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Abstract— The isolated toughness and binding number, as
the parameters for measuring stability and vulnerable of
networks, have been widely used in computer communi-
cation networks. The concept of fractional critical deleted
graph is used to measure whether there exists a feasible
data packet transmission scheme from site to site when
certain intermediate channels and sites are damaged. In
this paper, we study the relationship between fractional
critical deleted graph and vulnerability parameters. It is
highlighted that a graph G is a fractional critical deleted
graph if its isolated toughness or binding number meets
certain conditions. Furthermore, some conditions we give in
the article is sharp in some sense.

Index Terms— vulnerable of networks, isolated toughness,
binding number, fractional (g, f)-factor, fractional (g, f, n′)-
critical deleted graph, fractional (g, f, n′, m)-critical deleted
graph

I. INTRODUCTION

The problem of fractional factor can be considered
as a relaxation of the well-known cardinality matching
problem. It has wide-ranging applications in areas such
as scheduling, network design and the combinatorial
polyhedron. For instance, several large data packets to be
sent to various destinations through several channels in a
communication network. The efficiency of this work can
be improved if large data packets to be partitioned into
small parcels. The feasible assignment of data packets
can be seen as a fractional flow problem and it becomes
a fractional factor problem when the destinations and
sources of a network are disjoint.

The whole network can be regarded as a graph. Each
site correspond to a vertex and each channel correspond to
an edge in the graph. Then the model of data transmission
problem is just the existence of fractional factor in the
graph.

The graphs considered here are finite and simple. Let
G be a graph correspond to a certain network with the
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Figure 1. Graph G1.

Figure 2. Graph G2.

vertex set V (G) and the edge set E(G). For a vertex
x ∈ V (G), we denote by dG(x) and NG(x) the degree
and the neighborhood of x in G, respectively. Let δ(G)
denote the minimum degree of G. For any S ⊆ V (G),
we write G[S] for the subgraph of G induced by S. Let
i(G − S) be the number of isolated vertices in G − S.
The readers can refer to [1] for standard graph theoretic
concepts and terms used but undefined in this paper.

Let g and f be two integer-valued functions on V (G)
such that 0 ≤ g(x) ≤ f(x) for all x ∈ V (G). A
spanning subgraph F of G is called a (g, f)-factor if
g(x) ≤ dF (x) ≤ f(x) for evert vertex x ∈ V (G). A
fractional (g, f)-factor is a function h that assigns to each
edge of a graph G a number in [0,1] so that for each vertex
x we have g(x) ≤

∑
e∈E(x)

h(e) ≤ f(x). If g(x) = a,

f(x) = b for all x ∈ V (G), then a fractional (g, f)-factor
is a fractional [a, b]-factor. Moreover, if g(x) = f(x) = k
(k ≥ 1 is an integer) for all x ∈ V (G), then a fractional
(g, f)-factor is just a fractional k-factor. Several results
of fractional (g, f)-factors due to Zhou [2], [3].

As an example, graph G1 and G2 described in Fig 1
and Fig 2. Taking S = {x3, x4} and T = V (G) − S, we
can check that both G1 and G2 have no fractional 3-factor
according to Lemma 2 (showed in next section).

A graph G is called a fractional (g, f, n′)-critical graph
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if after deleting any n′ vertices from G, the resulting
graph still has a fractional (g, f)-factor. Similarly, a graph
G is called a (g, f, n′)-critical graph if after removing any
n′ vertices from G, the resulting graph admits a (g, f)-
factor. Some sufficient conditions for (a, b, n′)-critical
graphs can refer [4] and [5].

A graph G is called a fractional (g, f, m)-deleted graph
if after deleting any m edges, the resulting graph still has a
(g, f)-factor. Fraction deleted graph and fractional critical
graph, as extensions of fractional factor, describe the
existence of fractional factor in communication networks
when certain channels or certain sites are damaged.

The first author of this paper proposed a new concept to
deal with the combination situation when some channels
and sites are unavailable in networks. A graph G is
called a fractional (g, f, n′,m)-critical deleted graph if
after delated any n′ vertices from G, the resulting graph
is still a fractional (g, f,m)-deleted graph. If m = 1,
then fractional (g, f, n′,m)-critical deleted graph is just
fractional (g, f, n′)-critical deleted graph.

The concept of isolated toughness I(G) was introduced
by Yang et al. [6] as follows. If G is not complete,

I(G) = min{ |S|
i(G − S)

: S ⊆ V (G), i(G − S) ≥ 2}.

Otherwise, I(G) = +∞. Isolated toughness usually
regard as a parameter to measure the strength of the net-
works, and has widely used in communications networks
and ontology semantic structure graph.

In [7], Gao et al. studied a isolated toughness condition
for graphs to be fractional (g, f, n′)-critical. It is deter-
mined that G is a fractional (g, f, n′)-critical graph if

I(G) ≥
{

b2+bn′−1
a , if b > a

b + n′, if a = b.

And δ(G) ≥ bn′

a + (b+1)2

4a + b − 1, where 1 ≤ a ≤ b and
b ≥ 2. Recently, [8] studied a isolated toughness condition
for graphs to be fractional (g, f, n′)-critical deleted. It is
determined that G is a fractional (g, f, n′)-critical deleted
graph if

I(G) >

{
b2+bn′−1

a , if b > a
b + n′, if a = b.

And δ(G) ≥ bn′

a + (b+1)2

4a + b − 1, where 1 ≤ a ≤ b and
b ≥ 2.

The binding number bind(G) of a graph G is defined
as follows:

bind(G) = min{ |NG(X)|
|X|

|∅ ≠ X ⊆ V (G),

NG(X) ̸= V (G)}.

Both isolated toughness and binding number were in-
troduced to measure the vulnerable of networks. Studies
have shown that there exists strong link between binding
number and existence of fractional factor. Several result
can refer [9]–[11].

