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Abstract— In this paper, we propose a CLONALG-based
simple heuristic, which is one of the most popular artifi-
cial immune system (AIS) models, for the non-unicost set
covering problem (SCP). In addition, we have modified
our heuristic to solve the unicost SCP. It is well known
that SCP is an NP-hard problem that can model several
real world situations such as crew scheduling in airlines,
facility location problem, production planning in industry
etc. In real cases, the problem instances can reach huge
sizes, making the use of exact algorithms impractical. So,
for finding practically efficient approaches for solving SCP,
different kind of heuristic approaches have been applied
in the literature. To the best of our knowledge, our work
here is the first attempt to solve SCP using Artificial
Immune System. We have evaluated the performance of our
algorithm on a number of benchmark non-unicost instances.
Computational results have shown that it is capable of
producing high-quality solutions for non-unicost SCP. We
have also performed some experiments on unicost instances
that suggest that our heuristic also performs well on unicost
SCP.

I. INTRODUCTION

The Set Covering problem (SCP) is a well known
combinatorial optimization problem. Given a set of el-
ements (called the universe) and sets whose union com-
prises the universe, the set cover problem is to identify
the smallest number of sets whose union still contains
all elements in the universe. For example, assume we
are given the following elements U = {u1, u2, . . . , um},
subsets S1, S2, . . . , Sn ⊆ U and costs c1, c2, . . . , cn. The
goal is to find a set I ⊆ {1, 2, . . . , n} that minimizes
∑

i∈I ci, such that
⋃

i∈I Si = U .
SCP is the problem of covering the rows of an m-row,

n-column, zero-one matrix (aij) by a subset of columns of
minimum global cost. So, we can formulate the problem
through a binary linear programming model.

Defining xj = 1 if column j (with cost cj ≥ 0) belongs
to the solution and xj = 0 otherwise, the SCP is to

Minimize
n
∑

j=1

cjxj (1)

Subject to

∀i ∈ {1, 2, . . .m},

n
∑

j=1

aijxj ≥ 1 (2)

∀j ∈ {1, 2, . . . n}, xj ∈ {0, 1} (3)

Equation 2 ensures that each row is covered by at least
one column and Equation 3 is the integrality constraint.
If the costs cj are equal, the problem is referred to as the
unicost SCP, otherwise, the problem is called the weighted
or non-unicost SCP.

The problem of set covering has been considered in
the literature as a basic formulation for many real-world
optimization problems. Therefore, it is well-known for its
numerous applications such as scheduling, manufacturing,
service planning, information retrieval, etc. One important
application of the problem is the delivery and routing
problem. Another famous problem is the airline crew
scheduling problem [7]. Balas [2] provided a survey
on the applications of SCP in location, distribution and
scheduling.

SCP is known to be NP-hard [22] and many algorithms
have been developed for solving the problem. Exact algo-
rithms are mostly based on branch-and-bound and branch-
and-cut techniques [3], [21]. However, exact algorithms
are feasible for instances of very limited size. For this
reason, many research efforts have been focused on the
development of heuristics to find good or near-optimal
solutions within a reasonable period of time. Greedy
algorithms may be the most natural heuristic approach for
quickly solving large combinatorial problems. As for the
SCP, the simplest such approach is the greedy algorithm
of Chvatal [11]. Although simple, fast and easy to code,
greedy algorithms could rarely generate solutions of good
quality as a result of their myopic and deterministic
nature.

Researchers have tried to improve greedy algorithms
by introducing some randomness and memory into it
and obtained promising results [24], [29]. To improve
the solution quality, modern heuristics, such as simulated
annealing (SA), genetic algorithms (GA), and neural
networks (NN), introduce randomness in a systematic
manner. These heuristics are often classified as meta-
heuristics, since they are top-level general strategies that
guide other heuristics to search for feasible solutions.
There exist a number of heuristic based solutions for SCP,
such as genetic algorithms [1], [6], simulated annealing
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algorithms [27], tabu search methods [9], neural network
algorithms [33], ant colony optimization (ACO) based
[13], [23], [32], [34] approaches etc. Rather than applying
a general meta-heuristic, some other heuristics, such as
those based on Lagrangian relaxation are developed based
on the problem-specific information of the SCP [4], [7],
[10]. For a deeper comprehension of most of the effective
algorithms for the SCP in the literature, the interested
readers are referred to the survey by Caprara et. el [8].

