

A Hybrid Dynamic Load Balancing Algorithm
for Distributed Systems

Mayuri A. Mehta

Sarvajanik College of Engineering and Technology, Department of Computer Engineering, Surat, India
Email: mayuri.mehta@scet.ac.in

Devesh C. Jinwala

S. V. National Institute of Technology, Department of Computer Engineering, Surat, India
Email: dcjinwala@acm.org

Abstract—Dynamic load balancing is essential for improving
the overall utilization of resources and in turn to improve
the system performance. In this paper, we propose a novel
hybrid dynamic load balancing algorithm. We discuss our
efforts on empirical evaluation of the same and justify its
effectiveness in a typical distributed setup. Addressing the
key issues in the design of such an algorithm, we also
propose two new algorithms for supernode selection in a
cluster. Further, we analyze the performance of algorithm
under different cluster configurations, different load
scenarios, and different network topologies. Our
experimental results show that the hybrid algorithm
potentially outperforms the classical centralized and
decentralized approaches for the design of a load balancing
algorithm.

Index Terms—dynamic load balancing, distributed system,
cluster, cluster head

I. INTRODUCTION

Dynamic Load Balancing (DLB) has emerged as one
of the most important techniques in solving the problem
of performance of heterogeneous distributed systems.
With ever-increasing network traffic, DLB can achieve
improved performance in distributed systems to cope
with fluctuating workload [1]. Dynamic Load Balancing
can be broadly viewed to be either following centralized
or decentralized approaches [2],[3],[4]. The centralized
approach is simple in terms of implementation and
overhead. However, if the central load balancing unit (or
the coordinator) fails, the scheduling in a system would
cease [5],[6],[7]. Further, it does not scale up well as the
coordinator can become a performance bottleneck [8]. On
the other hand, in decentralized approach, typically all
nodes participate in load balancing
[1],[5],[9],[10],[11],[12]. Though this approach performs
better for large sized, heterogeneous systems, it entails
increased communication overhead. Consequently, the
design of an effective hybrid dynamic load balancing
algorithm involves critical tradeoffs that is expected to
overcome the drawbacks of centralized and decentralized
approaches.

Numerous DLB algorithms have been proposed in the
literature. Though the majority of existing algorithms
provide the enhanced performance for distributed systems;
inherent by design, they are constrained to a specific
targeted system environment [1],[9],[10],[13],[14],[15].
Several algorithms are designed specifically for the
applications having CPU-bound jobs whereas the others
are designed for applications having memory-bound OR
I/O-bound jobs. In addition, these algorithms are
mutually exclusive in nature [7],[12],[16],[17],[18].

Thus, in general, the spectrum of the applicability of
the existing DLB algorithms turns out to be limited. We
believe that a DLB algorithm must absorb in its design,
all the design issues involved such as system and task
heterogeneity, target applications, load measurement
parameters, components (of DLB algorithm), and
evaluation parameters. We discuss these issues in our
earlier work [19].

The hybrid DLB algorithm that we propose here, sits
between the centralized and decentralized approaches. As
shown in Fig. 1, utilizing the established notion of divide-
and-conquer, the hybrid DLB algorithm partitions the
nodes of distributed system into virtual groups, called

Figure 1. View of clusters in simplified distributed system [19].

clusters. Clustering we believe, is useful in improving the
scalability and in reducing the communication overhead
significantly. In each cluster, one node is designated as the
SuperNode (SN) to define the dynamic threshold value

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1825

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.8.1825-1833

periodically. Communication between clusters is possible
via a Central Master Node (CMN). When any node
becomes overloaded, it first searches for a lightly loaded
node in its cluster in a decentralized fashion. If it does not
find a lightly loaded node in the same cluster, its overload
will be transferred to a lightly loaded node in another
cluster with the help of CMN. Consideration of the design
issues, as in [19], makes our hybrid algorithm very
promising in a wide range of environments and
applications.

Having proposed earlier, a proof of concept of a hybrid
DLB algorithm along with its theoretical analysis that
shows the reduction in communication overhead in [19];
we present here two vital issues concerning the clustering
and the supernode selection. In this paper, we propose
two novel algorithms for supernode selection in each
cluster based on our study on clustering algorithms [20-
32]. Further, we show the effectiveness of the hybrid
DLB algorithm by evaluating its performance under
different cluster configurations, different load scenarios,
and different network topologies. Our experimental
results show that the hybrid algorithm performs faster
than the classical centralized and decentralized
algorithms. Based on the same, we argue that it is largely
suitable for the heterogeneous distributed systems.

The remainder of the paper is organized as follows. In
section II, we present some related work. Section III
describes the system model. In section IV, we address the
primary issues of hybrid algorithm that are crucial to
arrive at the novel design. These issues are clustering and
supernode selection. Experimental results and analysis
are presented in section V. Finally, our conclusions and
some future work are specified in section VI.

