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Abstract— In this paper, a coupled FHN model with two
different delays is investigated. The local stability and the
existence of Hopf bifurcation for the system are analyzed.
The effect of two different delays on dynamical behavior
is discussed. Simulation results are presented to support
theoretical analysis. Finally, main conclusions are included.
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periodic solution

I. INTRODUCTION

The FHN model with cubic nonlinearity has been
obtained from a simplified Hodgkin-Huxley(HH) neuron
model [1-3]. Its complete topological and qualitative
investigation has been carried out [4] and a rich variety of
nonlinear phenomena such as hard oscillation, separatrix
loops, bifurcations for equilibrium, resonance phenomena
and limit cycles has been observed [5-11]. Since time
delays always occur in the signal transmission for real
neurons, Dhamala et al. [12] made some theoretical
discussion on coupled time-delay oscillators. Nikola and
Dragana [13] and Nikola et al. [14] had dealt with
the bifurcation and synchronization in coupled identical
neurons with delayed coupling. Recently, Wang et al.
[15] has numerically investigated the bifurcation and
synchronization of the following delayed coupled FNH
system with synaptic connection




V̇1(t) = −V 3
1 + aV1 −W1 + C1 tanh(V2(t− τ)),

Ẇ1(t) = V1 − b1W1,

V̇2(t) = −V 3
2 + aV2 −W2 + C2 tanh(V1(t− τ)),

Ẇ2(t) = V2 − b2W2,
(1)
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where V1(t), V2(t) represent the transmembrane voltage,
W1(t),W2(t) should model the time dependence of sev-
eral physical quantities related to electrical variables.
a, bi, Ci(i = 1, 2) are positive constants, τ represents time
delay, i.e., the function which describes the influence of
the i-th unit on the j-th unit at the time t depends on
the state of the i-th unit at some earlier time t − τ . The
more detailed meaning of the coefficients of system (1),
one can see [15].

In order to describe model (1) more reasonable, Fan
and Hong [13] modified (1) as the following form




V̇1(t) = −V 3
1 + aV1 −W1 + C1 tanh(V2(t− τ1)),

Ẇ1(t) = V1 − b1W1,

V̇2(t) = −V 3
2 + aV2 −W2 + C2 tanh(V1(t− τ2)),

Ẇ2(t) = V2 − b2W2

(2)
and considered the Hopf bifurcation properties of system
(2).

It shall be pointed out that Wang et al. [15] analyzed the
Hopf bifurcation under the assumption τ1 = τ2 = τ , Fan
and Hong [13] made a discussion on the Hopf bifurcation
of system (2) under the the condition τ1 + τ2 = τ , but
in most cases, τ1 6= τ2, the two different delays have
different effect on the dynamical behavior of system (2).
Considering this factor, we further investigate the model
(2) with τ1 6= τ2 as a complementarity.

The main goal of this paper is to study the stability,
the local Hopf bifurcation for system (2). It is shown that
different delays have different effect on the dynamical
behavior of system involved. Recently, although a great
deal of research has been devoted to this topic [17-20],
to the best of our knowledge, there are few papers that
consider what different time delays have effect on the
dynamical behavior of system. We believe that it is the
first time to deal with the research on Hopf bifurcation
for model (2) under the assumption τ1 6= τ2.

The remainder of the paper is organized as follows.
In Section 2, we investigate the stability of the zero
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equilibrium and the occurrence of local Hopf bifurcations.
In Section 3, numerical simulations are carried out to
illustrate the validity of the main results. Some main
conclusions are drawn in Section 4.

II. STABILITY OF THE EQUILIBRIUM AND LOCAL
HOPF BIFURCATIONS

In this section, we shall focus on the stability of
the zero equilibrium and the existence of local Hopf
bifurcations.

Since time delay does not change the equilibrium of
system, then the delayed coupled FHN model (2) has an
equilibrium point E(0, 0, 0, 0).

The linearization of Eq. (2) at E(0, 0, 0, 0) is given by




V̇1(t) = aV1 −W1 + C1V2(t− τ1),
Ẇ1(t) = V1 − b1W1,

V̇2(t) = aV2 −W2 + C2V1(t− τ2),
Ẇ2(t) = V2 − b2W2.

