
Synthesizing Fault Tolerant Safety

Critical Systems

Seemanta Saha and Muhammad Sheikh Sadi
Khulna University of Engineering & Technology, Khulna-9203, Bangladesh

Email: seemantasaha@gmail.com, sheikhsadi@gmail.com

Abstract- To keep pace with today’s nanotechnology, safety

critical embedded systems are becoming less tolerant to

errors. Research into techniques to cope with errors in

these systems has mostly focused on transformational

approach, replication of hardware devices, parallel

program design, component based design and/or

information redundancy. It would be better to tackle the

issue early in the design process that a safety critical system

never fails to satisfy its strict dependability requirements. A

novel method is outlined in this paper that proposes an

efficient approach to synthesize safety critical systems. The

proposed method outperforms dominant existing work by

introducing the technique of run time detection and

completion of proper execution of the system in the presence

of faults.

Index Terms- Detector, Fault Tolerance, Program, Safety

Critical System, Fail-Safe.

I. INTRODUCTION

Design of safety critical embedded systems is becoming

more and more complex as the performance scale of these

systems is rapidly increasing. Numbers of transistors in a

single chip of these embedded systems are increasing day

by day to provide a more powerful controlling system with

low cost. Clock frequencies are reaching multiple GHz

range because of constant downscaling of CMOS

technologies. As a result, these systems are more prone to

various types of errors.

But, safety critical systems need to maintain strict

dependability requirements. They need to avoid taking

steps that violates the system‟s safety specifications as

well as, perform all necessary steps for the completion of

desired function of that system. Nuclear power plant or

nuclear power monitoring systems is such a safety critical

system where a single bit flips in the value of system

parameters can cause severe destruction of the

environment or death to human life. A heart pace maker

which provides adequate heart rate for a patient needs to

maintain stringent availability and dependability. If a heart

pace maker fails to maintain adequate heart rate, the patient

will lose his/her life. When a spacecraft is in flight, it is not

allowed to afford a breakdown. Dependability in all these

types of safety critical embedded systems is a major concern

for the human being and environment as errors in these

systems will be catastrophic. As a result, these systems need

to perform tolerating faults or any other undesired external

perturbation in the presence of any type of soft errors.

Various approaches have been proposed over the years

to provide fault tolerance for safety critical systems. Some

approaches are based on synthesizing and some are based

on transformations. All these approaches have followed the

idea of program modification or program rewriting. Arshad

et al. [13] proposed fast detector which has been used in

distributed embedded system to provide fail safe fault

tolerance. They added the concept of the detector with a fault

intolerant program to transform it to a fault tolerant program. For

all possible errors, they checked that any particular program is

reachable to bad transitions are not. If bad transitions are

reachable from a program state because of fault transitions then

the earliest inconsistent transition from that program state has

been removed. As a result, whenever a fault transition occurs, the

program halts to the state providing fail safe fault tolerance of the

system.

But, the proposed method of this paper included

another novel point of view by keeping the earliest

inconsistent transition in the program to continue the

complete execution of a system. The program will transit

from one state to another state to perform its desired

functions and in every state it will check that the safety

specification of the system is maintained or not. To check

the maintenance of safety specification in a system,

reachability to program‟s bad transitions will be checked.

This checking will be done by forward traversing of program

states during program execution. As a result, the proposed

method enforces completion of program execution tolerating

the fault in the system due to a soft error. Though the method

has been proposed for safety critical systems, in the future it

can be also applied to any system to check its proper flow of

execution.

The paper is structured as follows: Section II describes related

works. Section III presents preliminaries of the proposed method.

Section IV presents the proposed methodology of fault tolerance

in safety critical systems. Section IV presents an experimental

analysis. Section V summarizes the contributions of the paper and

discusses future possibilities.

II. RELATED WORK

A good number of works have been performed related

to fault tolerance approaches for safety critical systems.

Among these approaches, design of effective detectors,

error propagation analysis, parallel program design and

component based design have great significance. Most

of these approaches are software based and proving to be

efficient and effective.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1809

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.8.1809-1816

mailto:seemantasaha@gmail.com
mailto:seemantasaha@gmail.com
mailto:sheikhsadi@gmail.com
mailto:sheikhsadi@gmail.com

Component based design of the multi tolerant system

has been proposed by Anish Arora and Sandeep S.