II. RELATED WORK

Dynamic load balancing algorithms have been widely
addressed in the literature. An adaptive decentralized
sender-initiated load balancing algorithm that utilizes the
load estimation approach is presented in [1]. In [9],
authors have proposed an efficient mechanism for
updating the state information quickly. This mechanism
is further utilized to improve the average task completion
time. The major drawback of these algorithms is that they
restrict the job migration limit that may result in
imbalanced system workload and degraded performance.

In [13], the content based DLB using multi parameters
has been proposed. The DLB algorithms for multi-user
jobs are presented in [14]. Authors have shown that at
low communication overheads, dynamic algorithms
perform better than static algorithms, however, as the
overheads increase, dynamic algorithms perform similar
to that of the static algorithms. A sender-initiated
decentralized DLB algorithm is presented based on
optimal one-shot load balancing strategy in [10]. In this
algorithm, only the receiver node autonomously executes
the load balancing every time an external load arrives at
the node. The centralized DLB algorithms that suffer
from scalability problem are proposed in [5],[15]. The
two-level centralized scheduling model for dynamic load
balancing in grid is proposed in [33].

A DLB algorithm with new load measurement policy
is proposed in [12],[16] for efficient load balancing in
homogeneous system. This algorithm provides enhanced
performance for CPU-bound, network-bound, and
memory-bound applications. An I/O-intensive DLB
algorithm that provides higher performance for
homogeneous as well as heterogeneous system is
described in [17]. An application independent algorithm
is presented and analyzed in [18]. The influence and
quality of several load indices on the performance of a
dynamic load balancing are empirically evaluated in
[34],[35].

Although these existing algorithms attempt to enhance
the performance, some algorithms are effective only for
homogeneous distributed systems [12],[16]. Though
some of these algorithms consider parameters other than
CPU utilization or CPU queue length to measure the load
of the node [1],[9],[12],[16],[17],[18], none of them
provide equivalent performance for all kind of
applications, namely CPU-bound, memory-bound, and
I/O bound. Moreover, very few algorithms aim to cut
down the communication overhead [10],[9],[14]. The key
weakness of these existing algorithms is that none of
them considers all the significant design issues, as in [19],
to generate a competent DLB algorithm as we do to
design the hybrid DLB algorithm. Consideration of these
design issues makes our hybrid algorithm capable and
applicable in heterogeneous distributed environments and
to a wide range of applications. In general, the benefits
from hybrid DLB algorithm are as follows. It

• overcomes the scalability issue of centralized
approach

• minimizes the communication overhead that is
incurred by decentralized approach

• considers heterogeneity in computing resources;
hence, it is applicable to homogeneous as well as
heterogeneous distributed systems

• aids highly loaded node to obtain lightly loaded
node in lesser time

• utilizes effective information policy and location
policy [36]

• utilizes efficient load measurement policy
• is applicable to a wide range of distributed

applications such as CPU-bound, memory-bound,
I/O-bound, and various combinations of these

III. SYSTEM MODEL

Before discussing the system model, we first describe
the notations which are used throughout the paper in
Table I.

The distributed system consists of a large number of
geographically dispersed heterogeneous computing
resources, namely P1, P2,…, Pn, and a diverse set of users
that are connected using links and routers. We assume
that there are maximum n nodes in the system. Further,

1826 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

TABLE I.

LIST OF NOTATIONS
Notation Description
n Total number of nodes in the system
Pi where
1 ≤ i ≤ n

ith node of the system

Ci Processor load of Pi
Mi Memory load of Pi
IOi I/O load of Pi
Li Total load of the node Pi
m Total number of clusters
gj jth cluster, where 1 ≤ j ≤ m
Tj Threshold value of the cluster gj
kj Size of the cluster gj

no assumptions are made about the underlying network
topology. We consider the following properties of the
distributed system.

• We assume that each computing resource (or node)
has an infinite capacity buffer, just to eliminate
the possibility of discarding the job due to
unavailability of buffer space [1].

• Nodes are heterogeneous with respect to baud rate,
propagation delay, number of machines, cost of
processing, processing speed (in terms of the
ratings of standard benchmark Million
Instructions Per Seconds-MIPS), operating system,
memory capacity, and I/O capacity. Thus, the
computation and communication capabilities are
different for all nodes in the system.

• The load Li of each node Pi is computed using the
formula Li = Ci + Mi + IOi. The status of each
node is defined as follows.

Li = 0 → node is idle
Li ≤ Tj → node is referred as lightly loaded node
Li > Tj → node is referred as highly loaded node

• Threshold Tj is defined as the average load of the
cluster and is computed using the following
equation. For cluster gj,

Tj = ሺ∑ ௞ೕ௜ୀଵ	௜ܮ) / kj, where 1 ≤ j ≤ m
• Initially, all nodes are assigned some amount of

work and no node in the system is idle. During
load balancing operation, the workload of the
node may increase or decrease depending on its
current status.

• Users generate different numbers of gridlets (or
tasks) that are submitted to nodes for execution. A
gridlet is a package that contains all the
information related to the job and its execution
management details [37].

• Users differ from each other with respect to
number and sizes of gridlets, baud rate,
propagation delay, and MTU (Maximum
Transmission Unit).