(3)

The characteristic equation of system (3) is

λ4+m3λ
3+m2λ

2+m1λ+m0+(n1λ+n0)e−λ(τ1+τ2) = 0,
(4)

where



m0 = a2b1b2 − a(b1 + b2),
m1 = a2(b1 + b2)− 2ab1b2 + b1 + b2 − 2a,
m2 = b1b2 + a2 − 2a(b1 + b2) + 2,
m3 = b1 + b2 − 2a,
n0 = b1c1c2, n1 = c1c2.

In the sequel, we will discuss the distribution of roots of
the transcendental equation (4). Now we consider three
cases.
Case (a). τ1 = τ2 = 0, (4) becomes

λ4 + m3λ
3 + m2λ

2 + (m1 + n1)λ + m0 + n0 = 0. (5)

All roots of (5) have a negative real part if the following
condition

(H1) m3 > 0,m2m3 > m1 + n1,

m2m3(m1 + n1) > m2
3(m0 + n0) + (m1 + n1)2

holds. Then the equilibrium point E(0, 0, 0, 0) is locally
asymptotically stable if the condition (H1) holds.
Case (b). τ2 = 0, τ1 > 0, (4) becomes

λ4 +m3λ
3 +m2λ

2 +m1λ+m0 +(n1λ+n0)e−λτ1 = 0.
(6)

For ω > 0, iω is a root of (6), then
{

n1ω sinωτ2 + n0 cos ωτ2 = m2ω
2 − ω4 −m0,

n1ω cos ωτ2 − n0 sinωτ2 = m3ω
3 −m1ω.

(7)

Then
ω8 + pω6 + qω4 + uω2 + v = 0, (8)

where p = m2
3 − 2m2, q = m2

2 + 2m0 − 2m1m3, u =
m2

1 − 2m0m2 − n2
1, v = m2

0 − n2
0.

Let z = ω2, then (8) takes the form

z4 + pz3 + qz2 + uz + v = 0. (9)

Since the form of (9) is identical to those of (6) in Fan and
Hong [16] and (9) in Li and Wei [21], then we can obtain
Lemma 2.1 and Lemma 2.2 analogously. The proofs are
omitted.

Lemma 2.1. [16,21] If v < 0, then (9) has at least one
positive root.

Denote

h(z) = z4 + pz3 + qz2 + uz + v. (10)

Then
h′(z) = 4z3 + 3pz2 + 2qz + u. (11)

Set
4z3 + 3pz2 + 2qz + u = 0. (12)

Let y = z + p
4 , then (12) becomes

y3 + p1y + q1 = 0, (13)

where p1 = q
2 − 3

16p2, q1 = p3

32 − pq
8 + u

4 .
Define





∆ =
(

q1
2

)2 +
(

p1
3

)2
, ε = −1+i

√
3

2 ,

y1 = 3

√
− q1

2 +
√

∆ + 3

√
− q1

2 −
√

∆,

y2 = 3

√
− q1

2 +
√

∆ε + 3

√
− q1

2 −
√

∆ε2,

y3 = 3

√
− q1

2 +
√

∆ε2 + 3

√
− q1

2 −
√

∆ε.

Let zi = yi − p
4 (i = 1, 2, 3).

Lemma 2.2. [16,21] Suppose that v ≥ 0, then we have
the following results.
(i) If ∆ ≥ 0, then (9) has positive roots if and only if
z1 > 0 and h(z1) < 0.
(ii) If ∆ < 0, then (9) has positive roots if and only if
there exists at least one z∗ ∈ {z1, z2, z3} such that z∗ > 0
and h(z∗) ≤ 0.

Suppose that (9) has positive roots. Without loss of
generality, we assume that it has four positive roots,
denoted by z∗k(k = 1, 2, 3, 4). Then (8) has four positive
roots ωk =

√
z∗k(k = 1, 2, 3, 4). In view of (7), we get

τ
(j)
1k

=

1
ωk

{
arccos

[
m2ω

2
k −m0)n0 + (m3ω

3
k −m1ωk)n1ωk

n2
0 + n2

1ω
2
k

]

+2jπ

}
, (14)

where k = 1, 2, 3, 4; j = 0, 1, 2, 3 · · · . Then ±iωk are
a pair of purely imaginary roots of (6) with τ = τ

(j)
1k

.
Obviously, the sequence {τ (j)

1k
}|+∞j=0 is increasing and

limj→+∞ τ
(j)
1k

= +∞(k = 1, 2, 3, 4).
For convenience, we let

∪4
k=1{τ (j)

1k
}|+∞j=0 = {τ1i}|+∞i=0

such that

τ10 < τ11 < τ12 < · · · < τ1i
< · · · , (15)
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where
τ10 = min{τ (0)

11
, τ

(0)
12

, τ
(0)
13

, τ
(0)
14
}.