The contributions of this paper are two-fold. First, we
give a isolated toughness bound for fractional (g, f, n′)-
critical deleted graphs; second, certain binding number
conditions are obtained for fractional (g, f, n′,m)-critical
deleted graphs, and some binding number bounds we give
in section III are tight in some sense. The organization of
this paper is as follows. The relationship between isolated
toughness and fractional (g, f, n′)-critical deleted graphs
is showen in section II. Also, the isolated toughness
condition for fractional (a, b, n′)-critical deleted graphs
is discussed. In Section III, we describe the conditions
for fractional (g, f, n′, m)-critical deleted graphs from
binding number point. Two examples are manifested to
draw out the sharpness of these bounds. Again, the suffi-
cient conditions for fractional (a, b, n′,m)-critical deleted
graphs are considered.

II. ISOLATED TOUGHNESS CONDITION FOR
FRACTIONAL CRITICAL DELETED GRAPH

In this section, we extend the result in [8] to the general
situation. The main result is the following theorem.

Theorem 1: Let G be a graph, n be a non-negative
integer, g, f be two non-negative integer-valued functions
on V (G), and a ≤ g(x) ≤ f(x) ≤ b for all x ∈ V (G),
where a, b are two integers with 2 ≤ a ≤ b. δ(G) ≥
bn′

a + (b+1)2

4a +b. If G satisfies isolated toughness I(G) >
b2+bn′−∆

a , where ∆ = b − a. Then, G is a fractional
(g, f, n′)-critical deleted graph.

Let

ε(S, T ) =


2, T is not independent set
1, T is an independent set

and eG(T, V (G) \ (S ∪ T )) ≥ 1
0, Otherwise.

In order to prove Theorem 1, we depend heavily on the
following lemma.

Lemma 2: (Gao [12]) Let G be a graph and let g, f
be two non-negative integer-valued functions defined on
V (G) satisfying g(x) ≤ f(x) for all x ∈ V (G). Let n be
a non-negative integer. Then G is a fractional (g, f, n′)-
critical deleted graph if and only if

f(S) − g(T ) + dG−S(T )
≥ max{f(U) : U ⊆ S, |U | = n′} + ε(S, T )

for any disjoint subsets S and T of V (G) with |S| ≥ n′.
Lemma 3: (Liu and Zhang [13]) Let G be a graph and

let H = G[T ] such that δ(H) ≥ 1 and 1 ≤ dG(x) ≤ k−1
for every x ∈ V (H) where T ⊆ V (G) and k ≥ 2. Let
T1, . . . , Tk−1 be a partition of the vertices of H satisfying
dG(x) = j for each x ∈ Tj where we allow some Tj to
be empty. If each component of H has a vertex of degree
at most k − 2 in G, then H has a maximal independent
set I and a covering set C = V (H) − I such that

k−1∑
j=1

(k − j)cj ≤
k−1∑
j=1

(k − 2)(k − j)ij ,

where cj = |C ∩ Tj | and ij = |I ∩ Tj | for every j =
1, . . . , k − 1.
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The lemma below can be deduced from Lemma 2.2 in
[13].

Lemma 4: (Liu and Zhang [13]) Let G be a graph and
let H = G[T ] such that dG(x) = k − 1 for every x ∈
V (H) and no component of H is isomorphic to Kk where
T ⊆ V (G) and k ≥ 2. Then there exists a maximal
independent set I and the covering set C = V (H)− I of
H satisfying

|V (H)| ≤
k∑

i=1

(k − i + 1)|I(i)| − |I(1)|
2

and

|C| ≤
k∑

i=1

(k − i)|I(i)| − |I(1)|
2

,

where I(i) = {x ∈ I, dH(x) = k − i}, 1 ≤ i ≤ k and
k∑

i=1

|I(i)| = |I|.

Proof of Theorem 1. If G is complete, then the result
immediately follows from δ(G) ≥ bn′

a + (b+1)2

4a + b.
Suppose that there exists non-complete graph G sat-

isfies the conditions of Theorem 1, but is not a frac-
tional (g, f, n′)-critical deleted graph. By Lemma 2 and
ε(S, T ) ≤ 2, there exists subsets S and T of V (G) such
that

a|S| +
∑
x∈T

dG−S(x) − b|T |

≤ f(S) − g(T ) + dG−S(T ) ≤ bn′ + 1. (1)

We choose subsets S and T such that |T | is minimum.
Obviously, T ̸= ∅ and dG−S(x) ≤ g(x) − 1 ≤ b − 1 for
each x ∈ T .

Let l be the number of the components of H ′ =
G[T ] which are isomorphic to Kb and let T0 = {x ∈
V (H ′)|dG−S(x) = 0}. Let H be the subgraph obtained
from H ′−T0 by deleting those l components isomorphic
to Kb.

If |V (H)| = 0, then i(G − S ∪ S′) = |T0| + l ≥ 1
and we deduce |S| ≤ b(|T0|+l)+bn′+1

a by (1). Let S′ be
set of vertices such that it contains exactly b− 1 vertices
in each component of Kb in H ′. If i(G − S ∪ S′) > 1,
then I(G) ≤ |S∪S′|

i(G−S−S′) ≤ b(|T0|+l)+bn′+al(b−1)+1
a(|T0|+l) ≤ b

a+
bn′

2a + b− 1 + 1
2a , which contradicts I(G) > b2+bn′−1

a . If
i(G−S∪S′) = 1, then dG−S(x)+|S| ≥ dG(x) ≥ δ(G) ≥
bn′

a + b
a + b and dG−S(x) ≥ bn′

a + (b+1)2

4a + b − |S| ≥
bn′

a + b
a+b− b(n′+1)+1

a , which contradicts dG−S(x) ≤ b−1
for any x ∈ T .