Kulkarni [1], [2] where they developed a basis for

improved design of dependable system. They illustrated

their method by designing fully distributed multi tolerant

program for a token ring [1]. They also introduced the

idea of detector and corrector [3] to provide fault

tolerance for a multi tolerant system. The method of

detector and corrector [3] had been used to automate the

addition of fault tolerance in the system. The complexity

of their method had been also analyzed [4]. Sandeep S.

Kulkarni et al. also provided another approach to

automate the addition of efficient fault tolerance [5].

They developed the concept of the detector as a system

component which converts the system tolerant to a

fault. They also proposed approach of fault tolerance

[6] by synthesizing concurrent programs.

Zhiming Liu and Mathai Joseph proposed transformational

approach of fault tolerance [7], [8]. They designed how a

program, constructed considering a fault-free system can be

transformed into a fault- tolerant program for a system which is

susceptible to failures. They illustrated their approach of fault

tolerance by considering the problem of designing a protocol for

reliable communication channel. Doron Peled and Mathai Joseph

also developed a compositional framework for fault-tolerance by

specification transformation [9]. They adopted a recovery

algorithm which has been used to convert a basic program with a

fault tolerant version. Felix C. Gartner [10] adopted another

transformational approach to the specification and verification of

fault- tolerant systems.

But, all these approaches were considered common system

fault tolerance. But, in case of safety critical systems, safety

specification of the system is the major concern and consistency

of system performance and proper execution of the system need

to be satisfied. Arshad Jhumka et al. [11], [12], [13], [14]

adopted the theory of detector developed by Anish Arora

and Sandeep S. Kulkarni. They proposed a perfect and fast

detector as a system component which is used to detect

faults in a system. They converted a fault intolerant

program to a fault tolerant program adding detector to the

fault intolerant program. They implemented their method

to distributed embedded system to provide fail safe fault

tolerance, which provided an effective outcome in the field

of safety critical system fault tolerance. Arshad Jhumka

along with Matthew Leeke [15] also analyzed

complexities and issues on the design of effective fail

safe fault tolerance. They also proposed the concept of

critical variables [16] and analyzed the importance of

critical variables in dependable software.

III. PRELIMINARIES

A. State

A state of a program P is a function that holds a

particular value of variables in P. The state space Sp of

P is the set of all possible states of P.

B. State Relation

A program can be represented using some states,

where every state will hold particular value of system

variables and a transition function w i l l b e used to

transit from one state to another state. This

representation of a program using state and transition

function is called state relation.

C. Safety Specification

Safety specification of a system can be defined as a

term of „zero occurrence of bad transitions in a program‟.

If any computation of a program violates safety

specification, program transition belongs to that

computation must be avoided. A fault intolerant

program can violate safety specification as any faulty

program transition can reach to a bad transition.

D. Bad Transition

A transition which violates safety specification of a

system will be considered as bad transition. Every

transition of a program occurs because of a computation

of program. If any transition of a program violates safety

specification then the computation holding that bad

transition also violates safety specification.

Suppose, a program P consists of states a, b, c, d, e, f.

Safety specification for that program is S. C is a

computation of program P which consists of state

transition (b, c), (c, d), (d, e). If (d, e) transition violates

safety specification then it is called a bad transition and

as computation C holds (d, e), C violates safety

specification.

E. Reachability to Bad Transition

If a program is currently on a state x and in future it can

be on state y and there can be a transition from state y to

state z, where y to z is a bad transition then there is

reachability to bad transition (y, z) from state x.

F. Inconsistent Transition

If a faulty transition occurs and reachability to a

bad transition is found, transitions that occur

between reaching bad transition and the occurrence of

fault transition, are called inconsistent transitions. Among

all the inconsistent transitions, transition that occurs

immediately after the occurrence of fault transition is

called earliest inconsistent transition.

IV. THE PROPOSED METHODOLOGY TO

SYNTHESIZE FAULT TOLERANT SAFETY

CRITICAL SYSTEMS

The proposed methodology will be described by

following steps which will show how the system will be

synthesized and how fault tolerance in the system will be

achieved including advancement of existing

methodologies.