Applying Lemma 2.1 and Lemma 2.2, we have the
following results.

Lemma 2.3. Assume that (H1) holds, then we have the
following results.
(i) If one of the following holds: (a) v < 0; (b)v ≥
0,m0 ≥ 0, z1 > 0 and h(z1) ≤ 0; (c) v ≥ 0,m0 < 0,
and there exists a z∗ ∈ {z1, z2, z3} such that z∗ > 0 and
h(z∗) ≤ 0, then all roots of (6) have negative real parts
when τ ∈ [0, τ10).
(ii) If the conditions (a)-(c) of (i) are not satisfied, then
all roots (6) have negative real parts for all τ1 ≥ 0.

Let λ(τ1) = α(τ1) + iω(τ1) be a root of (6) near τ1 =
τ1k

and α(τ1k
) = 0, ω(τ1k

) = ω0. According to Lemma
2.3 in Ruan and Wei [22], Lemma 2.4 in Li and Wei [21],
Lemma 2.5 in Hu and Huang [23] and Lemma 2.5 in Fan
and Hong [16], we have the following conclusions.

Lemma 2.4. Suppose h
′
(z∗k) 6= 0, where h(z) is defined

by (10). If τ1 = τ
(j)
1k

, then ±iωk are a pair of simple
purely imaginary roots of Eq. (6). Moreover,

d(Reλ(τ1))
dτ1

∣∣∣
τ1=τ

(j)
1k

6= 0,

and the sign of d(Reλ(τ1))
dτ1

∣∣∣
τ1=τ

(j)
1k

is consistent with that

of h
′
(z∗k).

In order to obtain our main results, we assume that

(H2) h
′
(z∗k) > 0.

Case (c). τ2 > 0, τ1 > 0. We consider Eq. (4) with
τ1 in its stable interval. Regarding τ2 as a parameter.
Without loss of generality, we consider system (2) under
the assumptions (H1) and (H2). Let iω(ω > 0) be a root
of (4), then we can obtain

ω8 + k1ω
6 + k2ω

4 + k3ω
2 + k4 = 0, (16)

where

k1 = m2
3 − 2m2, k2 = m2

2 + 2m0 − 2m3n1,

k3 = n2
1 − 2m0m2 − n2

1 sinωτ1 − n2
1 cos2 ωτ1,

k4 = m2
0 − n2

0.

Denote

H(ω) = ω4 + k1ω
3 + k2ω

2 + k3ω + k4. (17)

Assume that
(H3) |m0| < |n0|.

It is easy to check that H(0) < 0 if (H3) holds
and limω→+∞H(ω) = +∞. We can obtain that (16)
has finite positive roots ω1, ω2, · · · , ωn. For every fixed
ωi, i = 1, 2, 3, · · · , k, there exists a sequence {τ j

2i
|j =

1, 2, 3, · · ·}, such that (16) holds. When τ2 = τ j
2i

, Eq.

(4) has a pair of purely imaginary roots ±iω∗ for τ1 ∈
[0, τ10). In the following, we assume that

(H4)
[
d(Reλ)

dτ2

]

λ=iω∗
6= 0.

In view of the general Hopf bifurcation theorem for FDEs
in Hale [24], we have the following result on the stability
and Hopf bifurcation in system (2).

Theorem 2.1. For system (2), we have the following
results.
(i) Assume that τ2 = 0 and (H1) − (H2) are fulfilled,
then system (2) is asymptotically stable for τ1 ∈ [0, τ10)
and unstable for τ1 > τ10 .
(ii) Assume that (H1) − (H4) are satisfied and τ1 ∈
[0, τ10), then system (2) undergoes a Hopf bifurcation at
the zero equilibrium E(0, 0, 0, 0) when τ2 = τ j

2i
.