• We consider merely nonpreemptive task transfers.

IV. THE CRITICAL DESIGN ISSUES OF THE HYBRID DLB
ALGORITHM

The hybrid DLB algorithm utilizes the established
notion of clustering because the clustering is an effective
technique for decreasing the message complexity and

increasing the scalability in large scale distributed system.
In this approach, the geographically dispersed nodes of
the system are divided into m disjoint virtual clusters.
Once the clusters are created, one node in each cluster is
selected as the supernode. The supernode is assigned a
special responsibility of defining the dynamic threshold
value periodically. In the design of hybrid algorithm, we
consider a genuine dynamic threshold policy to facilitate
the practical situations of the distributed systems. The
preliminary version of hybrid algorithm is presented in
[19]. At this juncture, we address the following two
imperative issues related to the design of hybrid DLB
algorithm: cluster formation and supernode selection in
each cluster. Specifically, we describe the logical criteria
to form the clusters based on the classical theory of
integer partition. We also propose the two novel
algorithms for supernode selection. The proposed
algorithms help us to arrive at the design of an effective
DLB algorithm.

A. Cluster Formation
In this section, we describe the issue of clustering

formally. In favor of hybrid DLB algorithm, the key
objectives of clustering are improved scalability and
reduced communication overhead.

Let N = {P1, P2, P3, …., Pn} is a distributed system. We
assume that N is a nonempty finite set and its order is not
large. The clustering procedure, as described in Fig. 2,
creates the m groups, namely g1, g2, …, gm, such that

gj ≠ Φ for j = 1, 2, …, m where 1 < m < n/2
gj∩gl = Φ for j, l = 1, 2, …, m where j ≠ l
g1∪g2∪	…….	∪gm = N that is ⋃ 	g୨୫୨ୀଵ = N

In each cluster, there must be minimum 2 nodes to
validate the significance of group. A cluster can have
maximum n/2 nodes within it.

To form clusters, first all partitions of n are generated.
From amongst the all partitions, the partitions that have 1

1. Generate all partitions of integer n
2. Remove the partitions that have 1 or n as a part
3. From the remaining partitions, choose one

partition pt randomly
4. Set m = number of parts in pt
5. FOR j = 1 to m

 Set kj = jth part in pt
// Following are the steps to insert nodes in clusters
6. Create sorted list SL by sorting the system nodes

based on their load value
7. FOR j = 1 to m

 Set gj = Φ
8. start = 0, end = n, flag = 1
9. FOR j = 1 to m

 WHILE (kj > 0)
 IF (flag = 1)
 pos = start; start = start + 1; flag = 0
 ELSE
 pos = end; end = end – 1; flag = 1
 gj = gj ∪ SL[pos]
 kj = kj - 1

Figure 2. Algorithm for cluster formation.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1827

© 2014 ACADEMY PUBLISHER

or n as a part are removed because there can not be a
cluster of 1 node and the partition having n as a part
represents the distributed system itself. From the
remaining partitions, one partition pt is chosen randomly
to set the number and sizes of the clusters. For instance, if
pt is 5+4+6 for the integer number n=15, then the number
of clusters m=3 and the sizes of clusters g1, g2, and g3 are
k1=5, k2=4 and k3=6 respectively. Once the number and
sizes of clusters are set, the obvious query that arises is
which nodes should be inserted in which cluster? To cope
with this query, we create the sorted list SL by arranging
the nodes of distributed system into increasing order of
their load value. Subsequently, the nodes are inserted in
each cluster one by one from top and bottom of the SL
alternately, while the next cluster will continue the same
series. The key objective of inserting the nodes from top
and bottom of the SL is to create the averagely load
clusters initially. This is so because load balancing can be
achieved efficiently in averagely loaded clusters which
comprise of several highly loaded nodes and several
lightly loaded nodes.

B. The Proposed Algorithms for Supernode Selection
Each cluster has a supernode that periodically collects

the load information of the other nodes in the cluster to
compute the average cluster load. This average load is set
as the new threshold value and is broadcast to other nodes
in the cluster.

Selecting a supernode is a significant design issue for
the hybrid algorithm. Earlier we proposed two Supernode
Selection Algorithms (SSA), as in [38], based on the
classical Leader Election Algorithms (LEA). In SSA1,
highest id node is selected as the supernode. Though this
is the traditional approach, SSA1 significantly reduces
the communication overhead compared to existing LEA.
It takes O(k) messages if the highest id node is alive.
SSA1 may not perform successfully if the highest id node
chosen as the supernode is already highly loaded. This is
so because if the highest id node is assigned an additional
responsibility of defining the threshold value periodically,
its performance may degrade. To deal with this issue, we
proposed SSA2. SSA2 selects the average-valued-node
as the supernode. Average-valued-node is the node that
has the mean load value to other nodes in the cluster.
Unlike SSA1, SSA2 attempts to choose the supernode
that is neither highly loaded nor lightly loaded.
Additionally, it achieves this task utilizing O(k) messages.