A. Converting a Program to State Relation

A program consists of a finite set of variables. The

values of these program variables depend on various

factors such as user input, computations of the program

and different conditions of the program. Values of

different variables are also responsible for various

program conditions. A program executes its desired

function step by step depending on different

computations and values of program variables. So, a

1810 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

program can be easily designed as a form of some state

relations. Every state is assigned with values of some

program variables. From the theory of finite automaton,

state transition can be denoted by a transition function

(state, input). Program transition occurs from one

state to another state depending on the input. Values

of system variables will be used as input for state

transition of program.

if (input of x maintains [5<=x && x<=10])

{

program is on state 2;

if (input of y maintains [y<=10 && y<=15])

{

program is on state 3;

Z= x+ y and program is on state 4,

}

else

program is on state 8 and then on state 9;

}

else

program is on state 5 and then on 6 and then on 7;

a

b

Fig. 1 (a) A Simple Program, (b) State Relation of the Simple Program

When the values of the program variables are

changed and different conditions are arisen

depending on the value of variables, the program

transits from one state to another state. Any program

P can be converted to its state relation by using

several states such as P1, P2, P3,…,Pn denotes states.

This idea is shown in Fig. 1 (a) a simple program (b)

state relation of the simple program, where some

program states have been designed based on the value

of system variables x, y and output variable z.

B. Automated Design of Fault Tolerance

The proposed method provides an automated design of fault

tolerance for safety critical systems. The approach can be stated

automated as a checking reachability to bad transitions, fault

detection, tolerating fault, returning to a safe state, continuation of

program execution is done dynamically as the system it advances

from one state to another state to perform its desired task.

C. Fast Detection

The view of fast detection of a safety critical system has

been adopted in the proposed method of detecting error

preserving minimal detection latency. Forward checking of

state transitions has been used to detect fault transitions in the

system. When a program is executed and every time when

the program reaches to a new state, reachability to bad

transition checks from that state. If there is no error

occurrence then there will be no reachability to any bad

transition as the program will transit from one state to another

state according to its desired execution way. But, if

reachability to any bad transition is found then it is

considered that a fault transition occurred. The state

from which reach ability is found is the immediate

program state because of fault transition. As, the fault

is immediately detected at zero step after error

occurrence, the detection latency is considered as the

minimum.

In addition with fast detection, proposed methodology stores the

previous state of current state. So, when a fault occurrence is

detected at current program state, the program returns back to its

previous safe state and continues program execution in the

alternate safe way.

D. Run Time Detection

The proposed method of run time detection can be

described in some basic steps:

• A system is converted to its corresponding state

relation considering all possible errors and the values

of system variables.

• System execution proceeds through the program

transitions from one state to another state. A state

takes an input and transits to another state. Input for

state transition is considered as the change of values

of system variables. When the program reaches to a

new state, previous state of the new program state is

stored.

• When the program reaches to a new state, reachability

to the all bad transitions of the system are checked.

The forward checking technique is used to find

reachability to bad transitions. If reachability to any

of the bad transitions is found, the system detects that

an error has occurred.

• When an error is detected in the system, system

returns to its previously saved safe state. Then, the

program again transits to the alternate state and again

reachability to bad transitions is checked to ensure

that no safety specification violation will occur in the

system.

• The system tolerates fault in the same manner as

described in the earlier two steps and e v e n t u a l l y

proper program execution is achieved.

E. A Simple Program to Illustrate Fast and Run Time

Detection

Fig. 2 shows a simple system which illustrates the idea of

fast and run time detection. This simple system does

addition of two variables x, y and output the result to

another variable z. Now, this simple system is considered

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1811

© 2014 ACADEMY PUBLISHER

as a safety critical system and assumed that value of z

will be between (15, 25), is the safety specification for

this simple system. So, to maintain safety specification of

this system value of x should be between (5, 10) and

value of y should be between (10, 15).

In fig. 2, the system has been converted to state

relations following the conditions as in Fig. 1(a). When

the system is error free that is there is no occurrence of

fault transitions, the system will transit in the way of {(1,

2), (2, 3), (3, 4)} state transitions. Depending on the

value range of system variables and different program

conditions, 9 possible states have been designed.

Possible fault transitions are {(1, 5), (2, 5), (2, 6), (2, 8)}.

Fig. 2 A Simple System to Illustrate Fast and Run Time

Detection

Depending on the safety specification of the system

possible bad transitions are {(6, 7), (3, 7), (3, 9), (8, 9)}.