In this paper, we would like to enrich the repertoire of
heuristic solutions for SCP by presenting a new meta-
heuristic based algorithm. In particular, we present an
algorithm based on Artificial Immune System (AIS) [15]
[26].

Artificial immune systems (AIS) are a special class
of biologically inspired algorithms, which are based on
the immune system of vertebrates and derived from vari-
ous immunological theories, namely, the clonal selection
principle, negative selection, immune networks etc [14].
These algorithms typically exploit the immune system’s
characteristics of learning and memory to solve a prob-
lem. AIS has been successfully applied to solve several
NP-hard combinatorial optimization problems such as job
shop scheduling [12], weapon-target assignment problem
[31], flow shop scheduling [20] etc. It has also been
applied to domains like data analysis [18], soft computing
[16], network security [25], [28] etc. Wang et. al [35]
provided a survey of AIS based optimization methods and
applications.

In this paper, to solve SCP, we have adopted a varia-
tion of the Clonal Selection Algorithm, originally called
CSA in [17], and later renamed to CLONALG in [19].
CLONALG, inspired by the clonal selection theory of
acquired immunity, has shown success on broad range
of engineering problem domains. The clonal selection
principle describes the basic features of an immune
response to an antigenic stimulus. To the best of our
knowledge, this work is the first attempt to solve SCP
using AIS. The goal of this work is to design a simple
heuristic that generates good results for non-unicost set
covering problems. Furthermore, we have modified our
heuristic to solve the unicost version of the SCP. To
verify the efficiency of the proposed algorithms, extensive
computational experiments are conducted on benchmark
instances from Beasley’s OR Library [5].

The remainder of this paper is organized as follows. In
Section II, we present a brief description of CLONALG.
In Section III, we present our main contribution, where
we describe the proposed algorithms in detail. The com-
putational results, along with an insightful discussion, are
presented in Section IV. Finally, conclusions are drawn
with some future research directions in Section V.

II. CLONALG

CLONALG is a well known model based on the clonal
selection and affinity maturation principle which is similar
to mutation-based evolutionary algorithms. Survival of the
fittest concept of evolutionary algorithm also applies here.

It is inspired by the following elements of the clonal
selection theory:

• Maintenance of a specific memory set
• Selection and cloning of most stimulated antibodies
• Death of non-stimulated antibodies
• Affinity maturation (mutation)
• Re-selection of clones proportional to affinity with

antigen
• Generation and maintenance of diversity

The goal of the algorithm is to develop a memory pool
of antibodies that represents a solution to an engineering
problem. In this case, an antibody represents an element
of a solution or a single solution to the problem and an
antigen represents an element or evaluation of the problem
space.

The algorithm provides two mechanisms for searching
for the desired final pool of memory antibodies. The
first is a local search provided via affinity maturation of
cloned antibodies. More clones are produced for better
matched (selected) antibodies. The second search mech-
anism provides a global scope and involves the insertion
of randomly generated antibodies to be inserted into the
population to further increase the diversity and provides
a means for potentially escaping local optima. Fig. 1
provides a complementing diagrammatic representation of
the tasks and workflow of the CLONALG technique.

III. PROPOSED ALGORITHM

This section presents the details of the strategies used in
our proposed algorithm. It can be broken down into three
parts : Initial population generation, cloning principle
and mutation strategy. As a basis, we first introduce the
representation scheme and the affinity function.