SSA1 and SSA2 select the supernode considering a
single objective that can lead to poor performance.
Therefore, we propose two new supernode selection
algorithms considering multi-criterion optimization [39].
Design of these algorithms is motivated by the existing
clustering algorithms [20-32]. In the existing clustering
algorithms, local network structure is used as the basis for
cluster head selection. Hence, the nodes that are
geographically close to each other, typically, form a
cluster. An apparent limitation of such a scheme, that is
oblivious of the eventual load after cluster formation, is
probably unevenly loaded clusters. Hence, the existing
algorithms for cluster formation are not applicable in our
hybrid DLB algorithm. Contrary to fundamental concept

of existing algorithms, in our hybrid approach, global
network structure is used to form each cluster.
Subsequently, a node is chosen as the supernode in each
cluster based on certain criterion. In some of the existing
algorithms, cluster heads are selected either randomly
with a certain probability [26],[27] or based on node id
[30],[31]. It is likely that randomly selected or node id
based cluster head has higher load. If so, re-election will
occur in order to select the new cluster head. As a
consequence, the communication overhead will increase
and the system performance will decrease. Thus, these
algorithms are also not useful for supernode selection in
hybrid algorithm. Rather than selecting the supernode
randomly or based on node id, factors like resources’
utilization, distance from other nodes in the cluster,
number of neighbors, etc. may be of importance when
selecting the supernode [20],[21],[24],[28].

1) Supernode Selection Algorithm_3 (SSA3)
SSA3 is derived from the algorithm presented in [20].
Unlike algorithm presented in [20], it considers the CPU
utilization, memory utilization, and I/O utilization to
show the node’s ability to be elected as the supernode. As
shown in Fig. 3, first the Static Threshold Value (STV) is
computed. STV is an average load of the cluster
considering the current CPU utilization of the nodes.
Then, the NodeImportanceIndex NIv() of each node in
the cluster is calculated. For simplicity we have
considered merely CPU utilization as the node
importance value. Then after, all the nodes are sorted in
ascending order of their NIv(). The nodes of sorted list
are examined one by one and if the currently examined
node has CPU utilization below STV, the node is
designated as the candidate supernode. Subsequently, all
the candidate supernodes are arranged in increasing order
of their MIOload which is a linear combination of
memory load and I/O load. From this sorted list, the node
with minimum MIOload that has CPU utilization below

Input: load of all nodes in the cluster
Output: supernode
//procedure utilized by the node Pi that does not find
the current threshold value

Supernode Selection Algorithm_3()
1. Calculate STV
2. Calculate NodeImportanceIndex NIv() of each

node in the cluster
NIv (Pi) = Ci, where 1 ≤ i ≤ k

3. Sort nodes of cluster in increasing order of their
NIv()

4. Take out the nodes whose NIv() < STV and
designate them as the candidate supernodes

5. Arrange candidate supernodes in increasing order
of their MIOload

6. Supernode = candidate supernode with minimum
MIOload

Figure 3. Pseudo code for supernode selection algorithm_3.

1828 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

STV is selected as the supernode. In case of tie, the node
with higher id prevails.

It is noticeable that in this algorithm, the node with
lesser resource utilization has greater opportunity to be
selected as the supernode. Unlike SSA1 and SSA2, SSA3
prevents the performance degradation of a specific node
by rotating the responsibility of supernode amongst the
cluster nodes. It also takes O(k) messages to select the
supernode.

2) Supernode Selection Algorithm_4 (SSA4)
The design of SSA4 is closely related to the multi

criterion optimization technique presented in [21]. SSA4
attempts to find out the supernode whose resource
utilization is optimal. Fig. 4 shows the major steps of
SSA4.

The detailed explanation of the SSA4 is as follows.
The option matrix OM represents the resource utilization
of all the nodes of the cluster. Specifically, each row of
OM represents the utilization of various resources of a
node. There are three columns in OM because we
consider three parameters, namely CPU utilization,
memory utilization, and I/O utilization, as the decision
making parameters. Thus, each element xi,j represents the
jth parameter for the ith node. Subsequently, the OM is
transformed into decision matrix DM utilizing the
formula given for yi,j. In this formula, MAXj represents
the worst value of jth parameter and MINj represents the
best value of jth parameter. These best and worst values
are unique to each decision making parameter. For
instance, the best value for CPU utilization is represented
by the minimum value and the worst value for it is
represented by the maximum value in the column of OM.
Next, the preference vector is computed using the
following operation that is inspired by the preference
function modeling [40].

S(Pi) =	∑ ௫೔,ೕయೕసభெ௔௫௅
For each node Pi, this function accepts the values for

1. Build Option Matrix (OM)kX3, where k is the

size of cluster.

OM = ൦xଵ,ଵ xଵ,ଶ xଵ,ଷxଶ,ଵ xଶ,ଶ xଶ,ଷ⋮ ⋮ ⋮x୩,ଵ x୩,ଶ x୩,ଷ൪
2. Convert option matrix into Decision Matrix

(DM)kX3.

