
A Revocable Certificateless Signature Scheme
Yinxia Suna,b, Futai Zhanga,b, Limin Shena,b

a School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China
b Jiangsu Engineering Research Center on Information Security and Privacy Protection Technology, Nanjing 210023,

China

Abstract— Certificateless public key cryptography (CLP-
KC), with properties of no key escrow and no certificate, has
received a lot of attention since its invention. However, how
to revoke a user in certificateless cryptosystem still remains a
problem: the existing solutions are not practical for use due
to either a costly mediator or enormous computation (secret
channel). In this paper, we present a new approach to solve
the revocation problem in CLPKC, by giving a concrete
revocable certificateless signature scheme. The new scheme
is more efficient than the existing solutions and is provably
secure under the Computational Diffie-Hellman assumption.

Index Terms— revocation, certificateless signature, existen-
tial unforgeability, Computational Diffie-Hellman problem.

I. INTRODUCTION

According to the way to authenticate public keys,
there are mainly tree kinds of public key cryptosystems.
The traditional public key cryptosystem (TPKC) uses a
certificate to bind a public key with its user’s identity.
However, the issues associated with certificate manage-
ment are quite complicated and expensive. Identity-based
cryptosystem (IBC), introduced by Shamir in 1984 [14],
utilizes a user’s publicly known identity information as
its public key. So, there is no need for a public key
certificate. However, a user’s private key must be fully
generated by a Private Key Generater (PKG). In order to
preserving the ”certificate free” property of IBC without
suffering from the key escrow problem, Al-Riyami and
Paterson presented “Certificateless Public Key Cryptog-
raphy” (CLPKC) [2]. In CLPKC, the Key Generation
Center (KGC) and a user cooperates to generate a private
key; the corresponding public key does not require a
certificate to guarantee its authenticity. Take a scenario
in cloud computing as an example. Cloud computing is a
distributed system where multiple cloud servers co-exist.
Every cloud server has its own master secret key and
public key certified by a PKI. Due to the heavy burden
of certificate management, a cloud server may provide
services to users via IBC playing the role of PKG. All
users trust the server. As some users may want to keep
their privacy from the cloud sever, they can use CLPKC
by making use of the cloud sever as a partial private
key generation center. A user in this cloud can utilize

This work is supported by NSF of Jiangsu Province of Chi-
na [No. BK20130908], the Nature Science Foundation of China
[No.61170298], Natural Science Fund for Colleges and Universities in
Jiangsu Province [No.13KJD520006] and Nanjing Normal University
Foundation [2012119XGQ181].

powerful computing resources to store sensitive data (by
certificateless encryption), or to declare the authenticity
of a document (by certificateless signature) shared with
others.

It is widely known that a necessary issue in the practical
application of a public key cryptosystem is to establish
an effective revocation mechanism. Once a user’s private
key is compromised or the access permission is expired,
the cloud center should revoke the user’s current private
key. Traditionally, this problem can be solved by using
certificate revocation lists (CRLs), online certificate status
protocol (OCSP) [12], Novomodo [11] and SEM [3]. In
identity-based public key systems, Boneh and Franklin
[4] suggested a method that the PKG generates private
keys for all non-revoked users periodically. Libert and
Quisquater [9] applied the SEM [3] architecture to the
Boneh-Franklin identity-based encryption (IBE) to obtain
instantaneous revocation. In 2008, Boldyreva et al [5]
utilized a binary tree to present the first scalable revo-
cable identity based encryption scheme, which was later
improved by Libert and Vergnaud [10]. In 2012, Tseng
and Tsai presented an efficient revocable identity based
encryption scheme [17] and a revocable identity based
signature scheme [16]. In PKC 2013, Seo et al [13]
made a survey of revocable identity based encryption,
and presented a new realistic threat named “decryption
key exposure” against revocable identity based primitives.
Decryption key exposure captures the security notion that
a ciphertext does not leak any information about the
plaintext even if all previous decryption keys are exposed.
They proposed the first scalable revocable identity based
encryption scheme against decryption key exposure.

One previous solution to revocation in CLPKC is to
employ an on-line mediator called SEM (Security Medi-
ator) [15] [6] [18]. In this kind of mechanism, the KGC
divides a user’s partial private key into two pieces, one of
which is delivered to the user while the other is passed to
the SEM. All these communications are over confidential
channels. In addition, the SEM has to keep large amount
of secret pieces which increases linearly with the number
of users. Moreover, a user cannot do decryption/signing
independently. Another one is to generate users’ partial
private keys at regular time periods [1] [15]. When a user
needs to be revoked, KGC just stops updating its partial
private key. Yet it requires all newly produced partial
private keys for non-revoked users to be transmitted
over expensive secret channels (between the KGC and
the users). In 2013, a certificateless encryption with a

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1843

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.8.1843-1850

revocation mechanism was presented in [8]. However, the
scheme suffers from some security weakness and a low
efficiency.