III. NUMERICAL EXAMPLES

In order to verify the theoretical predations of this pa-
per, numerical simulations are carried out in this section.
We consider the following system:





V̇1(t) = −V 3
1 + 0.05V1 −W1

+ 0.225 tanh(V2(t− τ1)),
Ẇ1(t) = V1 − 1.28W1,

V̇2(t) = −V 3
2 + 0.05V2 −W2

+ 0.225 tanh(V1(t− τ2)),
Ẇ2(t) = V2 − 0.08W2.

(18)

Obviously, system (18) has an equilibrium E(0, 0, 0, 0).
When τ2 = 0, then we can easily check that (H1)-
(H4) hold true. Let j = 0 and by Matlab 7.0, we get
ω0 ≈ 0.5874, τ10 ≈ 3.8. Thus the zero equilibrium
E(0, 0, 0, 0) is asymptotically stable for τ1 < τ10 ≈ 3.8
and unstable for τ1 > τ10 ≈ 3.8 which is shown in
Fig. (1)-Fig. (10). When τ1 = τ10 ≈ 3.8, Eq. (18)
undergoes a Hopf bifurcation around the zero equilibrium
E(0, 0, 0, 0), i.e., a small amplitude periodic solution
occurs near E(0, 0, 0, 0) when τ2 = 0 and τ1 is close
to τ10 = 3.8 which can be illustrated in Fig. (11)-Fig.
(20).

Let τ1 = 3 ∈ (0, 3.8) and regard τ2 as a parameter.
We get τ20 ≈ 0.2. It is found that the zero equilibrium is
asymptotically stable when τ2 > τ10 . It can be illustrated
by the numerical simulations (see Fig. (31)-Fig. (40))
The zero equilibrium E(0, 0, 0, 0) is unstable when τ2 <
τ20 . A Hopf bifurcation will occurs around the zero
equilibrium E(0, 0, 0, 0) when τ20 ≈ 0.2, i.e., a family
of periodic solutions bifurcate from the zero equilibrium
E(0, 0, 0, 0)(see Fig. (21)-Fig. (30).
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                                     Fig. (10)
Fig. (1)-Fig. (10). Dynamical behavior of system (18)
with τ2 = 0, τ1 = 3.5 < τ10 ≈ 3.8. The zero equilibrium
E(0, 0, 0, 0) is asymptotically stable. The initial value is
                             (0.02,0.02,0.05,0.2).
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                                        Fig. (20)
Fig. (11)-Fig. (20). Dynamical behavior of system (18)
with τ2 = 0, τ1 = 5 > τ10 ≈ 3.8. The Hopf bifurcation
occurs from the zero equilibrium E(0, 0, 0, 0). The initial
                        value is (0.02,0.02,0.05,0.2).
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                                       Fig. (30)
Fig. (21)-Fig. (30). Dynamical behavior of system (18)
with τ1 = 3, τ2 = 0.01 < τ20 ≈ 0.2. The Hopf
bifurcation occurs from the zero equilibrium E(0, 0, 0, 0).
              The initial value is (0.02,0.02,0.05,0.2).
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                                     Fig. (40)
Fig. (31)-Fig. (40). Dynamical behavior of system (18)
with τ1 = 3, τ2 = 0.5 > τ20 ≈ 0.2. The zero equilibrium
E(0, 0, 0, 0) is asymptotically stable. The initial value is
                              (0.02,0.02,0.05,0.2).
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IV. CONCLUSIONS

In this paper, we have dealt with the local stability of
the zero equilibrium E(0, 0, 0, 0) and local Hopf bifurca-
tion of a coupled FHN model with two different delays.
We have found that if τ2 = 0 and (H1)-(H2) are satisfied,
then system (2) is asymptotically stable for τ1 ∈ [0, τ10)
and unstable for τ1 > τ10 . If (H1)-(H4) are fulfilled,
and τ1 ∈ [0, τ10), then the zero equilibrium E(0, 0, 0, 0)
is asymptotically stable when τ2 > τ20 , when the delay
τ2 decreases, the zero equilibrium E(0, 0, 0, 0) loses its
stability and a sequence of Hopf bifurcations occur near
the zero equilibrium E(0, 0, 0, 0), i.e., a family of periodic
orbits bifurcate from the zero equilibrium E(0, 0, 0, 0).
A numerical example verifying our theoretical results is
given.
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