DM = ൦yଵ,ଵ yଵ,ଶ yଵ,ଷyଶ,ଵ yଶ,ଶ yଶ,ଷ⋮ ⋮ ⋮y୩,ଵ y୩,ଶ y୩,ଷ൪
where yi,j = 2

ሺ௫೔,ೕ–ெ஺௑ೕሻሺெூேೕିெ஺௑ೕሻ – 1

3. Compute Weight vector (W)kX1 by multiplying
the decision matrix with the preference vector.

൦ݓଵݓଶ⋮ݓ௞൪ = ൦yଵ,ଵ yଵ,ଶ yଵ,ଷyଶ,ଵ yଶ,ଶ yଶ,ଷ⋮ ⋮ ⋮y୩,ଵ y୩,ଶ y୩,ଷ൪ ൦
 ௞൪ݖ⋮ଶݖଵݖ

Figure 4. Pseudo code for supernode selection algorithm_4.

each of the parameters involved in the decision process
and returns a scaled value. The returned value is scaled
between 0 and 1, where 0 represents the best value and 1
represents the worst value. MaxL represents the
maximum possible load of the node. As we have
considered CPU utilization, memory utilization, and I/O
utilization as the decision making parameters, the value
of MaxL is 300 which is summation of maximum
possible value for each of these parameters. After
computation of preference vector, the DM is multiplied
by the preference vector to obtain the weight vector W.
The weight vector represents the weight of the each of the
available choices. In particular, it represents the weight of
each node in the cluster. Finally, the node corresponding
to maximum weight is selected as the supernode because
it indicates the best choice, that is, it indicates the node
with optimal resource utilization. Although, we have
considered CPU utilization, memory utilization, and I/O
utilization as the decision making parameters, more
metrics can be utilized to make the finest choice. The key
benefit from SSA4 is that it too takes merely O(k)
messages to select the optimal supernode.

V. PERFORMANCE RESULTS AND ANALYSIS

We evaluate the performance of our hybrid DLB
algorithm using simulation. Simulation is an approach
that is useful to setup an appropriate distributed
environment in which the empirical evaluation can be
carried out. It is practical approach to analyze the DLB
algorithm and to reason about the behavior of DLB
algorithm.

A. Experimental Setup
We use GridSim toolkit to simulate a distributed

system that comprises of 50 nodes and 10 users. Nodes
and users are connected via links and routers under
hybrid network topology. Nodes are created with greater
heterogeneity levels to show the impact of heterogeneity
on performance. Users generate gridlets that are
submitted to nodes for execution. There are several
parameters to measure the performance of DLB
algorithms. We use Average Response Time (ART),
Average Round Trip Time (ARTT) in seconds, and
Average Completion Time (ACT) as parameters for
performance comparison. As it is not feasible to show the
performance of all users individually, we compute
average value for each of the performance parameters.
Response time is defined as the time at which the
response of first gridlet is received. Round trip time is
defined as the total time the gridlet has spent in the
network. Completion time is defined as the elapsed time
between the submission of the first gridlet and the
completion of the last gridlet. It is overall completion
time per user. We consider the classical Centralized
Algorithm (CA), as in [33], and the DeCentralized
Algorithm (DCA), as in [9], as the base algorithms for the
comparison of hybrid DLB algorithm. For complete
comparison, here we show the results of hybrid algorithm
considering all four supernode selection approaches. The
performance of Hybrid algorithm utilizing SSA1, SSA2,

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1829

© 2014 ACADEMY PUBLISHER

SSA3, and SSA4 is shown as HSSA1, HSSA2, HSSA3,
and HSSA4 respectively in graphs.

B. Performance under Different Cluster Configurations
In this experiment, we analyze the performance of

hybrid algorithm considering different number and sizes
of the clusters. Specifically, we intend to test the
performance for following cluster configurations.

• small number of clusters where size of each
cluster is large

• large number of clusters where size of each cluster
is small

• moderate number of clusters where size of each
cluster is moderate

We have conducted experiments for cluster
configurations of Table II. The readings of ART and
ACT for various scenarios are depicted in Fig. 5(a) and
the readings of ARTT for various scenarios are depicted
in Fig. 5(b). It is observed that utilizing any of the SSAs,
the hybrid algorithm outperforms the centralized
algorithm and the decentralized algorithm irrespective of
the number and sizes of the clusters. Under different

TABLE II.
DIFFERENT CLUSTER CONFIGURATIONS

Scenario Number of
clusters

Cluster sizes

S1 2 25 25
S2 3 17 17 16
S3 3 20 20 10
S4 4 16 16 10 8
S5 8 7 7 7 7 7 7 5 3
S6 11 9 9 5 5 4 3 3 3 3 3 3
S7 14 5 4 4 4 4 4 4 3 3 3 3

3 3 3

(a)

(b)

Figure 5. Performance of hybrid algorithm under different cluster
configurations.

cluster configurations, the performance improvement
over DCA ranges from 21% to 49% for ART, 56% to 78%
for ARTT, and 14% to 45% for ACT. Similarly, the
performance improvement over CA ranges from 6% to 35%
for ART, 12% to 56% for ARTT, and 10% to 35% for
ACT.