Our Contributions. Inspired by the revocation technique
in the identity based setting, this paper presents a new
and practical approach to revocation in CLPKC with a
concrete construction of a revocable certificateless sig-
nature (RCLS) scheme. In our approach, we require the
KGC produce for a user an initial partial private key
based on the user’s identity information as well as a
time key corresponding to each time period. The time
key is updated in every time period, and is transmitted
over a public channel. To revoke a user, KGC just stops
running this new algorithm for the user. Without a time
key, the user is unable to correctly perform any decryp-
tion/signing. Removing the use of secret channels for key-
update and without resorting to a security, our scheme
offers better efficiency than previous solutions. In the
rest of the paper, we first introduce the formal definition
and security model for revocable certificateless signature
schemes. Then, we present an efficient RCLS scheme.
Based on the Computational Diffie-Hellman assumption,
our RCLS scheme is proved existentially unforgeable in
the random oracle model. At last, we show an approach
to extend our scheme to resist the threat of decryption
key exposure. (More precisely, we may call it signing
key exposure.)

II. DEFINITIONS

A. Revocable certificateless signature

In this section, we define the framework for a revocable
certificateless signature (RCLS) scheme. It is slightly
different from the conventional definition of certificateless
signature in a sense that the partial private key is divided
into an initial partial private key and a time key. The
time key is transmitted to the user via a public channel.
The revocation is achieved by stopping the production
of new time keys for the revoked user. A revocable
certificateless signature scheme consists of the following
eight algorithms:

• Setup: Taking a security parameter k as input, the
KGC runs this algorithm to generate a master key
mk and a list of public system parameters params.

• Extract-Initial-Partial-Private-Key: Taking params,
mk and an identity ID as input, the KGC runs this
algorithm to compute a partial private key DID. DID

is transmitted to the user via a secret channel.
• Update-Time-Key: Taking params, mk, an identity

ID and a time period t as input, the KGC runs
this algorithm to produce a time key DIDt. DIDt

is transmitted to the user via a public channel.
• Set-Secret-Value: Taking params and ID as input,

the user with ID runs this algorithm to generate a
secret value sID.

• Set-Private-Key: Taking params, DID, DIDt and
sID as input, the user runs this algorithm to set a
private key SKIDt.

• Set-Public-Key: Taking params and sID as input,
the user runs this algorithm to set a public key
PKID.

• Sign: Taking params, SKIDt, ID, t and a message
M as input, this algorithm outputs a signature σ.

• Verify: Taking params, PKID, ID, t and a signature
σ as input, this algorithm verifies the signature to
output “accept” or “reject”.

B. Security Model

As we know, certificateless schemes should be secure
even if adversaries get to know some partial secret
information (secret value or partial private key) of the
target identity. So, two types of adversaries are considered
against a certificateless scheme. A Type I adversary can
replace a user’s public key with a new value of its choice;
a Type II adversary has knowledge of system master
secret key (but cannot replace any public key). In this
paper, we extend the two types of adversaries to the
setting of revocable certificateless signature and consider
a new type of adversary: a malicious revoked user. For
a target user, Type I adversaries have no knowledge of
the initial partial private key; Type II adversaries do not
have access to the secret value and the new adversary (a
revoked user) lacks a time key.

Let AI , AII and Are denote a Type I, a Type II
adversary and a revoked-user adversary, respectively. We
consider three games Game I, Game II and Game III
where AI , AII and Are interact with their challengers.
Note that the challengers will keep a history of query-
answer in these games.
Game I (for a Type I adversary)

• Setup: The challenger runs the algorithm Setup to
generate a master secret key mk and a list of public
system parameters params. It gives params to the
adversary AI and keeps mk secret.

• Queries:
In this phase, AI may make some queries and the
challenger should response with proper answers.
Initial Partial Private Key Extraction query(ID):
The challenger runs Extract-Initial-Partial-Private-
Key to generate the initial partial private key DID,
then returns it to AI .
Time Key query(ID, t): The challenger runs
Update-time-key to generate the time key Dt, then
returns it to AI .
Secret Value query(ID): The challenger runs Set-
Secret-Value to generate sID, then returns it to AI .
Public Key request(ID): The challenger runs Set-
Public-Key to generate the public key PKID. It
returns PKID to AI .
Public Key Replacement: The adversary AI can
replace any public key with any value of its choice.
The current public key is used by the challenger
in any subsequent computation or response to AI ’s
requests.
Signature query(M, ID, t): The challenger re-
sponds with the signature of M by using the private

1844 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

key of ID in the time period t.

• Forge: At the end of the game, AI outputs a tuple
(S∗,M∗, ID∗, t∗) which means that it has forged a
user ID∗’s signature S∗ on a message M∗ at time
period t∗. Note that (S∗,M∗, ID∗, t∗) should not be
an output of the signature oracle.

Game II (for a Type II adversary)
• Setup: The challenger runs Setup to generate a mas-

ter key mk and a list of public parameters params.
It gives mk as well as params to the adversary AII .

• Queries: In this phase, the adversary may make
some queries. As AII knows mk, it can compute any
initial partial private key and any time key.

