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Abstract—In this paper, we present a new and efficient
algorithm for solving the Longest Common Subsequence
(LCS) problem between two run-length-encoded (RLE)
strings. Suppose Ŷ and X̂ are two RLE strings having length
k̂ and ˆ̀ respectively. Also assume that Y and X are the
two uncompressed versions of the two RLE strings Ŷ and
X̂ having length k and ` respectively. Then, our algorithm
runs in O((k̂+ ˆ̀)+R log log(k̂ ˆ̀)+R log logω) time, where
ω = k + ` and R is the total number of ordered pairs of
positions at which the two RLE strings match. Our algorithm
outperforms the best algorithms for the same problem in the
literature.

Index Terms—RLE, LCS, vEB Tree, Bounded Heap,
Matched Block Calculation.

I. INTRODUCTION

SUPPOSE two strings X[1 . . . n] = X[1]X[2] . . . X[n]
and Y [1 . . . n] = Y [1]Y [2] . . . Y [n] are given. A

subsequence S[1 . . . r] = S[1]S[2] . . . S[r], 0 < r ≤ n
of X is obtained by deleting n − r symbols from X . A
common subsequence of two strings X and Y , denoted
lcs(X,Y) is a subsequence common to both X and Y .
The longest common subsequence (LCS) problem for
two strings is to find a common subsequence in both the
strings, having the maximum possible length.

There is a string compression technique which is called
run-length-encoding [1]. In a string, the maximal repeated
string of characters is called a run and the number of
repetitions is called the run-length. Thus, a string can
be encoded more compactly by replacing a run by a
single instance of the repeated character along with its
run-length. Compressing a string in this way is called
run-length-encoding and a run-length-encoded string is
abbreviated as an RLE string. For example, the RLE string
of the string bdcccaaaaaa is b1d1c3a6. Given two RLE
strings, the longest common subsequence problem for two
RLE strings (Problem LCS 2RLE) is to find a common
subsequence in both the strings, having the maximum
possible length. In this paper, we present an efficient
algorithm to solve Problem LCS 2RLE.

A. Literature Review

The problem of computing LCS when one or both of
the strings are run-length-encoded has attracted significant
attention in the literature. Freschi and Bogliolo [2] pro-
posed an O(k ˆ̀+ `k̂− ˆ̀̂k) time algorithm for finding the

longest common subsequence between two RLE strings,
where ` and k are the lengths of the original strings X
and Y , respectively, and ˆ̀ and k̂ are the numbers of runs
in the RLE representations of X and Y , respectively.

An interesting and perhaps more relevant parameter
for the LCS problem is R, which is the total number of
ordered pairs of positions where the two strings match. Ef-
ficient algorithms based on parameter R to solve the LCS
problem for uncompressed strings have been proposed
in the literature [3], [4]. Working with a similar goal,
Mitchell proposed an O((R+ k̂+ ˆ̀) log(R+ k̂+ ˆ̀)) algo-
rithm [5] capable of computing an LCS when both inputs
are RLE strings. Ann et al. [6] also proposed an algorithm
for solving the same problem in O(k̂ ˆ̀ + min(p1, p2))
time where p1, p2 denote the number of elements in
the bottom and right boundaries of the matched blocks
respectively. Apostolico et al. [7] gave another algorithm
for this problem which runs in O(k̂ ˆ̀log(k̂ ˆ̀)) time. To
the best of our knowledge the latest work on this prob-
lem are from Sakai [8] which proposes a solution of
O(k̂ ˆ̀log log(min(k̂, ˆ̀, k/k̂, l/ˆ̀, X))) time where X is
the average difference between the length of a run from
one input string and that of a run from the other. Notably,
this is a conference paper which does not provide many
proofs and details due to space constraints and we are
still waiting for the journal version of the paper to be
published to get all the details.

The variants of the LCS problem have also been
investigated in literature. Liu et al. [9] proposed an
O(min(k ˆ̀, `k̂)) time algorithm and Ahsan et al. [10]
proposed an O(`+R log log k̂) time algorithm for finding
a longest common subsequence when one of the strings
is RLE and the other is an uncompressed string. Farhana
et al. [11] presented finite automata based algorithms
for two recently studied variants of the classic LCS
problem, namely, the Doubly-Constrained LCS (DC-LCS)
and Hybrid-Constrained LCS (HC-LCS). Alam et al. [12]
proposed an O(k`) algorithm to solve the Substring
Inclusion Constrained LCS problem.