There are 4 possible fault transitions in the system. It has

been previously said that the proposed method need to

consider only about the fault occurrences during the time

of program execution. Now, initially the program is on

state 1. As the value of program variable x changes, a

program transition occurs and program reaches to state 5.

But, if there is no error, program will transit to state 2.

As program transition has occurred, reachability to the

specified bad transitions will be checked. From state 5,

reachability to bad transition (6, 7) is found. As,

reachability i s found, system d e t e c t s that, a

fault transition has occurred during program transition to

state 5. This fault occurrence is immediately detected at

state 5. This is called fast detection as the error has

been detected in zero steps with minimal detection

latency. As, the system detects fault during the time of

execution, a run time detection is also maintained.

System always stores the i m m e d i a t e earlier state

of t h e current state. So, when fault has been detected

in state 5 it immediately returns back to its

i m m e d i a t e earlier safe state 1. Without any error,

program now transits to state 2 and again checks

reachability to any bad transition. No reachability to any

bad transition is found. As a result, program decides

that no error has occurred and program transition occurs

in the proper way. As, the system can detect fault

occurrences automatically and continue its operation in a

safe manner, automated design of fault tolerance is also

satisfied. In this way, any system can be represented to a

specific sate relation so that it can always maintain proper

program execution and never violates safety

specification. So, it can be stated that proposed method

provides automated design of fault tolerance with fast and

run time detection and correction with cent percent

detection coverage of errors. The system is designed in

such an efficient way that it will never proceed on such a

way that it may eventually violates safety specification

for safety critical systems.

F. An Algorithm t o Check Reachability t o Bad

Transitions in Run Time

An algorithm is also proposed which works on the basis

of forward checking and provides an efficient and

automated approach of fault tolerance with minimal

detection latency and detection at program execution.

This algorithm has been designed in such a way that it

does not need to remove all earliest inconsistent

transitions for a system. Faults during program execution

are tolerated to continue program execution.

Begin reachability_to_bad_transition

Assign 1 to no_transitions;

Assign old_current_state to transition [no_transitions];

Increment no_transitions;

Until state_transitions are complete repeat

Assign transition_function (current_state, input) to

current state;

Assign current_state to transition [no_transitions];

Increment no_transitions;

1812 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

For each no_transitions do

For each number_of_bad_state do

If (transition [no_transitions] = = bad_state) Return 1;

End of inner loop;

End of outer loop;

End reachability_to_bad_transition;

G. Proof of Fault Detection by Checking Reachability

When a system is converted to state relations all

possible states are considered assuming different case of

value range of system variables. Suppose a system can be

represented using possible 11 states. Assuming the set of

state is X = {A, B, C, D, E, F, G, H, I, J, K} state relation

in absence of fault is like in Fig. 3.

Fig. 3 State Relation in Absence of Fault

But, because of fault or undesired external perturbation

some extra transition may occur like (A, E), (B, E), (E,

H), (F, H), (F, I), (B, J), (C, G), (C, J), (C, K) as shown in

Fig. 4.

Fig. 4 State relation in Presence of All Possible faults

According to the safety specification of the system

transitions (H, I), (F, G), (J, K) are bad transitions. When

there is no fault in the system, program transitions are

(A, B), (B, C), (C, D). Using the laws of proposition it

can be proved that fast and run time fault detection can be

done by checking reachability to bad transitions.

Let, R is the relation of reachability from one state to

another. Now, applying the „Transitive‟ law of

propositional calculus on set X, we can write that if „F is

reachable from E‟ and „G is reachable from F‟ then „G is

reachable from E‟. That is, bad transition (F, G) is

reachable from E. Mathematically the law of transitive

relation can be written as:

(E R F) ^ (F R G) --> (ERG)

When there is no fault transition in the system, bad

transition is not reachable from any of the system state. In

absence of fault, the transition (E, F) is impossible. But,

if fault occurs, (E, F) transition occurs. Now, it will be

proved that fault transition occurrence can be detected by

checking reachability to bad transition. In absence of

fault, transition occurs from state A to state B, but when

fault occurs, transition may occur from A to E.

Assume, (A, E) transition has occurred during program

execution.

Let,

Hypothesis, H = G is reachable from E e.g. (E
R

G)

Conclusion, C = (A, E) is a fault transition.