Secret Value query(ID): The challenger runs Set-
Secret-Value to generate sID, then returns it to AI .
Public Key request(ID): The challenger runs Set-
Public-Key to generate the public key PKID which
is then returned to AII .
Signature query:(M, ID, t): The challenger re-
sponds with user ID’s signature on message M at
the time period t.

• Forge: At the end of the game, AII outputs a tuple
(S∗,M∗, ID∗, t∗) which means that it has forged a
user ID∗’s signature S∗ on a message M∗ at time
period t∗. (S∗,M∗, ID∗, t∗) should not be an output
of the signature oracle.

Game III (for a revoked user)
• Setup: The challenger runs Setup to generate a

master secret key mk and a list of public parameters
params. It gives params to the adversary Are.

• Queries:
In this phase, Are may make some queries as fol-
lows:

Initial Partial Private Key Extraction query(ID):
The Challenger runs Extract-Initial-Partial-Private-
Key to generate the initial partial private key DID,
then returns it to Are.
Time Key query(ID, t): The Challenger runs
Update-time-key to generate the time key Dt, then
returns it to Are.
Secret Value query(ID): The challenger runs Set-
Secret-Value to generate sID, then returns it to Are.
Public Key request(ID): The challenger runs Set-
Public-Key to generate the public key PKID. It
returns PKID to Are.
Signature query(M, ID, t): The challenger re-
sponds with user ID’s signature on message M at
the time period t.

• Forge: At the end of the game, Are outputs a tuple
(S∗,M∗, ID∗, t∗) which means that it has forged a
user ID∗’s signature S∗ on a message M∗ at time
period t∗. (S∗,M∗, ID∗, t∗) should not be an output
of the signature oracle.

If the forgery is valid, Ai wins, i ∈ {I, II, re}. The
advantage of Ai in the above games is defined to be
the probability that Ai wins. A RCLS scheme is said

to be existentially unforgeable against adaptive chosen
message attacks (EUF-CMA secure) if no probabilistic
polynomial-time adversary has non-negligible advantage
in the above games.

C. Complexity Assumption

We will use bilinear pairings in the concrete construc-
tion, and the security is based on the Computational
Diffie-Hellman problem. So, in this section, we review
the definition of a bilinear pairing and describe the
Computational Diffie-Hellman assumption.

Bilinear Pairing. Suppose G1 is an additive cyclic group
and G2 is a multiplicative cyclic group with the same
prime order p. Let P denote a generator of G1. A map
e : G1×G1 → G2 with the following properties is called
a bilinear pairing:

1) Bilinearity: given A,B,C ∈ G1, we have e(A,B+
C) = e(A,B)·e(A,C) and e(A+B,C) = e(A,C)·
e(B,C).

2) Non-degeneracy: e(P, P) ̸= 1G2
.

3) Computability: for any A,B ∈ G1, e(A,B) can be
computed efficiently.

Computational Diffie-Hellman (CDH) problem. Given
(aP, bP) with random a, b ∈ Z∗

p, to compute abP .
The Computational Diffie-Hellman assumption states

that the CDH problem is hard.

III. A REVOCABLE CERTIFICATELESS SIGNATURE
SCHEME

This section gives the concrete construction of our
revocable certificateless signature scheme.

• Setup: G1 and G2 are two cyclic groups of prime
order p. P is a generator of G1, and e : G1 ×
G1 −→ G2 is a bilinear pairing. Choose a ran-
dom s ∈ Z∗

p and compute P0 = sP . There
are four hash functions: H1 : {0, 1}∗ → G1,
H2 : {0, 1}∗ → G1, H3 : {0, 1}∗ → G1, H4 :
{0, 1}∗ → G1. The system public parameters are
(p,G1, G2, P, e, P0,H1,H2,H3, H4) and the master
secret key is s.

• Extract-Initial-Partial-Private-Key: Taking as input
an identity ID, this algorithm computes QID =
H1(ID) and the partial private key DID = sQID,
then transmits DID to the user via a private channel.

• Update-Time-Key: Taking as input an identity ID
and a time period t, this algorithm computes QIDt =
H2(ID, t) and the time key DIDt = sQIDt, then
transmits DIDt to the user via a public channel.

• Set-Secret-Value: This algorithm produces a secret
value xID ∈ Z∗

p for the user ID.
• Set-Private-Key: For a user with identity ID at

the time period t, the full private key SKIDt is
expressed as (DID +DIDt, xID).

• Set-Public-Key: The public key of the user is
PKID = xIDP .

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1845

© 2014 ACADEMY PUBLISHER

• Sign: This algorithm takes as input a message M ,
a time period t and a signer’s private key SKIDt,
then does the following:

1) Choose r ∈ Z∗
p at random and compute U =

rP .
2) Compute V = DID + DIDt +

rH3(M, ID, t, PKID, U) + xIDH4(M, ID, t,
PKID).