B. Our Contribution

In this paper, we are interested in computing an LCS
for two Run-Length-Encoded strings. The application
of LCS mostly comes from Computational Molecular
Biology [13], [14], where we want to compare DNA or
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Fig. 1. Blocks containing ‘*’ are the elements of set M for (I) two
uncompressed strings, where |M| = R = 12, and (II) two run-length-
                      encoded strings, where |M| = R = 3.

protein sequences to learn how homologous they are. The
motivation of using RLE strings is to reduce cost in such
computations because the DNA and protein sequences are
mostly large and have consecutive identical characters.

We combine the idea and technique of Apostolico et al.
in [7] and Iliopoulos and Rahman in [3], [15] to devise
an efficient algorithm for Problem LCS 2RLE. Our main
result is an O((k̂+ ˆ̀)+R log log(k̂ ˆ̀)+R log logω) time
algorithm, where ω = k + `.

C. Road Map

The rest of the paper is organized as follows. In
Section II, we discuss about the notation and definitions
that we have used throughout this paper. In Section III,
we describe our algorithm. In Section IV, we discuss
about the complexity of the algorithm. Finally, we briefly
conclude in Section V.

II. PRELIMINARIES

Throughout this paper, we use the following conven-
tions. We use X̂ = X̂1X̂2 . . . X̂ˆ̀ to denote the run-length-
encoding of a string X , where X̂j , 1 ≤ j ≤ ˆ̀ is a
maximal run of identical characters and |X̂j | denotes the
length of this run. We say that the length of the RLE
string X̂ is |X̂| = ˆ̀. The length of string X , denoted
`, represents the total number of characters in X . So
` = |X| =

∑ˆ̀

j=1 |X̂j |. We use xj to denote the unique
character comprising the run X̂j .

We maintain a k̂∗ ˆ̀matrix T (corresponding to the runs
of characters in Ŷ and X̂), such that T [i, j] contains the
value of an optimal solution between the prefixes X̂[1···j]
and Ŷ[1···i].

Note that, the notation R and M may be used in
the context of both compressed and uncompressed strings
(Fig. 1). In both case, the concept remains the same. So,R
is the total number of ordered pairs of positions at which
the characters (character blocks) of two uncompressed
(compressed) strings match. More formally, for com-
pressed strings, we say a pair (i, j), 1 ≤ i ≤ k̂, 1 ≤ j ≤ ˆ̀

defines a match if xj = yi. Additionally, if xj = yi = α,
then we say that the match (i, j) contains or is due to
the character α. The set of all matches, M is defined as
follows:

Fig. 2. A path, consisting of character ‘c’ and starting from the lower-
                                        left corner of T [2, 2].

M = {(i, j) | xj = yi, 1 ≤ i ≤ k̂, 1 ≤ j ≤ ˆ̀}

In Fig. 1, the blocks containing ‘*’ is a matched block.
Observe that |M| = R.

We use COUNT j
X̂

(α) to denote the number of occur-
rences of the character α in the uncompressed version of
X̂1X̂2 · · · X̂j , where 1 ≤ j ≤ ˆ̀. For example, in string
X̂ = b3c2b7a5c6b1a6, COUNT 7

X̂
(b) = 11, because in

the uncompressed version of X̂1X̂2 · · · X̂7, there are total
3+7+1 = 11 occurrences of b. The tables COUNT j

X̂
(α),

1 ≤ j ≤ ˆ̀ and COUNT i
Ŷ

(α), 1 ≤ i ≤ k̂, can be
computed easily in O(k̂ + ˆ̀) time.

Fig. 2 illustrates the matrix of blocks for the input
strings X̂ = b3c8a3c8 and Ŷ = a4c3b4c4. We say that a
block (i, j) is dark if the corresponding characters match,
i.e. yi = xj ; block (i, j) is light if yi 6= xj . Sometimes
dark blocks are referred to as matched blocks.