The proof should be

HC e.g. if H holds, C holds.

By method of contra positive it will be enough to prove

not C not H e.g. if C does not hold, H does not hold

„Not C‟ means „(A, E) is not a fault transition‟. So, (A, E)

is a valid program transition and program reaches to state

E. As it has been said earlier that, when there is no fault

transition in the system, bad transitions are unreachable.

So, G should not be reachable from E as (A, E) is a valid

transition. So, it does not hold H e.g. „Not H‟ is true.

So, it can be written that

Not C not H e.g. HC

So, it is proved that fault transition of system can

detected by checking reachability to bad transitions.

H. Proper Flow of System Execution

The proposed method also enforces the applicable

systems to maintain proper way of execution. Execution

of any system flows step by step from one state to

another. In every state there are changes of system

variables, input parameters and output results. The

proposed method checks the flow of system execution by

checking proper state transition and reachability to final

or desired state. The method also directs the system

execution flow to avoid wrong execution path and detects

whether the system is according to its desired way of

execution or not.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

The proposed method has been implemented by using a

software simulator. The simulator is classified into three

significant steps to implement the proposed method.

These tasks are: „Developing state relations‟, „fault

Injection‟, „simulation of program execution in presence

of errors‟. The simulation procedure mainly involves

three phases. These three phases are „detection‟,

„correction and return to safe state‟, „proper program

execution‟. In the detection phase, error is detected

specifying fault transition and inconsistent transitions

with a pictorial view. In the second phase, fault is

corrected by returning to a safe state of the program.

Here, safe state is the previous state from where the

fault transition occured. Simulation completes in the

third phase when the proper execution of the program is

accomplished and the system completes its desired task.

The simulator was developed using “GDI+” method

and C#. To develop the state relation for a simple

program, idea of deterministic finite automaton has been

used. The finite state automaton can be easily designed

for any system or any program using the mouse event

handler in the simulator. The simulator was developed

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1813

© 2014 ACADEMY PUBLISHER

in a generalized way to develop state relation for simple

programs with pre- specified safety specifications. To

implement the proposed method, error has been injected

pseudo randomly.

State relation for a program can be easily drawn and

visualize in the simulator. First of all, states are put on the

simulator window. Then path from one state to another state

is drawn including input symbol. Initial state, final state and

bad transitions for the system are also defined using different

tools of the simulator. Then input sequences for error free

system is provided to simulate the system in the absence of

fault.

In the simulator, error is injected pseudo randomly. Number of

errors, sequence of input, and the number of input variable are

chosen pseudo randomly. Sequence of input is used for program

transition which depends on the value of the system variable in

every state. Number of input variable denotes the variable in

which error has been injected. Error can also be injected manually

to see how the proposed method works for a simple program.

 Initially, the program will be on start state. Because of error in

the input sequence, the program may take a fault transition and

transit into a bad state instead of the desired state. But, reachability

to bad transitions will be found and error will be detected and the

program will return to previous safe state. All error in the system

will be detected and corrected and execution of the program will

be completed.

B. Results

Fig. 5 State Relation of a Simple Program

Fault transitions are {(1, 7), (1, 17), (2, 12), (2, 18), (3,

9), (3, 14), (4, 20), (13, 19), (17, 13), (19, 14)} and have

been denoted using „double arrow‟. In this example, bad

transitions are {(10, 11), (20, 21)} and have been denoted

using „broken arrow with small gap‟. Inconsistent

transitions are {(7, 8), (8, 9), (9, 10), (12, 13), (13, 14),

(14, 15), (15, 16), (17, 18), (18, 19), (19, 20)} and have

been denoted using „broken arrow with large gap‟.

Depending on the number of fault occurrences in a

system, dominant existing work of Arshad Jhumka et al.

[13] and proposed method shows some differences as

shown in Fig. 6 and Fig. 7. When the number of faults in

a system is few, the proposed method need more number

of steps to complete the system execution maintaining

safety specifications with compared to Arshad Jhumka et

al. [13] detecting fault occurrences. But, when the

number of fault occurrences in a system increases,

proposed method needs less number of steps than the

number of steps needed in Arshad Jhumka et al. [13].

Fig. 6 The comparison between the Proposed Method and Arshad

Jhumka et al. [13] with respect to Number of Steps Taken.