3) Output the signature σ = (U, V).
• Verify: This algorithm takes as input a message-

signature pair (M,σ = (U, V)), a time period t and
the signer’s public key ID and PKID, then checks
whether the equation

e(V, P) = e(QID +
QIDt, P0)e(H3(M, ID, t, PKID, U), U)
e(H4(M, ID, t, PKID), PKID) holds. If yes,
output “accept”; otherwise, output “reject”.

IV. SECURITY AND EFFICIENCY ANALYSIS

A. Security Proof

We analyze the security of the above scheme.

Theorem 1 Suppose there exists a Type I EUF-CMA
adversary AI against the RCLS scheme with advantage ϵ
when running in time t, making qippk initial partial private
key queries, qtk time key queries, qpk public key queries,
qsign signature queries, and qi random oracle queries to
Hi (1 6 i 6 4). Then, there exists an algorithm B to
solve the CDH problem with probability ϵ′ > 1

q2
ϵ and

running in time t′ = t+(q1+q2+q3+q4+qippk+qtk+
qpk+3qsign)(TS +O(1)), where TS denotes the time for
computing a scalar multiplication.

Proof. We show how an algorithm B, with an instance
(P, aP, bP), to compute abP by interacting with the
adversary AI .

At the beginning, B setup the system parameters
(p,G1, G2, P, e, P0 = aP,H1, H2,H3,H4). Here, the
hash functions Hi, (i = 1, 2, 3, 4) are treated as random
oracles controlled by B. B randomly chooses an index
z ∈ [1, q2] ∩ Z. Suppose the zth query to H2 is on
(ID∗, t∗).
AI may query initial partial private keys, time keys,

secret values, public keys and signatures. Also, AI can
replace public keys and make queries to the random
oracles. All pairs of query/answer are maintained in lists.
H1 queries: When receiving an H1 query on IDi, B

performs the following steps:
• if IDi = ID∗, set Qi = bP −H2(ID

∗, t∗);
• else, B chooses h1i ∈ Z∗

p at random, computes Qi =
H1(IDi) = h1iP ;

• Add the corresponding tuple to the list.
H2 queries: The H2 list contains tuples

(IDi, tj , Qij , h2ij , z). z denotes the number of this
query among all H2 queries. When receiving an H2

query on (IDi, tj), B selects h2ij ∈ Z∗
p at random,

computes Qij = H1(IDi, tj) = h2ijP ;

H3 queries: When receiving an H3 query on
(M, IDi, tj , PKIDi, U), B chooses h3ij ∈ Z∗

p at ran-
dom, computes H3(M, IDi, tj , PKIDi, U) = h3ijP , and
add the corresponding tuple to the list.
H4 queries: When receiving an H4 query on

(M, IDi, tj , PKIDi), B chooses h4ij ∈ Z∗
p at random,

computes H4(M, IDi, tj , PKIDi) = h4ijP , and add the
corresponding tuple to the list.

Next, we assume that AI always makes the appropriate
H1 and H2 queries before making other related queries.

Initial Partial Private Key Extraction queries: When
receiving an initial partial private query on an identity
IDi,

• if IDi = ID∗, B aborts the game;
• else, B calculates Di = aH1(IDi) = h1iaP as the

initial partial private key.
Time Key queries: When receiving a time key query

on an identity-time pair (IDi, tj), B computes Dij =
aH1(IDi, tj) = h2ijaP as the time key. Send Dij to
Ain and add the tuple (IDi, tj , Dij) to the list.

Secret Value queries: Any secret value of any identity
can be queried by the adversary. B just responds with an
x which is randomly chosen from Z∗

p .
Public Key queries: When receiving a public key

query, B responds with PKID = xP where x is the
secret value.

Public Key Replacement: AI can replace any public
key with a new value chosen by itself.

Signature queries: When receiving a signature query
on (M, ID, t),

• if ID ̸= ID∗ and the public key of ID remains
unchanged, B runs the Sign algorithm normally to
produce a signature.

• if ID = ID∗ or the public key of ID has been
replaced, B yields a signature in the following way:

– Pick u, v ∈ Z∗
p at random.

– Compute U = uPK0 and V = vPK0 +
h4PKID.

– The signature is σ = (U, V). Here,
we set H3(M, ID, t, PKID, U) =
u−1(vP − H1(ID) − H2(ID, t)). Note
that if there has been an tuple with the form
(M, ID, t, PKID, U, ?), we choose another
u ∈ Z∗

p and repeat this signature procedure.
Forge: At the end, AI outputs a signature σ∗ =

(U∗, V ∗) of ID∗ on a message M∗ at the time period
t∗. If σ∗ is valid, it should pass the verification:

e(V ∗, P) = e(QID∗+Qt∗ , P0)e(H3(), U
∗)e(H4(), PKID∗),

where H3() is short for H3(M
∗, ID∗, t∗, PKID∗ , U∗)

and H4() is short for H4(M
∗, ID∗, t∗, PKID∗). Search

the H3 and H4 list for H3(M
∗, ID∗, t∗, PKID∗ , U∗) =

h3P and H4(M
∗, ID∗, t∗, PKID∗) = h4P respectively.