A. Representation and Affinity Function

The first step in designing a heuristic algorithm for a
particular problem is to devise a suitable representation
scheme. The usual 0-1 binary representation is an obvious
choice for the SCP since it represents the underlying 0-
1 integer variables. We use an n-bit binary string as the
antibody structure where n is the number of columns in
the SCP. A value of 1 for the i-th bit implies that column
i is in the solution. Similarly, we use an m-bit binary
string as the antigen structure where m is the number
of elements to be covered. A value of 1 for the i-th bit
implies that object i must be covered.

The bit string lengths of the antibody and the antigen
are equal to the number of subsets (n) and the number of
elements to be covered (m) respectively. In our proposed
algorithm, each antibody in the antibody pool is a feasible
solution to the problem. The feasible solution construction
method will be described shortly.

We define the affinity of an antibody as follows. It is
measured by the sum of the cost of the subsets included in
the antibody bit string. Suppose, the cost associated with
two antibodies A1 and A2 are a1 and a2 respectively.
Then, Affinity(A1) = a1 and Affinity(A2) = a2.
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Figure 1: Overview of the CLONALG algorithm

For the unicost SCP, the affinity is measured by the
number of subsets included in the antibody bit string.
Suppose, Number of elements in two antibodies A1 and
A2 are n1 and n2 respectively. Then, Affinity(A1) =
n1 and Affinity(A2) = n2.

B. Overview of the Proposed Approach

In our algorithm AIS-SCP, we have proposed two kinds
of heuristics for prioritizing both the elements inside a
subset and the subsets themselves. After processing the
given SCP instance, elements in every subset are sorted
according to their usefulness. We determine the usefulness
of an element by tracking how many subsets covered the
specific element. According to our heuristic, an element
which is covered by lesser number of subsets is more
useful than an element covered by more subsets. Element
usefulness helps to determine the global usefulness of a
subset.

On the other hand, we have sorted the subsets according
to the global usefulness of the subsets. We have deter-
mined the relative global usefulness of two subsets S1

and S2 according to the following criteria:
1) Let, cost associated with S1 and S2 are c1 and c2

respectively.
a) If (c1 < c2), then subset S1 has better global

usefulness.
b) Else If (c1 > c2), then subset S2 has better

global usefulness.
c) Else Check Criterion (2).

2) If the total number of elements covered by the
subset S1 and S2 are e1 and e2 respectively, then

a) If (e1 > e2), then subset S1 has better global
usefulness.

b) Else If (e1 < e2), then subset S2 has better
global usefulness.

c) Else Check Criterion (3).

3) The subset, which covers more useful elements, has
better global usefulness.

For unicost SCP, criterion (1) is not meaningful and
hence is ignored.

We have created a single antigen for the SCP problem.
The single antigen is composed of “11 . . . 1”, i.e. m con-
secutive 1’s. Recall that, m is the length of the string is the
number of objects to be covered. We have generated the
initial antibody pool of a fixed size. Then, our algorithm
proceeds by executing a number of iterations of exposing
the system to all known antigens, in our case only one
antigen.

Preprocessing is a popular method to speed up the
algorithm. At the preprocessing step, we have applied
column domination and column inclusion methods to
reduce the run time of AIS-SCP.

• Column domination: Any column j whose rows can
be covered by other columns for a cost less than cj
can be deleted from the problem. As expected, this
reduction is ineffective for unicost problems.

• Column inclusion: If a row is covered by only one
column after the above domination, this column must
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be included in the optimal solution.

We formally describe our algorithm in Algorithm 1.
The first step of the CLONALG technique is initialization,
which involves preparing an antibody pool of a fixed
size. This pool is then partitioned into two components,
a memory antibody section that eventually becomes rep-
resentative of the algorithms solution and the remaining
antibody pool used for introducing additional diversity
into the system.