Fig. 7 The comparison between the Proposed Method and Arshad

Jhumka et al. [13] with respect to Number of Steps Taken.

When number of fault is 4 and 6 proposed method

needs more steps than Arshad Jhumka et al. [13]. But,

when the number of faults in the system is 8 and 10

proposed method needs less number of steps than Arshad

Jhumka et al. [13] as shown in Fig. 6.The proposed

method also needs to check less number of states than

Arshad Jhumka et al. [13] with respect to the increase in

number of faults in a system. For few number of faults

both method need to check approximately same number

of states to detect fault. But, when number of fault

occurrences increases proposed method needs fewer

number of states to check than Arshad Jhumka et al. [13]

as shown in Fig. 7.

So, from Fig. 6 and Fig. 7, it can be concluded that

when a safety critical system becomes complex with lots

of possible fault occurrences proposed method provides a

better way of fault detection and program execution.

Moreover, the proposed method provides detection at run

time considering only the fault occurrences during

program execution.

1814 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

Approaches Arshad Jhumka

et al. [13]

Proposed

Method

Adopted

methodology

A detector is

added as a
system component
with the fault
intolerant program to
convert it to a fault
tolerant program

Fault is

detected using
a fast, run time
detector and proper
execution of system is
maintained

Fault handling All possible

faults for a system

need to be handled.

Faults during

the time of execution

need to be handled

Fault Detection

method

Reachability to

bad transition is

checked by

backtracking.

Reachability to
bad transition is
checked by Forward
Checking

Fault Removal Earliest

inconsistent

transition is removed

Returning to

saved safe state

Total number of

steps taken to

complete system

execution

If possible

faults are less, less

steps are taken than

proposed method

If possible

faults are more, less

steps are taken than

existing work

Total number of

states need to
check

If possible

faults are less,
less states are
checked than
proposed method

If possible

faults are more,
less states are checked
than existing work

Contribution Fail safe fault

tolerance

Fault tolerance

and proper execution

time is needed

Fault Detection Yes Yes

Fault Correction No Yes

Drawbacks Program

execution is not

completed

For less

number of faults, much

execution

C. Advancements to The Tolerance level of Safety

Critical Systems

Table 1 shows some significant differences between the

proposed method and the dominant existing work of

Arshad Jhumka et al. [13] in which they proposed the

idea of fail-safe fault tolerance. The concept of fail-safe

fault tolerance was that when a fault occurs in the system

it will halt at a state from which it does not proceed to

any other states.

TABLE I

REVIEW OF TECHNIQUES OF THE PROPOSED
METHOD AND ARSHAD JHUMKA ET AL. [13]

VI. CONCLUSIONS

In this paper, an efficient approach to synthesize a dependable

safety critical system has been proposed. The proposed method

can be concluded as an efficient approach because of its fast and

run-time detection properties and execution of the system in a

safe manner avoiding the violation of safety specification.

Though the proposed method need to check reachability into

all possible ways and need to store the previous state of the

current program state, proper and complete execution of the

system is maintained to run time detection. So, the method of this

paper outperforms the existing dominant work by proposing

corrective measures and continuity of program execution.

This method of fault tolerance using the idea of state relations

will open a new efficient door in the field of fault tolerant system.

In this paper safety specification has been pre specified. But, if the

safety specification for a system can be automatically specified

from the functionality, system parameters and other conditions of

system environment, then the approach of fault tolerance for

safety critical systems will be outstanding and enormous.

REFERENCES

[1] Anish Arora and Sandeep S. Kulkarni, “Component based

design of multi tolerant systems,” IEEE Transactions on

Software Engineering. 24(1), January

1998, pp. 63-78.

[2] Sandeep S. Kulkarni, “Component Based Design of Fault-

Tolerance,” PhD thesis, Department of Computer and

Information Science, The Ohio State University,

1999.

[3] Anish Arora and Sandeep S. Kulkarni, “Detectors and

correctors: A theory of fault tolerance components,” In

Proceedings of the 11th IEEE International Conference on

Distributed Computing Systems (ICDCS98). May

1998.

[4] S. Kulkarni and A. Ebnenasir, “Complexity of Adding Fail-

Safe Fault Tolerance,” In Proceedings International Conference

on Distributed Computing Systems. 2002.