If T [i, j] is a matched block consists of character α,
then a path starts from the lower-left corner of T [i, j].
While it traverses through block T [i, j], it goes at 45◦

with the bottom boundary. The path ends if it hits the
upper-right corner of the block. Else if the path hits
the top (right) boundary of the block, it goes vertically
(horizontally) until it hits the next matched block (if
any) at T [i, j′] where j + 1 < j′ ≤ ˆ̀ (T [i′, j] where
i+ 1 < i′ ≤ k̂). After entering the matched block T [i, j′]
(T [i′, j]), again it traverses that block at 45◦ with the
bottom boundary and when the upper-right or top or right
corner is reached, it repeats the same procedure described
above. This procedure continues until either the path hits
the upper-right corner of a matched block, or the path
exceeds the boundary of T .

Fig. 2 shows an example of a path starting from the
lower-left corner of T [2, 2] which is a matched block
consists of character ‘c’. It traverse at 45◦ inside T [2, 2]
(solid path). While it reaches the top boundary of T [2, 2],
it starts traversing vertically (dashed path) until it hits the
next matched block at T [4, 2]. Inside this matched block, it
again traverse at 45◦ (solid path) and while it reaches the
right boundary of T [4, 2], it starts traversing horizontally
(dotted path) until it hits the next matched block at T [4, 4].
It traverse at 45◦ inside T [4, 4] (solid path) and reaches at
the top boundary. But as this is the end of the boundary
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Fig. 3. Converting an arbitrary subpath into a forced subpath.

of T , this path which was started from T [2, 2] ends its
traversal.

Apostolico et al. [7] first introduced the concept of a
corner path which is a path entering a matched block
only at the lower-left corner and exiting only through the
upper-right corner. On the other hand, a path beginning at
the lower-left corner of a matched block is a forced path
if it traverses matched blocks by strictly diagonal moves
and, whenever the right (respectively upper) side of an
intermediate matched block is reached, it proceeds ,to the
next matched block by a straight horizontal (respectively
vertical) “leap” through the light blocks in between.
Intuitively, whenever we enter a matched block in a lower-
left corner, it will be the start of a forced path. The forced
path stops when it hits either the right or the upper side
and the path follows the side to the upper-right corner.
Any arbitrary path can be converted to a forced path. The
process is illustrated in Fig. 3.

We define RANK(α, i, j) = COUNT i−1
Ŷ

(α) −
COUNT j−1

X̂
(α) to be an attribute of a path starting

from T [i, j] and containing character α. Maximum
possible value of RANK for any α ∈ Σ can be k as
follows: RANKmax(α, k̂, 1)

= COUNT k̂−1
Ŷ

(α) − COUNT 1−1
X̂

(α) =

COUNT k̂−1
Ŷ

(α)− 0 ≤ k
Similarly, minimum possible value of RANK for any

α ∈ Σ can be −` as follows: RANKmin(α, 1, ˆ̀)

= COUNT 1−1
Ŷ

(α) − COUNT
ˆ̀−1
X̂

(α) = 0 −
COUNT

ˆ̀−1
X̂

(α) ≥ −`
Clearly, all possible values of RANK can be rep-

resented by the numbers within the range [−`, k] that
contains ω = k + ` values.

III. OUR ALGORITHM

In this Section, we present a new algorithm by ex-
tending the concept of a path based solution for LCS
between two RLE strings by Apostolico et al. [7]. To
improve performance, we will use the techniques used
by Iliopoulos and Rahman [3], [15].

In this algorithm, our plan is to compute only those
T [i, j] for which (i, j) ∈ M. The following information
is kept for each forced path that starts from the block
T [i, j]: (1) The starting location of the path, namely (i, j);
(2) the character of the match, i.e. α; (3) its initial value

TABLE I
CALCULATION OF THE RANK OF PATHS (FIG. 4) CONSIST OF

CHARACTER ‘a’

(i, j) COUNT i−1

Ŷ
(a) COUNT j−1

X̂
(a) RANK(a, i, j)

(1, 1) 0 0 0
(1, 3) 0 7 −7
(1, 5) 0 17 −17
(3, 1) 8 0 8
(3, 3) 8 7 1
(3, 5) 8 17 −9
(5, 1) 16 0 16
(5, 3) 16 7 9
(5, 5) 16 17 −1

Fig. 4. Forced paths consist of same character never cross each other
           and obey a top-down order which is maintained by RANK.