Obviously, the above equation can be transformed into

e(V ∗ − h3U
∗ − h4PKID∗ , P) = e(abP, P).

Now, it is easy for B to obtain the CDH solution abp =
V ∗ − h3U

∗ − h4PKID∗ .

1846 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

Analysis. It is not difficult for us to obtain the advantage
for B to solve the CDH problem ϵ′ > 1

q2
ϵ.

The running time of B is bounded by t′ = t+(q1+q2+
q3 + q4 + qippk + qtk + qpk +3qsign)(TS +O(1)), where
TS denotes the time for doing a scalar multiplication.

Theorem 2 Suppose there exists a Type II EUF-CMA
adversary AII against the RCLS scheme with advantage
ϵ when running in time t, making qpk public key queries,
qsign signature queries, and qi random oracle queries to
Hi (1 6 i 6 4). Then, there exists an algorithm B to solve
the CDH problem with advantage ϵ′ > 1

q1
ϵ and running

in time t′ = t+ (q1 + q2 + q3 + q4 + qpk + 3qsign)(TS +
O(1)), where TS denotes the time for computing scalar
multiplication.

Proof. We show how an algorithm B, with an instance
(P, aP, bP), to compute abP by interacting with the
adversary AII .

At the beginning, B chooses a random s ∈ Z∗
p as the

master secret key and provides AII with s and the system
parameters (p,G1, G2, P, e, P0 = sP,H1,H2, H3,H4)
described as in the concrete scheme. Here, we view the
hash functions Hi, (i = 1, 2, 3, 4) as random oracles
controlled by B. B chooses an index I uniformly at
random from [1, q1] ∩ Z.
AII may make some queries in this phase. All records

of query/answer are maintained in lists.
H1 queries: When receiving an H1 query on IDi, B

chooses h1i ∈ Z∗
p at random, computes Qi = H1(IDi) =

h1iP , and add the corresponding tuple to the list.
H2 queries: When receiving an H2 query on (IDi, tj),

B chooses h2ij ∈ Z∗
p at random, computes Qij =

H2(IDi, tj) = h2ijP , and add the corresponding tuple
to the list.
H3 queries: When receiving an H3 query on

(M, IDi, tj , PKIDi, U), B chooses h3ij ∈ Z∗
p at ran-

dom, computes H3(M, IDi, tj , PKIDi, U) = h3ijP , and
add the corresponding tuple to the list.
H4 queries: When receiving an H4 query on

(M, IDi, tj , PKIDi), B chooses h4ij ∈ Z∗
p at random,

computes H4(M, IDi, tj , PKIDi) = h4ijbP , and add the
corresponding tuple to the list.

Since AII knows the master secret key, it can compute
all initial partial private keys and all time keys. It can
request secret values, public keys and signatures. Assume
that AII always makes the appropriate H1 and H2 queries
before making other related queries.

Secret Value queries: When receiving such a query
on an identity IDi, B searches the list: if there has been
a corresponding tuple, return the secret value; otherwise,
do the following:

• if i = I , abort the game.
• if i ̸= I , randomly choose xi ∈ Z∗

p as the secret
value, and add (IDi, xi) to the list.

Public Key queries: When receiving such a query of
an identity IDi, B searches the list: if there has been a
corresponding tuple, return the public key; otherwise, do
the following:

• if i = I , return PKI = aP .
• if i ̸= I , B searches the secret value list for an xi

and computes PKi = xiP . If there is not a matched
secret value with IDi, B chooses xi ∈ Z∗

p and
computes PKi = xiP .Add (IDi, xi) to the secret
value list and (IDi, PKi) to the public key list.

Signature queries: When receiving a signature query
on (M, ID, t), B does the following:

• if ID ̸= ID∗, run the sign algorithm normally.
• else, B selects u, v ∈ Z∗

p at random, computes U =
uPKID and V = vPKID + DIDt. The signature
is σ = (U, V). Here, we set H3(M, ID, t, PKID,
U) = u−1(vP − H4(M, ID, t, PKID). Note
that if there has been an tuple with the form
(M, ID, t, PKID, U, ?), we choose another u ∈ Z∗

p .
Forge: At the end, AII outputs a signature σ∗ =

(U∗, V ∗) of ID∗ on a message M∗ at a time period t∗.
If σ∗ is valid, it should pass the verification:

e(V ∗, P) = e(QID∗+Qt∗ , P0)e(H3(), U
∗)e(H4(), PKID∗),

where H3(M
∗, ID∗, t∗, PKID∗ , U∗) is short for H3()

and H4(M
∗, ID∗, t∗, PKID∗) is short for H4(). Search

the H3 and H4 list for H3(M
∗, ID∗, t∗, PKID∗ , U∗) =

h3P and H4(M
∗, ID∗, t∗, PKID∗) = h4bP respectively.

Obviously, the above equation is equivalent to

e(V ∗ −DID∗t∗ − h3U
∗, P) = e(h4abP, P).