Further, we observe the readings to find out the SSA
that is more suitable to a particular type of cluster
configuration. Specifically, we observe that which SSA is
more suitable to small, moderate, and large size clusters.
It has been observed that when the clusters are moderate
or large in size, all SSAs produce the improved
performance that is nearly equivalent. However, when the
clusters are small in size, SSA1 gives better performance
amongst the all SSAs. This is so because the probability
of selecting the lightly loaded node as the supernode from
a small cluster is more than the probability of selecting
the same from a large cluster. Thus, when the number of
clusters is higher and the size of each cluster is small, it is
highly probable that a lightly loaded node will be selected
as the supernode. It is also noticed that the SSA1 has
lesser communication overhead compared to other SSAs
because it selects the supernode in random fashion.
However, the later reason alone is not responsible for
providing the better performance as it can be observed
from the readings of large size clusters. Thus, when the
lesser communication overhead incurred by the SSA1 is
combined with the small cluster size, the improved
performance is achieved.

C. Performance under Different Load Scenarios
We have identified three different system states that

are lightly loaded, moderately loaded, and highly loaded.
To evaluate the performance of hybrid DLB algorithm
under these system states, we have tested its performance
under five system load set-ups: 20%, 40%, 60%, 80%,
and 100%. From implementation point of view, 100%
load is defined as the 1000 jobs in the system. The system
with 80% to 100% load is defined as the highly loaded
system while a system with 0% to 40% load is defined as
the lightly loaded system. Accordingly, the system with
40% to 80% load is defined as the moderately loaded
system. This experiment is conducted using the moderate
number and sizes of the clusters. In particular, we have
created 8 clusters with sizes 8, 7, 7, 6, 6, 6, 5, and 5
respectively. The readings of ART and ACT are shown in
Fig. 6(a) and the readings of ARTT are shown in Fig.
6(b).

Experimental results show that when the system is
lightly loaded, the hybrid algorithm gives marginally
improved performance that is almost similar to that of the
centralized algorithm or decentralized algorithm. This is
so because when the system is lightly loaded, the
majority of the system nodes are lightly loaded and very
few nodes are highly loaded. Therefore, whether it is a
cluster or an entire system, the communication overhead
to find out the lightly loaded node will be logically less in
lightly loaded system state compared to the
communication overhead incurred in moderately loaded
or highly loaded system state. Moreover, in lightly loaded

1830 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

(a)

(b)

Figure 6. Performance of hybrid algorithm under different load
scenarios.

system state, the queuing delays at the destination node
and the network delays are also less irrespective of a
cluster or an entire system compared to the delays that
occur in moderately loaded or highly loaded system. Thus,
the performance provided by the hybrid algorithm is
nearly similar to that of the centralized algorithm or
decentralized algorithm when the system is lightly loaded.
However, with increase in system workload, the
performance provided by the hybrid algorithm
significantly increases as compared to that of the
centralized algorithm and decentralized algorithm. The
performance improvement over DCA ranges from 3% to
49% for ART, 13% to 78% for ARTT, and 3% to 49%
for ACT. Similarly, the performance improvement over
CA ranges from 6% to 54% for ART, 4% to 60% for
ARTT, and 4% to 55% for ACT.

D. Performance under Different Network Topologies
In this experiment, we analyze the performance of

hybrid algorithm under three network topologies. Though
the topology of nearly all distributed systems is hybrid,
there are distributed systems with other topologies for
various specific reasons. Hence, we analyze the
performance of hybrid DLB algorithm under star, ring,
and hybrid topologies. As shown in Fig. 7, the hybrid
algorithm performs faster than the typical centralized
algorithm and the decentralized algorithm irrespective of
the underlying network topology. Under various network
topologies, the performance improvement over DCA
ranges from 4% to 49% for ART, 13% to 77% for ARTT,
and 3% to 49% for ACT. Similarly, the performance
improvement over CA ranges from 1% to 39% for ART,
8% to 68% for ARTT, and 1% to 38% for ACT. Thus,

(a)

(b)
Figure 7. Performance of hybrid algorithm under different topologies.

hybrid algorithm substantiates its adaptability to different
network topologies.

VI. CONCLUSIONS

We have presented a novel framework for dynamic
load balancing in distributed systems using hybrid
approach. Our hybrid algorithm possesses three major
features: an efficient load balancing approach that
overcomes the several limitations of centralized and
decentralized approaches, an effective load measurement
policy to make the algorithm capable and applicable to a
wide range of distributed applications, and a successful
information policy that significantly reduces the
communication overhead. We have shown that the hybrid
algorithm actually overcomes the limitations of the
centralized and decentralized approaches utilizing the
notion of clustering. It performs competitively for
heterogeneous distributed system.

The performance of hybrid algorithm is evaluated
under different cluster configurations, different load
scenarios, and different topologies. The experimental
results show that the hybrid DLB algorithm potentially
outperforms the traditional centralized and decentralized
DLB algorithms in all situations. In particular, it provides
significant improvement in response time, round trip time,
and completion time compared to that of centralized and
decentralized algorithms.