Algorithm 1 AIS-based algorithm for solving SCP (AIS-SCP)

1: Preprocess the given SCP instance
2: Initialize parameters and generate Initial Population
3: for iterationCounter = 1 to nIteration do
4: Select the Antigen
5: for i = 0 to mem− 1 do
6: Calculate Affinity(M [i])
7: end for
8: Sort Memory Pool
9: for i = 0 to rem− 1 do

10: Calculate Affinity(R[i])
11: end for
12: Sort Remaining Pool
13: for i = 0 to Ns − 1 do
14: Select the ith best antibody
15: Clone the selected antibody proportion to its

affinity
16: end for
17: for i = 0 to Nc − 1 do
18: Mutate each clone
19: end for
20: Sort Mutated clones
21: for i = 0 to memRep− 1 do
22: Replace ith worst antibody in the M [ ] by the

mutated antibody
23: end for
24: i = 0, j = rem− 1
25: while i < remRep do
26: for k = 0 to RETRIAL COUNT do
27: Create Random Antibody A
28: if Affinity(A) < Affinity(R[j]) then
29: Replace R[j] by A
30: break
31: end if
32: end for
33: i = i + 1
34: j = j − 1
35: end while
36: end for
37: return the best solution found

In Algorithm 1, mem and rem denote the total number
of antibodies in the memory pool and the remaining pool
respectively. The variables M [ ] and R[ ] in Algorithm
1 denote the arrays which contain the antibodies of
the memory pool and the remaining pool respectively.
The function Affinity(A) returns the affinity of the
antibody against the antigen. The variable Ns is the size

of the antibody pool from which clones are created for
all antibodies. The number of clones created for each
antibody is calculated according to our cloning principle
which will be described shortly. The variable Nc denotes
the total number of clones created for all antibodies per
antigen exposure. The variable memRep denotes the
total number of replacement of worst antibodies in the
memory pool by the mutated antibodies based on affinity.
Similarly, remRep is the total number of replacement of
worst antibodies in the remaining pool by the randomly
created antibodies. This step is done in order to introduce
some randomness at each iteration.

In our algorithm, we have taken an approach to replace
worst antibodies in the random pool by generating new
random antibodies. For this purpose, we have used a
constant RETRIAL COUNT . It is a predetermined
value that denotes the maximum number of times random
antibodies are created and compared with the existing
antibody in the remaining pool. If the newly generated
random antibody A1’s affinity value is less than an exist-
ing antibody A in the remaining pool, A gets replaced.
Having lower affinity (and thus lower cost), A1 serves as a
better option than A. The variable, nIteration determines
the total number of iterations the our AIS will run. We
report the iteration count or generation number needed
to first reach the best solution value or the best solution
found within nIteration.

C. Generation of Initial Population

We have generated the initial population in a mixture
of probabilistic randomization and greedy addition and
removal of subsets from the antibody bit strings. As
mentioned earlier, each antibody in the antibody pool is
a feasible solution to the problem. To construct a feasible
solution, we use greedy addition and removal of subsets
from the initial randomized antibody bit strings. For
randomization purposes we have used an utility function
probability(p, q) which returns true with a probability of
p
q
. We have initialized the antibody bit string by using

two randomization function described below.
1) Randomization Function I: In the first randomiza-

tion function, p1 is computed by multiplying p with a
probability multiplier factor using the following function:

p1 = max

(

1,

⌈

p× exp

(

− ln 2×
i

n

)⌉)

(4)

where,

i = ith bit of the antibody string

n = Total length of the antibody string

In Equation 4, exp
(

− ln 2× i
n

)

is the probability mul-
tiplier. If the computed value of p1 becomes less that 1,
then p1 is set to 1. Finally, ith bit of the antibody is set
with probability p1

q
.

2) Randomization Function II: In the second random-
ization function, ith bit is set to 1 based on the probability
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p1

q
, where

p1 = max

(

1,

⌈

p× exp

(

− ln 2×
n− i

n

)⌉)

(5)

In Equation 5, exp
(

− ln 2× n−i
n

)

is the probability
multiplier. So, ith bit is set to 1 based on the probability
of p1

q
.