Now, it is easy for B to obtain the CDH solution abp =
h−1
4 (V ∗ −DID∗t∗ − h3U

∗).

Analysis. It is not difficult for us to obtain the advantage
for B to solve the CDH problem ϵ′ > 1

q1
ϵ.

The running time of B is bounded by t′ = t + (q1 +
q2+q3+q4+qpk+3qsign)(TS+O(1)), where TS denotes
the time for doing scalar multiplication.

Theorem 3 Suppose there exists a revoked user Are who
can break the EUF-CMA security of the RCLS scheme
with advantage ϵ when running in time t, making qippk
initial partial private key queries, qtk time key queries, qpk
public key queries, qsign signature queries, and qi random
oracle queries to Hi (1 6 i 6 4). Then, there exists an
algorithm B to solve the CDH problem with advantage
ϵ′ > 1

q2
ϵ and running in time t′ = t + (q1 + q2 + q3 +

q4 + qippk + qtk + qpk + 3qsign)(TS + O(1)), where TS

denotes the time for computing scalar multiplication.

Proof. We show how an algorithm B, with an instance
(P, aP, bP), to compute abP by interacting with the
adversary Ain.
B provides Ain with the system parameters

(p,G1, G2, P, e, P0 = aP,H1,H2,
H3,H4). Here, we view the hash functions Hi, (i =
1, 2, 3, 4) as random oracles controlled by B. B chooses
an index z ∈ [1, q2] ∩ Z uniformly at random. Suppose
the zth query is on (ID∗, t∗).
Ain may query initial partial private keys, time keys,

secret values, public keys and signatures, as well as the
random oracles. All query/answers are recorded in lists.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1847

© 2014 ACADEMY PUBLISHER

H1 queries: When receiving an H1 query on IDi, B
chooses h1i ∈ Z∗

p at random, computes Qi = H1(IDi) =
h1iP , and add the corresponding tuple to the list.
H2 queries: The H2 list contains tuples of the form

(IDi, tj , Qij , h2ij , f). f denotes the number of this query
among all H2 queries. On receiving an H2 query on
(IDi, tj),

• if f = z, set Qij = bP −H1(ID
∗);

• else, B chooses h2ij ∈ Z∗
p at random, computes

Qij = H2(IDi, tj) = h2ijP .
• Add the corresponding tuple to the list.
H3 queries: When receiving an H3 query on

(M, IDi, tj , PKIDi, U), B chooses h3ij ∈ Z∗
p at ran-

dom, computes H3(M, IDi, tj , PKIDi, U) = h3ijP , and
add the corresponding tuple to the list.
H4 queries: When receiving an H4 query on

(M, IDi, tj , PKIDi), B chooses h4ij ∈ Z∗
p at random,

computes H4(M, IDi, tj , PKIDi) = h4ijP , and add the
corresponding tuple to the list.

Now, we assume that Ain always makes the appropriate
H1 and H2 queries before making other related queries
described as follows.

Initial Partial Private Key Extraction queries: When
receiving such a query on an identity IDi, B calculates
the initial partial private key Di = aH1(IDi) = h1iaP .
Send Di to Ain and add the tuple (IDi, Di) to the list.

Time Key queries: When receiving such a query on
an identity (IDi, tj), B calculates the time key Dij =
aH1(IDi, tj) = h2ijaP . Send Dij to Ain and add the
tuple (IDi, tj , Dij) to the list. Note that the time key
query on (ID∗, t∗) is not allowed, since it is to be
challenged.

Secret Value queries: Any secret value of any identity
can be queried by the adversary. B just responds with an
x which is randomly chosen from Z∗

p .
Public Key queries: When receiving a public key

query, B responds with PKID = xP where x is the
secret value.

Signature queries: When receiving a signature query
on (M, ID, t), B runs the sign algorithm normally to
produce a signature. Note that, the adversary cannot ask
for a signature of (ID∗, t∗), since Are has been revoked
in this time period.

Forge: Finally, AII outputs a signature σ∗ = (U∗, V ∗)
of ID∗ on a message M∗ at the time period t∗. Note that
the time key for (ID∗, t∗) is never been requested. If σ∗

is valid, it should pass the verification:

e(V ∗, P) = e(QID∗+Qt∗ , P0)e(H3(), U
∗)e(H4(), PKID∗),

where H3(M
∗, ID∗, t∗, PKID∗ , U∗) is short for H3()

and H4(M
∗, ID∗, t∗, PKID∗) is short for H4(). Search

the H3 and H4 list for H3(M
∗, ID∗, t∗, PKID∗ , U∗) =

h3P and H4(M
∗, ID∗, t∗, PKID∗) = h4P respectively.

Obviously, the above equation can be transformed into

e(V ∗ − h3U
∗ − h4PKID∗ , P) = e(abP, P).

Now, it is easy for B to obtain the CDH solution abp =
V ∗ − h3U

∗ − h4PKID∗ .