υin; and (4) its RANK. For a path, started at T [i, j], its
initial value υin is max(T [i′, j′]), 1 ≤ i′ < i, 1 ≤ j′ < j.
If i = 1 or j = 1, then initial value υin = 0. Naive
calculation of υin may require the calculation of some
T [i, j], for which (i, j) /∈ M. But later we will present
a novel algorithm to calculate the initial value υin by
considering only the matched blocks.

It is clear from [7] that all characters which are matched
on any given forced path will be identical. Also two forced
paths which proceed on matches of different instances of
the same character will never cross each other (Fig. 4).
Hence, the forced paths consist of same character obey
a top-down order which is maintained by RANK. So,
the path, starting from T [i, j], and containing character
α intersects any column j′ ≥ j according to the value of
RANK(α, i, j). For example, in Fig. 4 the forced paths
consist of character ‘a’ and passing column 5 maintain an
order according to their RANK. Similarly forced paths
consist of character ‘a’ and passing row 5 maintain an
order according to their RANK. The calculation of the
RANK is explained in Table I.

Now consider a forced path of α, which starts at
T [i, j] with an initial value υin. When this path crosses
column j′ > j, its value υ = υin + COUNT j

′

X̂
(α) −

COUNT j−1
X̂

(α). Similarly, when this path crosses row
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Fig. 5. Deletion of a lower valued path which has higher RANK

i′ > i, its value will be υ = υin + COUNT i
′

Ŷ
(α) −

COUNT i−1
Ŷ

(α).
So it is clear for a forced path of α which starts at (i, j)

with an initial value υin that if a column j′, j ≤ j′ ≤ ˆ̀

(row i′, i ≤ i′ ≤ k̂) is given, then the value of the forced
path that crosses this column (row) can be computed in
O(1) time, following O(k̂ + ˆ̀) time preprocessing.
T is an k̂ ∗ ˆ̀ matrix such that T [i, j] contains the

value of an optimal solution between prefixes X̂[1···j] and
Ŷ[1···i], 1 ≤ j ≤ ˆ̀ and 1 ≤ i ≤ k̂. From [7], it is found
that T [i, j] is the maximum of T [i − 1, j], T [i, j − 1]
and the value of the forced paths that cross block (i, j),
including the one that starts on its lower-left corner. The
set of forced paths can be divided into two groups. The
first group contains all paths that cross column j below
row i, while the second group contains all paths that cross
row i on the left of column j. Our goal is to find the path
with the highest score in each group, so that T [i, j] can
be computed in O(1) time.

Below, we discuss how to find the path with maximum
value in the first group. Here we consider forced paths
that match the character α. The second group and other
characters can be handled similarly.

According to [7], it can be said that if we consider two
forced paths P1 and P2 with values υ′1 and υ′2 respectively
when they cross column j′, and υ′′1 and υ′′2 respectively
when they cross column j′′. Then those values obey the
equality: υ′1 − υ′2 = υ′′1 − υ′′2 .

Therefore whenever a forced path P1 intersects column
j′ higher than another forced path P2, but the value of
P1 at j′ is smaller than the value of P2 at j′, then path
P1 can be excluded from further consideration and hence
can be deleted (Fig. 5). Our goal is to maintain, in order,
only the paths which have higher values than the paths
below them.

In order to be able to maintain the above properties
we use an elegant data structure (referred to as the vEB
tree henceforth) invented by van Emde Boas [16] that
allows us to maintain a sorted list of integers in the range
[1 . . . n] in O(log logn) time per insertion and deletion. In
addition to that it can return next(i) (successor element
of i in the list) and prev(i) (predecessor element of i in
the list) in constant time.

Here, we use RANK as the key of the vEB trees.

Fig. 6. Two closest paths to the upper-right corner of T [i, j], one
crossing the upper boundary of T [i, j] and another crossing the right
                            boundary of T [i, j] (partial view).