By |V (H)| ≥ 1, we assume H = H1 ∪ H2 where
H1 is the union of components of H which satisfies that
dG−S(x) = b − 1 for every vertex x ∈ V (H1) and
H2 = H −H1. From Lemma 4, there exists a maximum
independent set I1 and the covering set C1 = V (H1)−I1

of H1 such that

|V (H1)| ≤
b∑

i=1

(b − i + 1)|I(i)| − |I(1)|
2

(2)

and

|C1| ≤
b∑

i=1

(b − i)|I(i)| − |I(1)|
2

, (3)

where I(i) = {x ∈ I1, dH1(x) = b − i}, 1 ≤ i ≤ b and
b∑

i=1

|I(i)| = |I1|. Let Tj = {x ∈ V (H2)|dG−S(x) = j}
for 1 ≤ j ≤ b − 1. Each component of H2 has a vertex
of degree at most b − 2 in G − S by the definitions of
H and H2. According to Lemma 3, H2 has a maximal
independent set I2 and the covering set C2 = V (H2)−I2

such that
b−1∑
j=1

(b − j)cj ≤
b−1∑
j=1

(b − 2)(b − j)ij , (4)

where cj = |C2 ∩ Tj | and ij = |I2 ∩ Tj | for every j =
1, . . . , b− 1. Set W = V (G)− S − T and U = S ∪ S′ ∪
C1 ∪ (NG(I1) ∩ W )) ∪ C2 ∪ (NG(I2) ∩ W ). We get

|U | ≤ |S|+l(b−1)+|C1|+
b−1∑
j=1

jij +
b∑

i=1

(i−1)|I(i)| (5)

and

i(G − U) ≥ t0 + l + |I1| +
b−1∑
j=1

ij , (6)

where t0 = |T0|. Then when i(G − U) > 1, we infer

|U | ≥ I(G)i(G − U). (7)

If i(G − U) = 1, we yield

|S| ≤ bn′ + b|T | − dG−S(T ) + 1
a

≤ bn′ + b|T | − |T |(|T | − 1) + 1
a

≤
bn′ + 1 + b b+1

2 − ( b+1
2 )( b+1

2 − 1)
a

=
bn′ + 1

a
+

(b + 1)2

4a
,

and dG−S(x) ≥ bn′

a + (b+1)2

4a + b− |S| ≥ bn′

a + (b+1)2

4a +
b− ( bn′+1

a + (b+1)2

4a ), which contradicts dG−S(x) ≤ b−1
for each x ∈ T .

In terms of (5), (6) and (7), we have

|S| + |C1| (8)

≥
b−1∑
j=1

(I(G) − j)ij + I(G)(t0 + l) + I(G)|I1|

−
b∑

i=1

(i − 1)|I(i)| − l(b − 1). (9)

By b|T | − dG−S(T ) ≥ a|S| − bn′ − 1, we obtain

bt0 + bl + |V (H1)| +
b−1∑
j=1

(b − j)ij +
b−1∑
j=1

(b − j)cj

≥ a|S| − bn′ − 1.
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Thus, we obtain

|V (H1)| +
b−1∑
j=1

(b − j)cj + a|C1|

≥
b−1∑
j=1

(aI(G) − aj − b + j)ij + (aI(G) − b)(t0 + l)

+aI(G)|I1| − a
b∑

i=1

(i − 1)|I(i)|

−bn′ − 1 − la(b − 1). (10)

In view of (2) and (3), we deduce

|V (H1)| + a|C1|

≤
b∑

i=1

(ab − ai + b − i + 1)|I(i)| (11)

− (a + 1)|I(1)|
2

. (12)

Combining (4), (10) and (11), we get
b−1∑
j=1

(b − 2)(b − j)ij +
b∑

i=1

(ab − ai + b − i + 1)|I(i)|

≥
b−1∑
j=1

(aI(G) − aj − b + j)ij + aI(G)|I1|

+
(a + 1)|I(1)|

2
− a

b∑
i=1

(i − 1)|I(i)|

+(aI(G) − b)(t0 + l) − bn′ − la(b − 1) − 1. (13)

The following argument separates into two cases ac-
cording to the value of t0 + l.

Case 1. t0 + l ≥ 1. By aI(G) > b2 +bn′−∆, we have
(aI(G)− b)(t0 + l)− bn′ − la(b− 1)− 1 ≥ 0 by ∆ ≥ 0
and a ≥ 2. Therefore, (13) becomes

b−1∑
j=1

(b − 2)(b − j)ij +
b∑

i=1

(ab − ai + b − i + 1)|I(i)|

≥
b−1∑
j=1

(aI(G) − aj − b + j)ij + aI(G)|I1|

+
(a + 1)|I(1)|

2
− a

b∑
i=1

(i − 1)|I(i)|.

Hence, at least one of the following two cases must hold.
Subcase 1. There is at least one j such that

(b − 2)(b − j) ≥ aI(G) − aj − b + j,

which implies

aI(G) < b(b − 2) + (a − b + 1)j + b

≤ b(b − 2) + (a − b + 1) + b

= (b2 − 1) + (a − b) + (2 − b)
< b2 − ∆,

which contradicts I(G) > b2−∆+bn′

a .
Subcase 2.

b∑
i=1

(ab − ai + b − i + 1)|I(i)|

≥ aI(G)|I1| +
(a + 1)|I(1)|

2
− a

b∑
i=1

(i − 1)|I(i)|

≥ (b2 + bn′ − ∆)|I1| +
(a + 1)|I(1)|

2

−a
b∑

i=1

(i − 1)|I(i)|

≥ (b2 − ∆)|I1| +
(a + 1)|I(1)|

2
− a

b∑
i=1

(i − 1)|I(i)|.

This implies,

b∑
i=2

(ab + 2b − 2a − i + 1 − b2 + ∆)|I(i)|

+(ab + 2b − 5
2
a − b2 − 1

2
)|I(1)| ≥ 0.

Let

h1(b) = −b2 + (a + 2)b − 5
2
a − 1

2
.

From b ≥ a, we get

max{h1(b)} = h1(a) < 0.

On the other hand, ab + 2b − 2a − i + 1 − b2 ≤ −b2 +
(a + 2)b − 2a − 1 due to i ≥ 2. Let

h2(b) = −b2 + (a + 2)b − 2a − 1.