In our future work, we will examine the performance
of hybrid algorithm with more number of nodes in
distributed system. We also intend to analyze its
performance with various real-time distributed
applications. We will explore the other metrics and
system scenarios for more complete comparison of

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1831

© 2014 ACADEMY PUBLISHER

algorithms. Additionally, we aim to use a heuristic to
choose the partition of n.

REFERENCES

[1] R. Shah, B. Veeravalli, and M. Misra, “On the design of
adaptive and decentralized load balancing algorithms with
load estimation for computational grid environment,” IEEE
Tran. Parallel and Distributed Systems, vol. 18, pp. 1675-
1686, December 2007.

[2] D. Gupta, and P. Bepari, “Load sharing in distributed
systems,” in Proc. National Workshop on Distributing
Computing, January 1999.

[3] R. Riedl, and L. Richter, “Classification of load
distribution algorithms,” in 4th Euromicro Workshop on
Parallel and Distributed Processing, pp. 404-413, 1996.

[4] J. Baikerikar, S. Surve, and S. Prabhu, “Comparison of
load balancing algorithms in a grid,” in Int. Conf. Data
Storage and Data Engineering (DSDE), IEEE Press,
Bangalore, 2010, pp. 20-23.

[5] M. Paksoy, and J. Prado, “Comparing centralized and
decentralized distributed execution systems,” Internet:
http://www.sccs.swarthmore.edu/users/07/mustpaks/distsys
_paper.pdf, November 2012.

[6] I. Psoroulas, I. Anagnostopoulos, V. Loumos, and E.
Kayafas, “A study of the parameters concerning load
balancing algorithms,” Int. J. Computer Science and
Network Security, vol. 7, pp. 202-214, April 2007.

[7] P. K. Chandra, and B. Sahoo, “Prediction based dynamic
load balancing techniques in heterogeneous clusters,” in
Proc. Int. Conf. Computer Science and Technology,
California, 2010, pp. 189-192.

[8] R. Mukhopadhyay, D. Ghosh, and N. Mukherjee, “A study
on the application of existing load balancing algorithms for
large, dynamic, heterogeneous distributed systems,” in 9th
WSEAS Int. Conf. Software Engineering, Parallel and
Distributed Systems (SEPADS), Cambridge, 2010, pp. 238-
-243.

[9] I. Al-Azzoni, and D. G. Down, “Decentralized load
balancing for heterogeneous grids,” in Computation World:
Future Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns, IEEE Computer Society,
Athens, 2009, pp. 545-550.

[10] S. Dhakal, M. M. Hayat, J. E. Pezoa, C. Yang, and D. A.
Bader, “Dynamic load balancing in distributed systems in
the presence of delays: a regeneration – theory approach,”
IEEE Tran. Parallel and Distributed Systems, vol. 18, pp.
485-497, April 2007.

[11] G. D. Fatta, and M. R. Berthold, “Decentralized load
balancing for highly irregular search problems,” ACM J.
Microprocessors and Microsystems, vol. 31, pp. 273-281,
June 2007.

[12] P. Werstein, H. Situ, and Z. Huang, “Load balancing in a
cluster computing,” in 7th Int. Conf. Parallel and
Distributed Computing, Applications and Technologies
(PDCAT), IEEE Computer Society, Higashi Hiroshima
2006, pp. 569-577.

[13] T. N. Anitha, and R. Balakrishna, “An efficient and
scalable content based dynamic load balancing using
multi-parameters on load aware distributed multi-cluster
servers,” Int. J. Engg. Science and Tech., vol. 3, pp. 6401-
6411, August 2011.

[14] S. Penmasta, and A. T. Chronopoulos, “Dynamic multi-
user load balancing in distributed systems,” in 21st IEEE
Int. Parallel and Distributed Processing Symp., IEEE Press,
California, 2007, pp. 1-10.

[15] P. Jain, and D. Gupta, “An algorithm for dynamic load
balancing in distributed systems with multiple supporting
nodes by exploiting the interrupt service,” Int. J. Recent
Trends in Engg., vol. 1, pp. 232-236, May 2009.

[16] M. V. Gopalachari, P. Sammulal, and A. V. Babu,
“Correlating scheduling and load balancing to achieve
optimal performance from a cluster,” in IEEE Int. Conf.
Advance Computing, IEEE Press, Patiala, 2009, pp. 320-
325.

[17] X. Qin, H. Jiang, and A. Manzanares, “Dynamic load
balancing for i/o-intensive applications on clusters,” ACM
Trans. Storage, vol. 5, pp. 9:1--9:38, November 2009.

[18] G. F. Kabbany, N. M. Wanas, N. H. Hegazi, and S. I.
Shaheen, “A dynamic load balancing framework for real-
time applications in message passing systems,” Int. J.
Parallel Prog., vol. 39, pp. 143-182, 2011.

[19] M. Mehta, and D. Jinwala, “A hybrid dynamic load
balancing algorithm for heterogeneous environments,” in
Int. Conf. Grid Computing and Applications, CSREA Press,
Las Vegas, 2011, pp. 61-65.