For each character α, two vEB trees are maintained,
one (vEB(α,col)) maintaining the ordered list of paths
matching the character α and crossing columns and the
other (vEB(α,row)) maintaining the ordered list of paths
matching the character α and crossing rows. These two
trees will be used in dealing with all dark blocks that
match α.

Here since the paths are sorted according to their
RANKs and values, it is sufficient to consider only
two forced paths. These paths are the two closest paths
to the upper-right corner of T [i, j], one that crosses the
right side of T [i, j] and one that crosses the upper side
of T [i, j] as shown in Fig. 6.

For each (i, j) ∈ M and containing letter α, a
new record 〈RANK, υin〉 for the path started from the
lower left corner of T [i, j] is inserted in vEB(α,col) and
vEB(α,row) according to its RANK. This new record is
called Recordnew. The current value υ of the new path
is calculated. The value υleft of the record Recordpre,
which is the predecessor of the Recordnew of vEB(α,col)

is calculated. If υ < υleft, then Recordnew is deleted,
otherwise the value υright of the record Recordsuc which
is the successor of Recordnew is calculated. If υright < υ
then Recordsuc is deleted and this process continues until
in vEB(α,col), a successor of Recordnew with a greater
value is reached. This process is described in Algorithm 2.
Similar operations are applied on vEB(α,row).

Now, Z = COUNT i
Ŷ

(α) − COUNT j
X̂

(α). In the
vEB(α,col), the value C of the successor of Z (if any) is
calculated, which is the highest score of the forced paths
on column j, below row i. This procedure is described
in Algorithm 3. Similarly the highest score (R) of the
forced paths on row i, left to column j is calculated.

To compute the set M in the prescribed order (for a
row by row operation) we can easily use the preprocessing
of [17] which will run in O((k̂+ ˆ̀)+R log log(k̂ ˆ̀)) time.
Now, we utilize the following facts observed in [17].

Fact 1: ( [17]) Suppose (i, j) ∈M. Then for all
(i′, j) ∈ M, i < i′ (resp. (i, j′) ∈ M,j < j′), we must
have T [i, j] ≤ T [i′, j] (resp. T [i, j] ≤ T [i, j′]). �

Fact 2: ( [17]) The calculation of the entry
T [i, j], (i, j) ∈ M, 1 ≤ i ≤ k̂, 1 ≤ j ≤ ˆ̀ is independent
of any T [p, q], (p, q) ∈M, p = i, 1 ≤ q ≤ k̂. �

Notably, although in [17], these facts were observed
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for uncompressed strings, it is easy to realize that these
hold true for compressed strings as well. We also use
the BoundedHeap data structure of [18], that supports
the following operations: Insert(H, Pos, V alue,Data),
IncreaseV alue(H, Pos, V alue,Data),
BoundedMax(H, Pos).

The BoundedHeap data structure can support each of
the above operations in O(log log n) amortized time [18],
where keys are drawn from the set 1, . . . , n. The data
structure requires O(n) space.

By using Fact 1, it can be said that for a path starting
from T [i, j], (i, j) ∈ M if i = 1 or j = 1, then
its initial value υin = 0 else its initial value υin =
max1≤e≤j−1(T [i − 1, e]). To compute T [i, j], we also
have to find the value of T [i−1, j] and T [i, j−1]. But it
may happen that (i− 1, j) /∈M and/or (i, j− 1) /∈M.
Recall on the other hand that we only want to spend
computational time on (i, j) ∈ M. To handle this sit-
uation, we use an array F of size ˆ̀, which is initialized
to zero. In each iteration, after calculating the value of
T [i, j], (i, j) ∈ M, F [j] is updated with the value of
T [i, j]. So, by using Fact 1, it also can be said that for
any iteration T [i, j], (i, j) ∈M, T [i−1, j] = F [j] and if
j = 1 then T [i, j−1] = 0 else T [i, j−1] = F [j−1]. Thus
by using F , we can avoid calculating blocks (i, j) /∈M.