Analysis. It is not difficult for us to obtain the advantage
for B to solve the CDH problem ϵ′ > 1

q2
ϵ.

The running time of B is bounded by t′ = t+(q1+q2+
q3 + q4 + qippk + qtk + qpk +3qsign)(TS +O(1)), where
TS denotes the time for doing scalar multiplication.
Theorem 4 Suppose Hi (1 6 i 6 4) are random oracles,
our RCLS scheme is EUF-CMA secure.

B. Performance evaluation

1) Implementation: How to choose elliptic curves to
obtain efficient cryptographic schemes is suggested in
some literature [20], [21]. Two factors must be con-
sidered: the group size l of the elliptic curve and the
embedding degree d. For a security level of 1024-bit RSA,
the result of l × d should be more than 1024. Most of
pairing-based schemes are implemented on the Type A
and Type D elliptic curves [21]. For our purpose, the
implementation is on a Type A elliptic curve y2 = x3+x,
with G1 = G2, p being 160 bits, d = 2 and l being 512
bits.

The running time is obtained on AMD FX-8120 8
Duo CPU at 3.1GHZ frequency and an OS of fedora
19. It is an average time by running the scheme 100
times under the PBC library [21]. The expensive paring is
fast on a Type A curve with running time 1.2445ms. We
describe the running times consumed by different algo-
rithms (EIPPK: Extract-Initial-Partial-Private-Key, UTK:
Update-Time-Key) in our scheme in Table 1. From the
table we see that it takes approximately 3.993ms (actually
a BLS short signature) for EIPPK and UTK. To sign a
message, it takes 8.5225ms. To verify a signature, the
running time is 12.4015ms.

Table 1.
The running time of different algorithms in our scheme

algorithm EIPPK UTK Sign Verify
time 3.993ms 3.993ms 8.5225ms 12.4015ms

2) Comparison: As is seen, in our RCLS scheme,
a user’s private key contains not only an initial partial
private key and a secret value but also a time key.
Revocation mechanism is based on updating the time key,
which is transmitted from KGC to the user over public
channels. This property makes our new scheme more
applicable in practice. In Table 1, we make a comparison
of computational cost, ciphertext-length and revocation-
type of our scheme with that of a trivial RCLS scheme
(it employs the same signing technique as ours; a user’s
partial private key DIDt = sH1(ID, t) is generated by
KGC at every time period and is transmitted to the user
via a secret channel).

Table 2. Comparison

Scheme Sign verify ciphertext revocation
the trivial one 3s 4p 2|P | secret
Our Scheme 3s 4p 2|P | public
p: pairing, s: scalar multiplication, |P |: the length of an

element in G1.

1848 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

In the table, “revocation” denotes what kind of channel
is employed for updating keys. Secret channel indicates
both more computation cost and more bandwidth usage.
Clearly, our RCLS scheme has better performance.

V. EXTENSION

In this section, we extend our scheme to resist signing
key exposure (also called decryption key exposure in
[13]). This threat is first considered against revocable
schemes by Seo et al in PKC’13. It captures a realistic
attack that the short-term signing key may be leaked. It
is natural to require the cryptosystem to be secure even
if all different short-term signing keys are exposed. The
algorithms of Setup, Extract-Initial-Partial-Private-Key,
Update-Time-Key and Set-Secret-Value are identical
to that of the above scheme. We use Set-Signing-Key
instead of Set-Private-Key.

• Set-Signing-Key: At a time period t, a user with
identity ID randomly selects z ∈ Z∗

p , computes
WIDt = z(DID+DIDt), W0 = zP0 and W1 = zP .
The signing key SKIDt is (WIDt,W0,W1, xID).

• Set-Public-Key: Compute PKID = xIDP as the
public key.

• Sign: This algorithm is run by a signer. It takes as
input a message M , a time period t and the signing
key SKIDt, then does the following:

1) Choose r ∈ Z∗
p at random and compute U =

rP .
2) Compute V = WIDt +

rH3(M, ID, t, PKID, U) +
xIDH4(M, ID, t, PKID).

3) Output the signature σ = (U, V,W0,W1).
• Verify: This algorithm takes as input a message-

signature pair (M,σ = (U, V,W0,W1)), a
time period t and the signer’s public key
ID and PKID, then checks whether both
e(W0, P) = e(W1, P0) and e(V, P) =
e(QID + Qt,W0)e(H3(M, ID, t, PKID, U), U)
e(H4(M, ID, t, PKID), PKID) hold. If yes, output
“accept”; otherwise, output “reject”.

VI. CONCLUSIONS

Revocation mechanism is indispensable to the application
of public key cryptosystems. In this paper, we concentrate
on revocation in certificateless public key cryptosystems.
On one hand, we present an efficient construction of a
revocable certificateless signature (RCLS) scheme. On the
other hand, we extend the new scheme to be signing-
key-exposure resistant. In contrast to available solutions,
our new construction features public channels for key-
updating, avoiding the use of secret channels or a costly
mediator. So, the new scheme is very efficient and is
suitable for practical applications such as cloud com-
puting. With respect to the security of RCLS schemes,
we demonstrate a reasonable security model for RCLS
schemes in which the adversaries are classified into three
types. The security proofs confirm that our RCLS scheme
is provably secure based on the standard CDH problem.