[5] Sandeep S. Kulkarni and Anish Arora, “Automating the

addition of fault-tolerance,” In Mathai Joseph, editor, Formal

Techniques in Real-Time and Fault-Tolerant Systems, 6th

International Symposium (FTRTFT 1200) Proceedings. number

1326 in Lecture Notes in Computer Science, Pune, India,

September 2000, pp. 82-93.

[6] Anish Arora, Paul C. Attie, and E. Allen Emerson,

“Synthesis of fault-tolerant concurrent programs,” In

Proceedings of the 10th Annual ACM Symposium on

Principles of Distributed Computing (PODC'98). 1998, pp. 103-

113.

[7] Zhiming Liu, “Fault-tolerant programming by

transformations,” PhD thesis, University of Warwick,

Department of Computer Science, 1991.

[8] Zhiming Liu and Mathai Joseph, “Transformation of

programs for fault-tolerance," Formal Aspects of Computing.

4(5), 1992, pp. 442-469.

[9] Doron Peled and Mathai Joseph. “A compositional

framework for fault-tolerance by specification transformation,”

Theoretical C o m p u t e r S c i e n c e , 138,1994, pp. 99-125.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1815

© 2014 ACADEMY PUBLISHER

[10] Felix C. Gartner, “Transformational approaches to the

specification and verification of fault-tolerant systems:

Formal background and classification,” Journal of Universal

Computer Science (J.UCS), 5(10). October 1999, pp. 668-692.

[11] Arshad Jhumka, Martin Hiller, Vilgot Claesson, and Neeraj

Suri, “On systematic design of consistent executable assertions

for distributed embedded software,” In Proceedings of the ACM

Joint Conference on Languages, Compilers and Tools for

Embedded Systems/Software and Compilers for Embedded

Systems (LCTES/SCOPES). 2002, pp. 74-83.

[12] Arshad Jhumka, “Automated design of efficient fail- safe

fault tolerance,” Department of Computer Science, Technische

Universitat Darmstadt, 64283, Darmstadt,2003.
[13] Arshad Jhumka, Felix Freiling, Christof Fetzer, and Neeraj

Suri. “An Approach to Synthesize Safe Systems”, Int. Journal.

on Security and Network, 2006, pp.62-74.

[14] Felix C. Gartner and Arshad Jhumka. “Automating the

addition of fail-safe fault tolerance: Beyond fusion- closed

specifications”, In Proceedings of Formal Techniques in Real-

Time and Fault-Tolerant Systems (FTRTFT). Grenoble, France,

September 2004.

[15] A. Jhumka, M. Leeke, “Issues on the Design of Efficient

Fail-safe Fault Tolerance”, In Proceedings IEEE 20th

International Symposium on Software Reliability Engineering

(ISSRE09), Bengaluru-Mysuru, India, November 18th, 2009,

pp. 155–164.

[16] M. Leeke, A. Jhumka, “Towards Understanding the

Importance of Variables in Dependable Software”, In

Proceedings of the 8th European Dependable Computing

Conference (EDCC10), Valencia, Spain, April 28th, 2010, pp.

85-94.

Seemanta Saha received B.Sc. Eng.

in Computer Science and

Engineering from Khulna University

of Engineering and Technology,

Bangladesh in 2012. He has

published two papers in the field of

soft error and safety critical

embedded systems. His current research interests are Fault

tolerance in Embedded Systems, System Analysis and Design.

Muhammad Sheikh Sadi received

B.Sc. Eng. in Electrical and

Electronic Engineering from Khulna

University of Engineering and

Technology, Bangladesh in 2000,

M.Sc. Eng. In Computer Science and

Engineering from Bangladesh

University of Engineering and

Technology, Dhaka, Bangladesh in

2004, and completed PhD (Area: Dependable Embedded

Systems) from Curtin University of Technology, Australia in

2010. He is currently Professor at the Department of Computer

Science and Engineering, Khulna University of Engineering and

Technology, Bangladesh. He teaches and supervises

undergraduate and postgraduate theses in topics related to

Embedded Systems, Digital System Design, and Soft Errors

Tolerance etc. He has published over 30 papers and book

chapters in his area of expertise. Muhammad Sheikh Sadi is a

member of the IEEE since 2004.

1816 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