Now we formally present our algorithm LCS 2RLE I
in Algorithm 1 which proceeds as follows. Recall that we
perform a row by row operation. We always deal with
two BoundedHeap data structures simultaneously. While
considering row i, we already have the BoundedHeap
data structure Hi−1 at our hand; now we construct the
BoundedHeap data structure Hi. At first Hi is initialized
to Hi−1. Due to Fact 1, as soon as we compute the T
value of a new match in a column j , we can forget about
the previous matches of that column. So, as soon as we
compute T [i, j] in row i, we insert it in Hi to update it
for the next row, i.e. row i + 1. And, due to Fact 2, we
can use Hi−1 for the computation of the T values of the
matches in row i and do the update in Hi (initialized at
first to Hi−1) to make Hi ready for row i+ 1. For each
match (i, j) ∈ M and xj = yi = α, we insert a new
record 〈RANK, υin〉 in vEB(α,col) and vEB(α,row) for
the path started from the lower left corner of T [i, j] as
described in Algorithm 2. To find the υin, we perform
BoundedMax(Hi−1, j) and thus skip calculation for
(i, j) /∈ M. Then we calculate the highest score (C) of
the forced paths on column j, below row i as described in
Algorithm 3 and the highest score (R) of the forced paths
on row i, left to column j as described in Algorithm 4.
Finally the value of T [i, j] is max(F [j − 1],F [j], C,R).
After that using the IncreaseV alue() operation, we
update the value of T [i, j] in Hi. F [j] is also updated
with the value of T [i, j].

IV. ALGORITHM ANALYSIS

In this section we will discuss about the complexity of
our proposed algorithm.

Algorithm 1 LCS 2RLE I
1: Construct the set M. Let Mi = {(i, j) ∈ M, 1 ≤
j ≤ ˆ̀}, 1 ≤ i ≤ k̂

2: H0 = ε
3: F [j] = 0, 1 ≤ j ≤ ˆ̀

4: for i = 1 to k̂ do
5: Hi = Hi−1
6: for each(i, j) ∈Mi do
7: α = xj
8: Step I : Insert a new forced path in vEB(α,col)

and vEB(α,row) according to its RANK, and
keep the paths sorted according to their value.

9: Step II : Find the highest score (C) of the
forced paths on column j, below row i.

10: Step III : Find the highest score (R) of the
forced paths on row i, left to column j.

11: if j = 1 then
12: temp = 0
13: else
14: temp = F [j − 1]
15: end if
16: Step IV : T [i, j] = max(temp,F [j], C,R)
17: IncreaseV alue(Hi, j, T [i, j], (i, j))
18: F [j] = T [i, j]
19: end for
20: Delete Hi−1
21: end for

Algorithm 2 Step I Inserting a new path

1: Compute RANK(α, i, j) = COUNT i−1
Ŷ

(α) −
COUNT j−1

X̂
(α).

2: maxResult = BoundedMax(Hi−1, j)
3: υin = maxResult.value
4: Insert a new record 〈RANK, υin〉 for the new path

into vEB(α,col) and vEB(α,row).
5: Compute the new record’s current value υ at the end

of the block T [i, j] where υ = υin + min(|Ŷi|, |X̂j |)
6: Compute the value υleft of the record which is the

predecessor of the new record.
7: if υ < υleft then
8: delete the new record.
9: else

10: Compute the value υright of the record which is
the successor of the new record. If υright < υ,
delete the old record. Continue until a record with
a greater υright is reached.

11: end if

Algorithm 3 Step II Finding the highest score of the
forced paths on column j, below row i

1: Compute Z = COUNT i
Ŷ

(α)− COUNT j
X̂

(α)
2: Compute the value C of the successor of Z in the
vEB(α,col).

3: If there is a node, for which Z = RANK, then that
node is removed from the vEB(α,col).
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Algorithm 4 Step III Finding the highest score of the
forced paths on row i, left to column j

1: it is computed in an analogous way to Step II.

In our algorithm, we use RANK as the key of the vEB
trees. Recall that, this RANK can be at least −` and at
most k. To represent the range [−`, k] a total of logω bits
are needed where ω = ` + k. Hence, for our vEB trees,
any insertion, deletion or membership operation can be
done in O(log logω) time.