REFERENCES

[1] S.S. Al-Riyami, Cryptographic Schemes Based on Elliptic
Curve Pairings, PhD thesis, Royal Holloway, University of
London, 2004.

[2] S.S. Al-Riyami, K.G. Paterson, Certificateless Public Key
Cryptography, In Asiacrypt 2003, LNCS 2894, pp 452-
473, 2003.

[3] D. Boneh, X. Ding, G. Tsudik, C. Wong, A method
for fast revocaiton of public key certificates and security
capabilities, In the 10th USENIX Security Symposium,
USENIX, 2001.

[4] D. Boneh, M. Franklin, Identity-based Encryption from the
Weil Pairing, In CRYPTO 2001, LNCS 2139, pp 213-229,
2001.

[5] A. Boldyreva, V. Goyal, V. Kumar, Identity-based encryp-
tion with efficient revocation, In CCS 2008, ACM, pp 417-
426, 2008.

[6] H.S. Ju, D.Y. Kim, D.H. Lee, J. Lim, K. Chun, Efficient
Revocation of Security Capability in Certificateless Public
Key Cryptography, In KES 2005, LNCS 3682, pp 453-459,
2005.

[7] Y.R. Lee, On the Security of Two Certificateless Signature
Schemes, In Intelligent and Soft Computing, volume 167,
pp 695-702, 2012.

[8] L. Shen, F. Zhang, Y. Sun, Efficient Revocable Certificate-
less Encryption Secure in the Standard Model, The Com-
puter Journal (2013) doi: 10.1093/comjnl/bxt040. First
published online: April 30, 2013.

[9] B. Libert, J.J. Quisquater, Efficient revocation and thresh-
old pairing based cryptosystems, Symposium on Principles
of Distributed Computing-PODC 2003, 2003.

[10] B. Libert, D. Vergnaud, Adaptive-ID secure revocable
identity-based encryption, In CT-RSA 2009, LNCS 5473,
pp 1-15, 2009.

[11] S. Micali, Novomodo: Scalable Certificate Validation and
Simplified PKI Management, In the 1st Annual PKI Re-
search Workshop 2002, pp 15-25, 2002.

[12] M. Myers, R. Ankney, A. Alpani, S. Galperin, C. Adams,
X.509 Internet Public Key Infrastructure: Online Certifi-
cate Status Protocol (OCSP), RFC 2560.

[13] J.H. Seo, K. Emura, Revocable identity-based encryption
revisited: security model and construction, In PKC 2013,
LNCS 7778, pp 216-234, 2013.

[14] A. Shamir, Identity-based cryptosystems and signature
schemes, In CRYPTO 1984, pp 47-53, 1984.

[15] S.S.M. Chow, C. Boyd, J.M.G. Nieto, Security-Mediated
Certificateless Cryptography, In PKC 2006, LNCS 3958,
pp 508-524, 2006.

[16] T.T. Tsai, Y.M. Tseng, T.Y. Wu, Revocable ID-based
Signature Scheme with Batch Verifications, 2012 Eighth
International Conference on Intelligent Information Hiding
and Multimedia Signal, pp 49-54, July 2012.

[17] Y.M. Tseng, T.T. Tasi, Efficient revocable ID-based en-
cryption with a public channel, The Computer Journal
2012, 55(4): 475-486.

[18] W.S. Yap, S.S.M. Chow, S.H. Heng, B.M. Goi1, Security
Mediated Certificateless Signatures, In ACNS 2007, LNCS
4521, pp 459-477, 2007.

[19] Z. Zhang, D.S. Wong, J. Xu, D. Feng, Certificateless
Public-Key Signature: Security Model and Efficient Con-
struction, In ACNS 2006, LNCS 3989, pp 293-308, 2006.

[20] National Institute of Standards and Technology, Rec-
ommended elliptic curves for federal government use, July,
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTRe-
Cur.pdf.

[21] PBC library, the pairing-based cryptography library,
http://crypto.stanford.edu/pbc/.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1849

© 2014 ACADEMY PUBLISHER

Yinxia Sun received her B.S. and M.S. degree in mathematics
from Nanjing Normal University, China, in 2003 and 2008,
respectively, and Ph.D. degree in cryptography from Xidian
University, China in 2011. She is a lecturer at School of
Computer Science and Technology, Nanjing Normal University,
China. Her research interests include public key cryptography
and network security.

Futai Zhang is a professor at the School of Computer Science
and Technology, NNU, China. His research interests include
information security, network security and cryptography.

Limin Shen received the B.S. and M.S. degree in mathematics
from Wuhan University, China, in 2001 and 2004, respectively.
She is a lecturer at the School of Computer Science and Tech-
nology, NNU, China. Her research interests include information
theory and coding, cryptography.

1850 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