3) Usage of the Randomization Functions: We have
passed different values of p, q to the two mentioned
randomization functions in our algorithm to generate
the initial population. Fig. 2 represents the relationship
between the probability multiplier and the bit index (i) of
the antibody string, for the two randomization functions.
In the graph of Fig. 2, the total number of bits n in the
antibody is set to 100. It is clear from the graph that for
the case of randomization function I, it can be said that
first bit gets set with p

q
probability while, it goes down

exponentially to p
2×q

. On the other hand, randomization
function II is the opposite of randomized function I. Here,
last bit gets set with probability p

q
while, it goes down

exponentially to p
2×q

at the first bit of the antibody bit
string.

As mentioned earlier, initially we sort the subsets
according to global usefulness. So, the first randomization
function increases the probability of selecting lower cost
subsets in the initial population. On the other hand, the
second randomization function increases the probability
of selecting higher cost subsets in the initial population.
As a result, our initial population become diverse.
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Figure 2: Plot of Probability Multiplier vs. bit index of
the antibody bit string

4) Greedy Modifications: After initializing the whole
antibody bit string, we apply greedy addition and remove
operations to make the antibody bit string a feasible
solution. The antibody must cover all the elements in the
antigen to be a feasible solution. Hence, a function is
called repeatedly to include a new subset greedily, until
the antibody bit string becomes a feasible solution. In
particular, a subset S constitutes a greedy choice if the
inclusion of S would add the maximum number of new

elements in the antibody bit string. If two subsets S1 and
S2 add the same number of new elements, then the subset
which has the lesser cost is selected as the desired subset
to be added in the antibody bit string. The greedy remove
operation tries to remove any redundant subset. If all the
elements covered by a subset S, are also covered by any
other subset or subsets in the antibody bit string, then the
subset S can be removed from the antibody bit string.

D. Cloning Principle

The number of clones created from each of the Ns

selected antibodies is proportional to their affinity using
a rank based measure. This is achieved by first sorting
the set of selected antibodies in increasing order of
their respective affinities to the antigen. Then, clones are
created according to the rank. So, the antibody with the
lowest affinity is cloned more. The number of clones
created from each antibody is calculated as follows:

numClones[i] =

⌊

β ×Ns

i+ 1
+ 0.5

⌋

, (6)

where, β is the clonal factor and Ns is the number
of the selected antibodies, and i is the current rank
of the antibody where i ∈ [0, Ns − 1]. The variable
numClones[i] stores the number of clones created for the
i-th ranked antibody. The total number of clones prepared
for each antigen exposure to the system is thus calculated
as:

Nc =

Ns−1
∑

i=0

numClones[i] (7)

E. Mutation Strategy

Mutation is very common in AIS algorithms and in
most of the cases it is done in totally random fashion.
It generally works by inverting each bit in the solution
with some small probability. Mutation is generally seen
as a background operator which provides a small amount
of random noise. But this kind of blind mutation is not
suitable for SCP. Because there are constraints, it is very
unlikely that random alteration of objects would produce
valid solutions. So, we have adopted a special method of
mutation.

We have applied mutation to each cloned antibody. In
our algorithm, the number of bits changed in the cloned
antibody is based on a combination of the affinity factor,
AF and the time factor TF . Total number of bits mutated
in the antibody bit string calculated as follows.

B = s× AF × TF , (8)

where,

s = Number of subsets included in the antibody

string

The affinity factor, AF is calculated as follows.

AF = exp(−(AMF ×minCost× (1 + aff −minCost)1/8)
(9)
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where, AMF is the Affinity Multiplication Factor, a
constant value. We set AMF to 0.1. The variable aff
denotes the affinity of the cloned antibody selected for
mutation. The minCost denotes the minimum cost of
the best antibody solution found so far. For unicost SCP,
minCost is the number of subsets of the best antibody
solution found so far.