We infer

max{h2(b)} = h2(a) < 0

by b ≥ a. This is a contradiction.
Case 2. t0 + l = 0. In this case, (13) becomes

b−1∑
j=1

(b − 2)(b − j)ij +
b∑

i=1

(ab − ai + b − i + 1)|I(i)|

≥
b−1∑
j=1

(aI(G) − aj − b + j)ij + aI(G)|I1|

+
(a + 1)|I(1)|

2
− a

b∑
i=1

(i − 1)|I(i)| − bn′ − 1.

From what we have discussed in Subcase 1, we get
b−1∑
j=1

(b − 2)(b − j)ij ≤
b−1∑
j=1

(at − aj − b + j)ij − 1. If
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|I1| > 0, we deduce
b∑

i=1

(ab − ai + b − i + 1)|I(i)|

≥ aI(G)|I1| +
(a + 1)|I(1)|

2
− a

b∑
i=1

(i − 1)|I(i)|

−bn′

≥ (b2 + bn − ∆)|I1| +
(a + 1)|I(1)|

2

−a
b∑

i=1

(i − 1)|I(i)| − bn′

≥ (b2 − ∆)|I1| +
(a + 1)|I(1)|

2
− a

b∑
i=1

(i − 1)|I(i)|.

The result follows from what we discussed in Subcase 2
above.

The last situation is |I1| = 0 and
b−1∑
j=1

(b−2)(b− j)ij ≥
b−1∑
j=1

(aI(G)−aj−b+j)ij −bn′−1. Let h3 = (b−2)(b−

j)− (aI(G)−aj− b+ j)+ bn′ +1. By b ≥ a and a ≥ 2,
we infer

h3 = b(b − 2) + (a − b + 1)j + b − aI(G) + bn′ + 1
< b(b − 2) + (a − b + 1) + b − (b2 + bn′ − ∆)

+bn′ + 1
= −b + 2 ≤ 0,

a contradiction.
From what we argument above, we deduce the desired

contradictions, and hence we can conclude that Theorem
1 holds. 2

Remark 1. (Tight isolated toughness condition for
fractional (a, b, n)-critical graph) Let g(x) = a, f(x) =
b for each x ∈ V (G). The sufficient and necessity
condition for fractional (a, b, n′)-critical deleted graph
derives from Lemma 1.

Lemma 5: Let G be a graph. Let a, b, n′ be non-
negative integers such that a ≤ b. Then G is a fractional
(a, b, n′)-critical deleted graph if and only if

b|S| − a|T | + dG−S(T ) ≥ bn′ + ε(S, T ) (14)

for all disjoint subsets S, T of V (G) with |S| ≥ n′.
Using standard techniques similar to that of Section II.

We get following result. We skip the detail proof.
Theorem 6: Let G be a graph and let a, b be two

nonnegative integers satisfying 2 ≤ a ≤ b. Let n′ be a
non-negative integer. |V (G)| ≥ n′+a+1 if G is complete.
If I(G) > ab−b+a−∆

b +n′, then G is a fractional (a, b, n′)-
critical deleted graph.

III. BINDING NUMBER CONDITION FOR FRACTIONAL
CRITICAL DELETED GRAPHS

A. Main Results in This Section

In [14], Gao and Wang gave following result on frac-
tional (g, f, n′,m)-critical deleted graphs.

Theorem 7: [14] Let G be a graph of order n, and
let a, b, n′, and m be non-negative integers such that
2 ≤ a ≤ b. Let g, f be two integer-valued functions
defined on V (G) such that a ≤ g(x) ≤ f(x) ≤ b for
each x ∈ V (G). If bind(G) > (a+b−1)(n−1)

an−(a+b)−bn′−2m+2

and n ≥ (a+b)(a+b−3)
a + bn′+2m

a−1 , then G is a fractional
(g, f, n′,m)-critical deleted graph.

Theorem 8: [14] Let G be a graph of order n, and
let a, b, n′, and m be non-negative integers such that 2 ≤
a ≤ b, n ≥ (a+b−1)(a+b−2)−2

a + bn′+2m
a−1 . Let g, f be

two integer-valued functions defined on V (G) such that
a ≤ g(x) ≤ f(x) ≤ b for each x ∈ V (G). If G satisfies

bind(G) ≥ (a + b − 1)(n − 1)
a(n − 1) − bn′ − 2m

and

δ(G) ̸= ⌊ (b − 1)n + a + b + bn′ + 2m − 2
a + b − 1

⌋,

then G is a fractional (g, f, n′,m)-critical deleted graph.
Also, above two results are sharp if a = b. The aim

of this section is to strengthen these results when a and
b are both even integers. The main results in this section
are stated as follows.

Theorem 9: Let G be a graph of order n, and let
a, b, n′, and m be non-negative integers such that such that
a and b are two even integers with 2 ≤ a ≤ b. Let g, f be
two integer-valued functions defined on V (G) such that
a ≤ g(x) ≤ f(x) ≤ b for each x ∈ V (G). If bind(G) >

(a+b−1)(n−1)
an−(a+b)−bn′−2m+3 and n ≥ (a+b)(a+b−3)

a + bn′+2m
a−1 ,

then G is a fractional (g, f, n′,m)-critical deleted graph.
Theorem 10: Let G be a graph of order n, and let

a, b, n′, and m be non-negative integers such that such
that a and b are two even integers with 2 ≤ a ≤ b,
n ≥ (a+b−1)(a+b−2)−2

a + bn′+2m
a−1 . Let g, f be two integer-

valued functions defined on V (G) such that a ≤ g(x) ≤
f(x) ≤ b for each x ∈ V (G). If G satisfies

bind(G) ≥ (a + b − 1)(n − 1)
a(n − 1) − bn′ − 2m + 1

and

δ(G) ̸= ⌊ (b − 1)n + a + b + bn′ + 2m − 3
a + b − 1

⌋,

then G is a fractional (g, f, n′,m)-critical deleted graph.
The proofs of Theorem 9 and Theorem 10 are based

on the following lemma:
Lemma 11: (Gao [12]) Let G be a graph, g, f be

two integer-valued functions defined on V (G) such that
g(x) ≤ f(x) for each x ∈ V (G). Let n′, m be two
non-negative integers. Then G is fractional (g, f, n′,m)-
critical deleted graph if and only if

f(S) − g(T ) + dG−S(T )
≥ max

U⊆S,|U |=n′,H⊆E(G−U),|H|=m
{f(U)