[20] N. Dimokas, D. Kastsaros, and Y. Manolopoulos, “Energy-
efficient distributed clustering in wireless sensor networks,”
ACM J. Parallel and Distributed Computing, vol. 70, pp.
371-383, April 2010.

[21] N. Aslam, W. Phillips, W. Robertson, and S. Sivakumar,
“A multi-criterion optimization technique for energy
efficient cluster formation in wireless sensor networks,”
Special Issue on Information Fusion, vol. 12, pp. 202-212,
July 2011.

[22] A. Chamam, and S. Pierre, “A distributed energy-efficient
clustering protocol for wireless sensor networks,” ACM J.
Computers and Electrical Engg., vol. 36, pp. 303-312,
March 2010.

[23] K. R. Bhakare, R. K. Krishna, and S. Bhakare, “An
Energy-efficient grid based clustering technology for a
wireless sensor network, Int. J. Computer Applications, vol.
39, pp. 24-28, February 2012.

[24] Z. Fan, and Z. Jin, “A multi-weight based clustering
algorithm for wireless sensor networks, Internet:
http://pe.org.pl/articles/2012/1b/4.pdf, November 2012.

[25] Y. Cao, and C. He, “A distributed clustering algorithm
with an adaptive backoff strategy for wireless sensor
networks,” IEICE Transactions, vol. 89-B, pp. 609-613,
February 2006.

[26] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless
microsensor networks,” in 33rd Hawaii Int. Conf. System
Sciences, IEEE Computer Society, Washington, 2000, pp.
8020.

[27] O. Younis, and S. Fahmy, “Heed: a hybrid, energy-
efficient, distributed clustering approach for ad-hoc sensor
networks,” IEEE Tran. Mobile Computing, vol. 3, pp. 366-
369, October 2004.

[28] D. J. Dechene, A. E. Jardali, M. Luccini, and A. Sauer, “A
survey of clustering algorithms for wireless sensor
networks,” Project Report, Department of Electrical and
Computer Engineering, University of Western Ontario,
Canada, 2006.

[29] S. R. Boselin Prabhu, and S. Sophia, “A survey of adaptive
distributed clustering algorithms for wireless sensor
networks,” Int. J. Comp. Science and Engg. Survey
(IJCSES), vol. 2, no. 4, November 2011.

[30] D. J. Baker, and A. Epheremides, “The architectural
organization of a mobile radio network via a distributed
algorithm. IEEE Tran. Communications, vol. 29, pp.
1694-1701, November 1981.

1832 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

[31] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynch,
“Max-min d-cluster formation in wireless ad hoc networks,”
in 19th Annual Joint Conf. of the IEEE Computer and
Communications Societies (INFOCOM), Dallas, 2000, pp.
32-41.

[32] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris,
“Span: an energy-efficient coordination algorithm for
topology maintenance in ad hoc wireless networks. ACM J.
Wireless Networks, vol. 8, pp. 481-494, September 2002.

[33] H. Xiangchun, C. Duanjun, and C. Jing, “One centralized
scheduling pattern for dynamic load balance in gird,” in Int.
Forum on Information Technology and Applications, IEEE
Press, 2009, pp. 402-405.

[34] T. Kunz, “The influence of different workload descriptions
on a heuristic load balancing scheme,” IEEE Transactions
on Software Engineering, vol. 17, pp. 725-730, July 1991.

[35] D. Ferrari, and S. Zhou, “An empirical investigation of
load indices for load balancing applications,” in 12th IFIP
WG 7.3 Int. Symp. Computer Performance Modeling,
Measurement and Evaluation, North-Holland Publishing,
Netherlands 1988, pp 515-528.

[36] M. A. Mehta, and D. C. Jinwala, “Analysis of significant
components for designing an effective dynamic load
balancing algorithm in distributed system,” in 3rd IEEE Int.
Conf. Intelligent Systems, Modeling and Simulation (ISMS
2012), IEEE Press, 2012, pp. 531-536.

[37] R. Buyya, and M. Murshed, “GridSim: a toolkit for the
modeling and simulation of distributed resource
management and scheduling for grid computing,” J.
Concurrency and Computation: Practice and Experience
(CCPE), vol. 14, pp. 1175-1220, November 2002.

[38] M. A. Mehta, S. Agrawal, and D. C. Jinwala, “Novel
algorithms for load balancing using hybrid approach in
distributed systems,” in 2nd IEEE Int. Conf. Parallel,
Distributed and Grid Computing (PDGC 2012), IEEE
Press, 2012, pp. 27-32.

[39] R. T. Marler, and J. S. Arora, “Survey of multi-objective
optimization methods for engineering,” Structural and
Multidisciplinary Optimization, vol. 26, pp. 369-395, 2004.

[40] J. Barzilai, “Preference function modeling: the
mathematical foundations of decision theory,” in Trends in
Multiple Criteria Decision Analysis, Springer, 2010, pp.
57-86.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1833

© 2014 ACADEMY PUBLISHER