Precomputing the variables LEFT and TOP as in
precomputing COUNT j

X̂
(α) and COUNT i

Ŷ
(α), i ≤

r < r′ ≤ k̂ and j ≤ c < c′ ≤ ˆ̀ takes O(k̂ + ˆ̀) time.
“Algorithm Pre” [17] requires O((k̂+ ˆ̀)+R log log(k̂ ˆ̀))
time. Each of the 2|Σ| vEB trees has at most R nodes,
and any insertion, deletion or membership operation takes
O(log logω) time. The BoundedHeap data structure re-
quires O(log logω) for each operation.

In Step I (Algorithm 2), the BoundedMax()
operation in Line 2 requires O(log logω). Line 4
also requires O(log logω). Line 10 requires
O((number of deletions) log logω). Since each deleted
block must previously have been inserted, the total
number of deletion is O(R). So total complexity of
Step I is O(R log logω + log logω).

In Algorithm 1, Steps II and III in Line 9 and
Line 10 respectively are computed in O(log logω), while
Step IV in Line 16 requires O(1) time.

We perform Steps I to IV in Algorithm 1, Line 8 to
Line 16 and Line 17 for the R matched blocks. Therefore,
O((k̂+ ˆ̀) +R log log(k̂ ˆ̀) +R log logω) time suffices to
compute the longest common subsequence of X̂ and Ŷ .
Again, if k̂ = ˆ̀= n̂, then O(n̂+R log log(n̂)).

From the above discussion, it is clear that LCS 2RLE I
solves Problem LCS 2RLE in O((k̂+ˆ̀)+R log log(k̂ ˆ̀)+
R log logω) time. Again, if k̂ = ˆ̀ = n̂, then O(n̂ +
R log log(n̂)).

Table II summarizes the time complexity of the relevant
algorithms mentioned in Sub-Section I-A. It is evident
from Table II that, only Sakai [8]’s algorithm is compara-
ble to our algorithm. That algorithm has to deal with the
term (k̂ ˆ̀) whereas our algorithm usesR to solve the same
problem. In the very worst case R is O(k̂ ˆ̀), which can
be at best 50% of (k̂ ˆ̀). The impact of log log(. . . ) term
is mostly negligible. Hence our algorithm outperforms
Sakai [8]’s algorithm.

V. CONCLUSION

Measuring the similarity between two strings through
longest common subsequence is one of the fundamental
problems in computer science. In this paper, we develop
an efficient algorithm for solving the longest common
subsequence problem between two run-length-encoded
strings. Our algorithm runs in O((k̂+ ˆ̀)+R log log(k̂ ˆ̀)+
R log logω) time, where k̂ and ˆ̀ are the length of run-
length-encoded string Ŷ and X̂ respectively, ω = k + `
where k and ` are the length of the uncompressed version

TABLE II
SUMMARY OF COMPLEXITY

Reference Number
Of RLE
String

Time Complexity

This
Algorithm

2 O((k̂ + ˆ̀) + R log log(k̂ ˆ̀) +
R log logω)

Mitchell [5] 2 O((R+ k̂ + ˆ̀) log(R+ k̂ + ˆ̀))

Ann et al. [6] 2 O(k̂ ˆ̀+ min(p1, p2))

Apostolico
et al. [7]

2 O(k̂ ˆ̀log(k̂ ˆ̀))

Sakai [8] 2 O(k̂ ˆ̀log log(min(k̂, ˆ̀, k/k̂, l/ˆ̀, X)))

Liu et al. [9] 1 O(min(k ˆ̀, `k̂))

Ahsan et
al. [10]

1 O(`+R log log k̂)

of the two strings respectively and R is the total number
of ordered pairs of positions at which the two run-length-
encoded strings match. If k̂ = ˆ̀= n̂, then our algorithm
works in O(n̂+R log log(n̂)) time. Mitchell proposed an
O((R+k̂+ˆ̀) log(R+k̂+ˆ̀)) algorithm [5], Apostolico et
al. [7] gave another O(k̂ ˆ̀log(k̂ ˆ̀)) algorithm for this prob-
lem. Ann et al. [6] also proposed an O(k̂ ˆ̀+min(p1, p2))
algorithm for solving the same problem, where p1, p2
denote the number of elements in the bottom and right
boundaries of the matched blocks respectively. Our work
obviously outperforms these algorithms.

Our future plan is to find a sophisticated solution for the
constrained LCS problem [19] by applying this technique.
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