+
∑
x∈T

dH(x) − eH(T, S)} (15)

for all disjoint subsets S, T of V (G) with |S| ≥ n′.
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B. Proof of Theorem 9

Suppose that G satisfies conditions of Theorem 9 but
is not a fractional (g, f, n′,m)-critical deleted graph.
Obviously, T ̸= ∅. Otherwise, (15) holds. By Lemma 11
and the fact

∑
x∈T dH(x)− eH(T, S) ≤ 2m, there exists

disjoint subsets S and T of V (G) such that

f(S) − g(T ) + dG−S(T ) ≤ bn′ + 2m − 1, (16)

where |S| ≥ n′. We choose S and T such that |T | is
minimum. Thus, for each x ∈ T , we have dG−S(x) ≤
g(x) − 1 ≤ b − 1. Otherwise, if there exists some x ∈ T
such that dG−S(x) ≥ g(x), then S and T \{x} also satisfy
(16). This contradicts the choice of S and T .

Let d = min{dG−S(x) : x ∈ T}. Then 0 ≤ d ≤ b − 1,
and

f(S) + dG−S(T ) − f(T ) ≥ a|S| + d|T | − b|T |.

Thus,

bn′ + 2m − 1 ≥ a|S| − (b − d)|T |. (17)

We choose x1 ∈ T such that dG−S(x1) = d. We shall
get some contradictions in the following two cases.

Case 1. 1 ≤ d ≤ b − 1.
Let Y = (V (G) \ S) \ NG−S(x1). Then x1 ∈ Y \

NG(Y ). Thus, Y ̸= ∅, NG(Y ) ̸= V (G), and |NG(Y )| ≥
bind(G)|Y |. We get

n − 1 ≥ |NG(Y )|
≥ bind(G)|Y | = bind(G)(n − d − |S|),

that is to say,

|S|

≥ n − d − n − 1
bind(G)

> n − d − an − (a + b) − bn′ − 2m + 2
a + b − 1

=
(b − d)n + (a + b) + bn′ + 2m − 3

a + b − 1
− d.(18)

Since a and b are even integers, we obtain

|S| ≥ (b − d)n + bn + 2m − 2
a + b − d

. (19)

By (19), we get

(b − d)n + bn + 2m − 2
a + b − d

>
(b − 1)n + a + b + bn′ − 3

a + b − 1
− d (20)

If d = 1, then we infer (b−1)n+bn+2m−2
a+b−1 >

(b−1)n+a+b+bn′−3
a+b−1 − 1 by (20). A contradiction.

We denote the left-hand and right-hand side of (20) as
A and B respectively, then we have A − B > 0. We

multiply (a + b − 1)(a + b − d) and rearrange, thus get

0
< (a + b − 1)(a + b − d)(A − B)

= (a + b − 1)(a + b − d)(
(b − d)n + bn + 2m − 2

a + b − d

− (b − 1)n + a + b + bn′ − 3
a + b − 1

+ d)

= −(d − 1)(an − (a + b − 1)(a + b − d)
−bn′ − 2m + 2)

Combining with 2 ≤ d ≤ b − 1, we deduce

n <
(a + b − 1)(a + b − d) + bn′ + 2m − 2

a
,

which contradicts that n ≥ (a+b)(a+b−3)
a + bn′+2m

a−1 .

Case 2. d = 0.

In this case, we first show the following claim.

Claim 1: an−(a+b)−bn′−2m+3
n−1 ≥ 1.

Proof of Claim 1. Since n ≥ (a+b)(a+b−3)
a + bn′+2m

a−1 , we
have

an − (a + b) − bn′ − 2m + 3 − (n − 1)
= (a − 1)n − (a + b) − bn′ − 2m + 4

≥ (a − 1)(
(a + b)(a + b − 3)

a
+

bn′ + 2m

a − 1
)

−(a + b) − bn′ − 2m + 4

=
(a − 1)(a + b)(a + b − 3)

a
− (a + b) + 4

≥ 2(a + b − 3) − (a + b) + 4
= a + b − 4 ≥ 0.

Thus, we get an−(a+b)−bn′−2m+2
n−1 > 1. 2

Let h = |{x : x ∈ T, dG−S(x) = 0}|, and Y = V (G)\
S. By d = 0, we have NG(Y ) ̸= V (G). Also, by T ̸= ∅,
we have Y ̸= ∅. So, |NG(Y )| ≥ bind(G)|Y |. Therefore,

n − h ≥ |NG(Y )| ≥ bind(G)|Y | = bind(G)(n − |S|).

So,

|S| ≥ n − n − h

bind(G)

> n − (n − h)(an − (a + b) − bn′ − 2m + 3)
(a + b − 1)(n − 1)

.(21)
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By (17), (21), Claim 2 and the fact |T | ≤ n−|S|, we get

bn′ + 2m − 1
≥ f(S) + dG−S(T ) − g(T )
≥ a|S| + |T | − h − b|T | = a|S| − (b − 1)|T | − h

≥ a|S| − (b − 1)(n − |S|) − h = (a + b − 1)|S|
−(b − 1)n − h

> (a + b − 1)(n

− (n − h)(an − (a + b) − bn′ − 2m + 3)
(a + b − 1)(n − 1)

)