Fig. 3 plots the Equation 9, assuming minCost = 100.
It is evident from the Fig. 3 that the greater the affinity
(aff ) is, the greater the value of affinity factor (AF ).
Higher value of AF increases the number of bits mutated
according to Equation. 8. Note that, as the AIS progresses,
the affinity factor will also becomes stable at some point.
This is bound to happen because the change in minCost
gets lower as the AIS advances.
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Figure 3: Affinity (aff ) vs. Affinity Factor (AF ) curve

Time factor, TF is calculated according to the following
equation:

TF = 1− exp(−5t), (10)

where,

t = i/T

i = Iteration Number

T = Total No of Iterations
The relationship between the iteration number and time
factor TF is illustrated in Fig. 4, for the value of T =
50. At the initial phase of mutation, we have searched
for a better quality solution near the current antibody’s
search space. If the min cost solution can be found by
doing this, then we are done. After the initial phase
of mutation, we have adopted an approach to increase
versatility of our solution space by increasing the mutation
rate exponentially.

In our algorithm, we have maintained a list. The list
keeps the track of the subsets included in the antibody
string. By randomly choosing a bit position in that list,
the selected subset is removed from the cloned antibody
bit string. Finally, to make an antibody bit string a feasible
solution, we have applied the greedy addition and removal
operations.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Axis (Iteration Number)

Y
 A

xi
s 

(T
im

e 
F

ac
to

r)

Figure 4: Iteration Number vs. Time Factor, TF curve

IV. EXPERIMENTAL RESULTS

A. Experimental study on non-unicost SCPs

The effectiveness of the heuristic presented in this
paper is tested on 55 non-unicost SCP test instances from
Beasley’s OR-library [5]. Table I shows the details of
these test problems, where density is the percentage of
non-zero entries in the SCP matrix. Optimal solutions
values for problem sets 4-6 and A-D are known. Problem
sets E-F are large SCP’s for which optimal solutions
values are not known.

TABLE I.: Test Problem Details
Prob.
Set

Rows
(m)

Columns
(n)

Density
(%) No. of Ins.

4 200 1000 2 10
5 200 2000 2 10
6 200 1000 5 5
A 300 3000 2 5
B 300 3000 5 5
C 400 4000 2 5
D 400 4000 5 5

NRE 500 5000 10 5
NRF 500 5000 20 5

We have carried out the experiments on a PC with Intel
Core i5 2.30 GHz processor and 6 GB memory under
Windows 7. We have coded the algorithm presented in
this paper in C++. Our algorithm AIS-SCP has solved
each test instance 10 times. For solving each test instance
by our algorithm, We have set a maximum number of
50 iterations per run. Other parameters of our proposed
algorithm are set as follows:

Memory Antibody Pool Size = 1000

Remaining Antibody Pool Size = 1000

Number of Antibody Chosen = 250

Clonal Factor = 0.95

Memory Replacement Size = 100

Remaining Replacement Size = 100
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Table II reports the detailed results for AIS-SCP and
the greedy heuristics (G) presented in [11]. In Table II
we give, for each problem,

• the optimal solution value (Opt.) for problem set 4-
6 and A-D or best known solution value (BKS) for
problem sets E-F;

• for greedy heuristics, the solution value and the time
needed to reach the solution. The solution time is
measured in CPU seconds;

• for AIS-SCP, the best solution value found among
the 10 trials, the solution time and IC, the iteration
count or generation number needed to first reach the
best solution value. The solution time is measured in
CPU seconds and is the time that the AIS-SCP takes
to first reach the final best solution.

By examining Table II, we observe that, AIS-SCP
outperforms greedy heuristics [11] for all of these 55
test instances. It is also noted that iteration count and
solution time needed to reach the best solution are rea-
sonably small for all the problems. From Table II, we can
say that AIS-SCP found all the optimal or best-known
solutions for the 55 non-unicost instances except for one
problem set C.3. At the time of testing the effectiveness
of our algorithm, we have given emphasis on the fact of
finding better quality solution in relatively small number
of iterations. As mentioned earlier, we set the value of
maximum number of iterations in each run to 50. Under
this restriction, our algorithm has produced encouraging
and high quality solutions.

