 

Model Intersection Graph Model 

FM hMetis IG-match VSHPABMP VSHPAFlat VSHPAML

ami33 11 9 10 10 10 9 
ami49 31 31 31 32 31 31 
fract 12 11 11 12 11 11 
g2 32 28 29 36 29 28 

primary1 67 56 58 72 60 56 
struct 34 33 33 36 33 33 

industry1 23 20 20 37 20 20 
primary2 198 161 202 206 172 160 
biomed 88 83 88 92 86 83 

industry2 252 168 211 351 182 166 
Industry3 229 188 192 242 187 188 

ibm01 272 216 251 216 181 216 
ibm02 315 273 285 293 264 248 
ibm03 1424 739 1009 1481 1005 694 
ibm04 634 442 636 1321 634 440 
ibm05 1878 1710 1922 1935 1831 1712 
ibm06 1479 367 446 1158 965 363 
ibm07 870 745 948 1573 984 716 
ibm08 1411 1156 1249 1276 1183 1135 
ibm09 750 522 708 2682 709  520 
ibm10 982 734 1004 1905 1517 744 
ibm11 1209 703 927 3414 1209 692 
ibm12 2219 1988 2316 2441 2219 1975 
ibm13 1196 874 911 2303 1025 850 
ibm14 2015 1514 1930 5047 2490 1508 
ibm15 3436 1802 3743 6423 3436 1781 
ibm16 2173 1707 2039 4177 2383 1654 
ibm17 2818 2247 3042 4839 3319 2253 
ibm18 2604 1528 2511 2905 2549 1523 

V. CONCLUSIONS AND FUTURE WORK 

We present a new approach to hypergraph 
bipartitioning based on the combination of vertex 
separator and the IG graph representation of hypergraph. 
It is shown that the problem of hypergraph bipartitioning 
is the dual problem of vertex separation in the IG graph 
of hypergraph. Our vertex separator based hypergraph 
partitioning algorithm is hyperedge-oriented, which 
completely avoids the removal of large cut hyperedges. 
The results show that our approach performs better than 
the vertex-oriented partitioning algorithms. Furthermore, 
our approach greatly simplifies the vertex assignment 
process. 

However, there are a number of interesting issues 
remain unsolved. According to the max-flow min-cut 
theorem, the problem of minimum ratio cut and vertex 
separator for some special graphs can be solved in time 
O( 7 / 6 2 / 3n m ), but the problem of balanced vertex separator 
is NP-Hard. Although our heuristic approach also can 
produce high quality solutions, the randomized 
optimizing method enhances its global searching ability 
at the cost of its stability. It is feasible to improve its 
performance by increasing attempt times, but it brings 
more time complexity. Therefore, it is a promising 
research to find deterministic refinement algorithms for 
vertex separator. Since there are many special industrial 
application requirements, the problem of multi-way graph 
partitioning also deserves further study.
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