−(b − 1)n − h

= an − (n − h)(an − (a + b) − bn′ − 2m + 3)
n − 1

− h

≥ an − (n − 1)(an − (a + b) − bn′ − 2m + 3)
n − 1

− 1

= bn′ + 2m + (a + b) − 4 ≥ bn′ + 2m,

which is a contradiction. 2

C. Sharpness of Theorem 9

The condition that bind(G) > (a+b−1)(n−1)
(an−(a+b)−bn′−2m+3)

in Theorem 9 cannot be replaced by bind(G) ≥
(a+b−1)(n−1)

(an−(a+b)−bn′−2m+3) . Let 2 ≤ a = b be two even
integers, and n′,m ≥ 0 be integers. Let n = ((a + b −
1)(a+b−2)+(a+b−3)+(a+2b−1)n′+(a+b+1)m)/a,
l = (a + b + n′ + m − 1)/2, and h = n − 2l =
n − (a + b + n′ + m − 1) = ((a + b − 1)(b − 2) +
(a + b − 3) + (2b − 1)n′ + (b + 1)m)/a be integers. Let
G = Kh ∨ lK2. X = V (lK2), and for each x ∈ X , we
have |NH(X \x)| = n− 1. By the definition of bind(G),
we have

bind(G) =
NG(X \ x)

X \ x
=

n − 1
2l − 1

=
(a + b − 1)(n − 1)

an − (a + b) − bn′ − 2m + 3
.

Let S = V (Kh), T = V (lK2), H be any subgraph of
G[T ] with m edges. Then |S| = h ≥ n′, |T | = 2l, and∑

x∈T dH(x) − eH(S, T ) = 2m. Since a = b, we have
g(x) = a = b = f(x) for all x ∈ V (H). Thus,

f(S) + dG−S(T ) − g(T )
= a|S| − (b − 1)|T |

= a{ (a + b − 1)(b − 2) + (a + b − 3)
a

+
(2b − 1)n′ + (b + 1)m

a
}

−(b − 1)(a + b + n′ + m − 1)
= bn′ + 2m − 2 < bn′ + 2m

= max
U⊆S,|U |=n′,H⊆E(G−U),|H|=m

{f(U)

+
∑
x∈T

dH(x) − eH(T, S)}.

By Lemma 11, G is not a fractional (g, f, n′,m)-critical
deleted graph. Thus, the binding number condition in
Theorem 9 is tight.

D. Proof of Lemma 12

To show Theorem 10, we need the following lemma,
which is a neighborhood condition for a graph G to be a
fractional (g, f, n′,m)-critical deleted graph.

Lemma 12: Let a, b, n′, n and m are non-negative in-
tegers such that a and b are two even integers with
2 ≤ a ≤ b. Let G be a graph with order n such that
n ≥ (a+b−1)(a+b−2)+bn′+2m−2

a . Let g, f be two integer-
valued functions defined on V (G) such that a ≤ g(x) ≤
f(x) ≤ b for each x ∈ V (G). If

|NG(X)| >
(b − 1)n + |X| + bn′ + 2m − 2

a + b − 1

holds for each non-empty independent subset X ⊆ V (G),
and

δ(G) >
(b − 1)n + a + b + bn′ + 2m − 3

a + b − 1
,

then G is a fractional (g, f, n′,m)-critical deleted graph.
Suppose that G satisfies conditions of Lemma 12,

but is not a fractional (g, f, n′,m)-critical deleted graph.
Obviously, T ̸= ∅. By Lemma 11, there exists disjoint S
and T satisfying

f(S) − g(T ) + dG−S(T ) ≤ bn′ + 2m − 1, (22)

where |S| ≥ n′. We choose S and T such that |T | is
minimum. Thus, we have dG−S(x) ≤ g(x) − 1 ≤ b − 1
for each x ∈ T .

Let d = min{dG−S(x)|x ∈ T}, then

0 ≤ d ≤ b − 1,

δ(G) ≤ d + |S|. (23)

In terms of (23) and a, b are even integers, we get

|S| ≥ δ(G)−d >
(b − 1)n + a + b + bn′ − 3

a + b − 1
−d. (24)

Now, we consider the following two cases according to
the value of d.

Case 1. 1 ≤ d ≤ b − 1.
Since a and b are even integers, we obtain

|S| ≥ (b − d)n + bn + 2m − 2
a + b − d

. (25)

By (24) and (25), we get

(b − d)n + bn + 2m − 2
a + b − d

>
(b − 1)n + a + b + bn′ − 3

a + b − 1
−d

(26)
If d = 1, then we infer (b−1)n+bn+2m−2

a+b−1 >
(b−1)n+a+b+bn′−3

a+b−1 − 1 by (26). A contradiction.
We denote the left-hand and right-hand side of (26) as

A and B respectively, then we have A − B > 0. We
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multiply (a + b − 1)(a + b − d) and rearrange, thus get

0
< (a + b − 1)(a + b − d)(A − B)

= (a + b − 1)(a + b − d)(
(b − d)n + bn + 2m − 2

a + b − d

− (b − 1)n + a + b + bn′ − 3
a + b − 1

+ d)

= −(d − 1)(an − (a + b − 1)(a + b − d)
−bn′ − 2m + 2)

Combining with 2 ≤ d ≤ b − 1, we deduce

n <
(a + b − 1)(a + b − d) + bn′ + 2m − 2

a

≤ (a + b − 1)(a + b − 2) + bn′ + 2m − 2
a

,

which contradicts that n ≥ (a+b−1)(a+b−2)+bn′+2m−2
a .

Case 2. d = 0.
Let Y = {x ∈ T | dG−S(x) = 0}. Obviously, Y ̸= ∅,

and Y is an independent set. Thus, by Lemma 12, we
have

(b − 1)n + |Y | + bn′ + 2m − 2
a + b − 1

< |NG(Y )| ≤ |S|. (27)

Subcase 2.1 |S| + |T | ≤ n − 1.
In view of (22) and |S| + |T | ≤ n, we get

bn′ + 2m − 1
≥ f(S) + dG−S(T ) − g(T )
≥ a|S| + dG−S(T ) − b|T |
≥ a|S| + |T | − |Y | − b|T |
= a|S| − (b − 1)|T | − |Y |
≥ a|S| − (b − 1)(n − 1 − |S|) − |Y |
= (a + b − 1)|S| − (b − 1)n − |Y | + b − 1
≥ (a + b − 1)|S| − (b − 1)n − |Y | + 1,

which implies

|S| ≤ (b − 1)n + |Y | + bn′ + 2m − 2
a + b + 1

,

which contradicts 27.
Subcase 2.2 |S| + |T | = n.