In order to bring out the efficiency of the proposed
AIS-SCP algorithm the solutions of the same set of test
instances have been compared with the greedy heuristics
(G) as well as the following existing SCP heuristics

Be : Lagrangian heuristic by [4]

BeCh : Genetic algorithm by [6]

PROG : Probabilistic greedy search by

heuristic [24]

Meta-RaPS : Effective and simple heuristic

approach by [30]

Table III is the summarized results for the solution
quality that reports the average GAP for all these different
heuristics mentioned earlier, where GAP is the percent-
age of the deviation from the optima (Opt.) or best known
solution (BKS), i.e. Gap = ((solution−BKS)/BKS)×
100. It is clear from that Table III, the average gap for our
algorithm AIS-SCP is promising under the restriction of
finding better quality solution in relatively smaller number
of iterations.

B. Experimental study on unicost SCPs

We also perform experiments on unicost SCP. The
unicost test instances used are the set E and CLR from
the OR-Library, as shown in Table IV. For the purpose
of testing our algorithm, we have also used non-unicost
test instances of set NRE, two test instances of set 4 (4.2,

TABLE II.: Detailed results for non-unicost instances
Ins Opt./ Greedy AIS-SCP

BKS Sol. Time Sol. Time IC
4.1 429 439 0 429 2.57 12
4.2 512 547 0 512 1.33 6
4.3 516 546 0 516 2.452 13
4.4 494 510 0 494 6.006 22
4.5 512 519 0 512 3.089 16
4.6 560 594 0 560 4.275 17
4.7 430 447 0 430 2.761 15
4.8 492 502 0 492 1.902 11
4.9 641 672 0 641 2.871 12
4.10 514 521 0 514 1.482 8

5.1 253 271 0 253 4.793 11
5.2 302 329 0 302 4.608 9
5.3 226 232 0 226 44.708 47
5.4 242 253 0 242 1.781 4
5.5 211 220 0 211 3.697 9
5.6 213 234 0 213 11.42 15
5.7 293 302 0 293 2.254 6
5.8 288 308 0 288 7.562 16
5.9 279 290 0 279 5.475 8
5.10 265 275 0 265 5.086 12

6.1 138 147 0 138 0.656 4
6.2 146 160 0 146 2.886 15
6.3 145 152 0 145 5.273 20
6.4 131 137 0 131 1.919 11
6.5 161 178 0 161 2.886 14

A.1 253 271 0 253 2.449 4
A.2 252 267 0 252 6.973 7
A.3 232 244 0 232 16.172 18
A.4 234 246 0 234 79.965 37
A.5 236 247 0 236 10.483 10

B.1 69 73 0 69 8.597 7
B.2 76 78 0 76 12.371 9
B.3 80 85 0 80 2.216 3
B.4 79 85 0 79 10.717 8
B.5 72 76 0 72 1.872 1

C.1 227 246 0 227 19.255 15
C.2 219 231 0 219 29.735 15
C.3 243 256 0 247 14.888 50
C.4 219 239 0 219 7.612 8
C.5 215 228 0 215 6.271 5

D.1 60 68 0.01 60 14.963 4
D.2 66 70 0 66 15.444 8
D.3 72 78 0.02 72 10.51 7
D.4 62 65 0 62 5.678 5
D.5 61 71 0.01 61 2.889 4

NRE.1 29 31 0.02 29 20.849 2
NRE.2 30 34 0 30 25.372 8
NRE.3 27 32 0 27 5.788 8
NRE.4 28 32 0.01 28 7.005 3
NRE.5 28 31 0 28 5.195 3

NRF.1 14 17 0.02 14 3.931 1
NRF.2 15 16 0.02 15 3.48 50
NRF.3 14 16 0.01 14 4.828 50
NRF.4 14 15 0.01 14 45.943 1
NRF.5 13 15 0.01 13 14.888 14

4.6) and two test instances of set 5 (5.1, 5.9). The cost of
subsets are ignored for non-unicost test instances of set
NRE, 4.2, 4.6, 5.1 and 5.9.