From (22) and (24), we have

bn′ + 2m − 1
≥ f(S) + dG−S(T ) − g(T )
≥ a|S| + dG−S(T ) − b|T |
≥ a|S| + |T | − |Y | − b|T |
= a|S| − (b − 1)|T | − |Y |
≥ a|S| − (b − 1)(n − |S|) − |Y |
= (a + b − 1)|S| − (b − 1)n − |Y |

≥ (a + b − 1)(
(b − 1)n + |Y | + bn′ + 2m − 1

a + b − 1
)

−(b − 1)n − |Y |
= bn′ + 2m − 1.

This implies
dG−S(T ) = |T | − |Y | (28)

and

a|S| + dG−S(T ) − b|T | = bn′ + 2m − 1 (29)

We get dG−S(T ) is even. To see this, we observe that
Y ⊆ T . If |T | = |Y |, then dG−S(T ) = 0 from (28). If
|T | > |Y |, we have dG−S(v) = 1 for each v ∈ T − Y
by (28) and definition of Y . Since |S| + |T | = n, we
get dG[T−Y ](v) = 1 for each v ∈ T − Y , and G[T − Y ]
is a perfect matching. Thus, |T | − |Y | is even, and so is
dG−S(T ).

By a and b are even, we get a|S|+ dG−S(T )− b|T | is
even, which contradicts (29). 2

E. Sharpness of Lemma 12

Let b = a ≥ 2 be two even integers
that (a+b−1)(a+b−2)

2(b−1) is an integer. We write n =
(a+b−1)(a+b−2)

b−1 + 4m + n′. The following example
shows that the neighborhood condition |NG(X)| >
(b−1)n+|X|+bn′+2m−2

a+b−1 in Lemma 12 cannot be replaced
by |NG(X)| ≥ (b−1)n+|X|+bn′+2m−1

a+b−2 . Let G =
Ka+b+n′+2m−1 ∨ ((a + b + 1)K1 ∪ ( (a+b−1)(a+b−2)

2(b−1) +
m − (a + b))K2) and Y = V ((a + b + 1)K1). Then
δ(G) = a+b+n′+2m−1 > (b−1)n+a+b+bn′+2m−3

a+b−1 and
|NG(Y )| = a+ b+n′ +2m−1 = (b−1)n+|Y |+bn′+2m−2

a+b−1 .
For each non-empty independent subset X of V (G),
we infer |NG(X)| ≥ (b−1)n+|X|+bn′+2m−2

a+b−1 . Let S =
V (Ka+b+n′+2m−1) and T = V ((a + b + 1)K1 ∪
( (a+b−1)(a+b−2)

2(b−1) + m− (a + b))K2). Then |S| = a + b +

n′ + 2m− 1, |T | = (a+b−1)(a+b−2)
b−1 − (a + b) + 2m + 1,

and dG−S(T ) = (a+b−1)(a+b−2)
b−1 − 2(a + b) + 2m. Since

a = b, we have f(v) = g(v) = a = b for each v ∈ V (G).
Thus, we have

f(S) + dG−S(T ) − g(T )

= b(a + b + n′ + 2m − 1) +
(a + b − 1)(a + b − 2)

b − 1

−2(a + b) + 2m − a(
(a + b − 1)(a + b − 2)

b − 1
−(a + b) + 2m + 1)

= bn′ + 2m − 2
< max

U⊆S,|U |=n′,H⊆E(G−U),|H|=m
{f(U)

+
∑
x∈T

dH(x) − eH(T, S)}.

Namely, G is not a fractional (g, f, n′,m)-critical deleted
graph. In this sense, the condition of |NG(X)| in Lemma
12 is best possible.

F. Proof of Theorem 10.

Now, we begin to prove Theorem 10.
Suppose that G satisfies the conditions of Theorem 10,

but is not a fractional (g, f, n′,m)-critical deleted graph.
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Obviously, T ̸= ∅. By Lemma 11, there exists disjoint
subsets S and T satisfying

f(S) − g(T ) + dG−S(T ) ≤ bn′ + 2m − 1, (30)

where |S| ≥ n′. We choose S and T such that |T | is
minimum. Then dG−S(x) ≤ g(x) − 1 ≤ b − 1 for each
x ∈ T .

For each X ⊆ V (G), X ̸= ∅ and NG(X) ̸= V (G).
Let Y = V (G) \ NG(X). Clearly, ∅ ̸= Y ⊆ V (G).

Claim 2: X ∩ NG(Y ) = ∅.
Proof of Claim 2. Assume that X ∩ NG(Y ) ̸= ∅, say
x ∈ X ∩ NG(Y ). By x ∈ NG(Y ), we have y ∈ Y and
xy ∈ E(G). Thus, y ∈ NG(x) ⊆ NG(X), contradicting
y ∈ Y = V (G) \ NG(X). 2

Claim 3: |NG(X)| > (b−1)n+|X|+bn′+2m−1
a+b−1 .

Proof of Claim 3. Using Claim 2, we have

|X| + |NG(Y )| ≤ n (31)

and

NG(Y ) ̸= V (G). (32)

According to (31), (32) and the definition of bind(G), we
get

bind(G) ≤ |NG(Y )|
|Y |

≤ n − |X|
|V (G) \ NG(X)|

=
n − |X|

n − |NG(X)|
. (33)

From (33), we have

|NG(X)| ≥ n − n − |X|
bind(G)

. (34)

Let F (t) = n − n−|X|
t . Then, by X ⊆ V (G), we obtain

F ′(t) =
n − |X|

t2
≥ 0.