The test results for mentioned SCP instances are re-
ported in Table V. The table reports optimal solution
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TABLE III.: Summarized results for the solution quality
(average GAP) for non-unicost instances

Ins PROG Be Greedy BeCh Meta
RaPS

AIS-
SCP

4 0.57 0.06 3.78 0.00 0.00 0.00
5 0.88 0.18 5.51 0.09 0.00 0.00
6 0.69 0.56 7.22 0.00 0.00 0.00
A 0.75 0.82 5.61 0.00 0.00 0.00
B 0.00 0.81 5.57 0.00 0.00 0.00
C 0.87 1.93 6.88 0.00 0.00 0.33
D 0.00 2.75 9.79 0.00 0.00 0.00

NRE 0.00 3.5 12.75 0.00 0.00 0.00
NRF 1.43 7.16 12.98 0.00 0.00 0.00

TABLE IV.: Unicost Instances

Set No. of
Ins.

Rows
(m)

Columns
(n)

Density
(%)

Optimal
Solution

E 5 50 500 20 Known
CLR.10 1 511 210 2 Unknown
CLR.11 1 1023 330 5 Unknown
CLR.12 1 2047 495 2 Unknown
CLR.13 1 4095 715 5 Unknown

NRE 5 500 5000 10 Known
4.2 200 1000 2 10 Known
4.6 200 1000 2 10 Known
5.1 200 2000 2 10 Known
5.9 200 2000 2 10 Known

value (Opt.) or best known solution value (BKS). The
table also reports solution, solution time, iteration count or
generation number needed to first reach the best solution
value and the GAP for AIS-SCP. The solution time is
measured in CPU seconds and GAP is the percentage
of the deviation from the optima (Opt.) or best known
solution (BKS) as mentioned earlier.

By examining Table V, we observe that, AIS-SCP is
capable of producing good solutions for unicost instances.
It is also noted that iteration count and average solution
time needed to reach the best solution found are reason-
ably small for all the unicost problems.

TABLE V.: Test results for unicost instances
Instance Opt./ AIS-SCP

BKS Sol. Time IC GAP
E.1 5 5 0 0 0.00
E.2 5 5 0 0 0.00
E.3 5 5 0 0 0.00
E.4 5 5 0 0 0.00
E.5 5 5 0 0 0.00

CLR.10 25 25 1.864 8 0.00
CLR.11 23 23 3.441 9 0.00
CLR.12 23 23 83.641 46 0.00
CLR.13 23 23 81.147 21 0.00

NRE.1 17 18 0 0 5.88
NRE.2 17 17 216.473 43 0.00
NRE.3 17 17 185.901 39 0.00
NRE.4 17 17 178.058 39 0.00
NRE.5 17 17 184.051 39 0.00

4.2 37 37 6.855 21 0.00
4.6 38 38 5.018 18 0.00
5.1 35 35 11.482 20 0.00
5.9 36 36 6.174 6 0.00

V. CONCLUSION AND FUTURE WORK

In this paper, a simple CLONALG-based heuristic is
proposed for the non-unicost set covering problem. Then,
we have modified the heuristic to solve the unicost SCP
problems. To the best of our knowledge, this paper is
a first attempt to solve SCP using artificial immune
system. Our proposed algorithm systematically introduces
randomness into a simple greedy heuristic to construct
a feasible solution. Computational results show that the
proposed algorithm is efficient in generating encourag-
ing and high quality solutions for solving non-unicost
problems in terms of the solution quality. Comparison
with some other SCP heuristics also shows that it is
competitive in solving the non-unicost SCP. Furthermore,
another important attractiveness of this heuristic is its
good performance for solving unicost problems.

Future works consist in using a wider parameter cali-
bration in order to better explore the search space, as it is
trying to determine a relation between the parameters and
features of the instances. This aims to improve the quality
of the solutions for some problem instances and solve the
problem for more larger instances. It is also possible to
improve the performance of the algorithm by making an
adaptive adjustment of the parameters while the algorithm
is running.
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