Combining this with bind(G) ≥ (a+b−1)(n−1)
a(n−1)−bn′−2m+1 , we

get

F (bind(G)) ≥ F (
(a + b − 1)(n − 1)

a(n − 1) − bn′ − 2m + 1
).

Thus,

n − n − |X|
bind(G)

≥ n − n − |X|
(a+b−1)(n−1)

a(n−1)−bn′−2m+1

= n − (n − |X|)(a(n − 1) − bn′ − 2m + 1)
(a + b − 1)(n − 1)

.(35)

By (34), (35) and n ≥ (a+b−1)(a+b−2)−2
a + bn′+2m−1

a−1 , we
obtain

|NG(X)|

≥ n − n − |X|
bind(G)

≥ n − (n − |X|)(a(n − 1) − bn′ − 2m + 1)
(a + b − 1)(n − 1)

=
(b − 1)(n − 1)n + (a(n − 1) − bn′ − 2m + 1)|X|

(a + b − 1)(n − 1)

+
(bn′ + 2m − 1)n

(a + b − 1)(n − 1)

=
(b − 1)(n − 1)n + (n − 1)|X|

(a + b − 1)(n − 1)

+
((a − 1)(n − 1) − bn′ − 2m + 1)|X|

(a + b − 1)(n − 1)

+
(bn′ + 2m − 1)n

(a + b − 1)(n − 1)

≥ (b − 1)(n − 1)n + (n − 1)|X|
(a + b − 1)(n − 1)

+
((a − 1)(n − 1) − bn′ − 2m + 1)

(a + b − 1)(n − 1)

+
(bn′ + 2m − 1)n

(a + b − 1)(n − 1)

=
(b − 1)(n − 1)n + (n − 1)|X|

(a + b − 1)(n − 1)
(a − 1)(n − 1) + (bn′ + 2m − 1)(n − 1)

(a + b − 1)(n − 1)

=
(b − 1)n + |X| + bn′ + 2m − 1 + a − 1

a + b − 1

>
(b − 1)n + |X| + bn′ + 2m − 2

a + b − 1
Therefore, Claim 4 holds. 2

Since each ∅ ̸= X ⊆ V (G) satisfies |NG(X)| ≥
(b−1)n+|X|+bn′+2m+a−2

a+b−1 , we get

δ(G) ≥ (b − 1)n + a + bn′ + 2m − 1
a + b − 1

. (36)

Claim 4: δ(G) > (b−1)n+a+b+bn′+2m−3
a+b−1 .

Proof of Claim 4. Suppose that δ(G) ≤
(b−1)n+a+b+bn′+2m−3

a+b−1 . By (36),

⌈ (b − 1)n + a + bn′ + 2m − 1
a + b − 1

⌉

≤ δ(G)

≤ ⌊ (b − 1)n + a + b + bn′ + 2m − 3
a + b − 1

⌋.

That is,

⌈ (b − 1)n + a + bn′ + 2m − 1
a + b − 1

⌉

= δ(G)

= ⌊ (b − 1)n + a + b + bn′ + 2m − 3
a + b − 1

⌋.

This contradicts the condition of Theorem 10. 2
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Now, the result follows from Claim 3, Claim 4 and
Lemma 12. 2

G. Some Results on Fractional (a, b, n′,m)-critical
Deleted Graph

Let g(x) = a, f(x) = b for each x ∈ V (G). The suffi-
cient and necessity condition for fractional (a, b, n′, m)-
critical deleted graph derives from Lemma 1.

Lemma 13: Let G be a graph. Let a, b, n′, m be non-
negative integers such that a ≤ b. Then G is a fractional
(a, b, n′,m)-critical deleted graph if and only if

b|S| − a|T |+ dG−S(T ) ≥ bn′ +(
∑
x∈T

dH(x)− eH(T, S))

(37)
for all disjoint subsets S, T of V (G) with |S| ≥ n′.

Using standard techniques similar to that of Section II.
We get following result. We skip the detail proof.

Theorem 14: Let G be a graph of order n, and let
a, b, n′, and m be non-negative integers such that such
that a and b are two even integers with 2 ≤ a ≤ b. If
bind(G) > (a+b−1)(n−1)

bn−(a+b)−bn′−2m+3 and n ≥ (a+b)(a+b−3)
b +

bn′+2m
b−1 , then G is a fractional (a, b, n′,m)-critical deleted

graph.
Theorem 15: Let a, b, n′, n and m are non-negative

integers such that a and b are two even integers with
2 ≤ a ≤ b. Let G be a graph with order n such that
n ≥ (a+b−1)(a+b−2)+bn′+2m−2

b . If

|NG(X)| >
(a − 1)n + |X| + bn′ + 2m − 2

a + b − 1
holds for each non-empty independent subset X ⊆ V (G),
and

δ(G) >
(a − 1)n + a + b + bn′ + 2m − 3

a + b − 1
,

then G is a fractional (a, b, n′, m)-critical deleted graph.
Theorem 16: Let G be a graph of order n, and let

a, b, n′, and m be non-negative integers such that such
that a and b are two even integers with 2 ≤ a ≤ b,
n ≥ (a+b−1)(a+b−2)−2

b + bn′+2m
b−1 . If G satisfies

bind(G) ≥ (a + b − 1)(n − 1)
b(n − 1) − bn′ − 2m + 1

and

δ(G) ̸= ⌊ (a − 1)n + a + b + bn′ + 2m − 3
a + b − 1

⌋,

then G is a fractional (a, b, n′, m)-critical deleted graph.
Again, similar as what we discussed before, Theorem

14 and Theorem 15 are sharp in some sense.

IV. CONCLUSION

In this paper, we present some results on the frac-
tional (g, f, n′,m)-critical graphs by bounding the iso-
lated toughness and binding number. The new bound
contributes to the state of art and the results achieved in
our paper illustrates the promising application prospects
for information transmission in networks when some
channels and sites are destroyed.
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