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Abstract— Non-negative matrix factorization (NMF) is an
increasingly popular feature extraction method. Since it is
designed to fit training samples using linear combination of
non-negative basis vectors, it is particular suitable for image
applications as it affords intuitive localized interpretations.
However, in this space defined by the NMF basis images,
there has not been any systematic research to identify
suitable distance measure for NMF-based data classification.

In this paper, the performance of 19 distance measures
between feature vectors is evaluated based on the result of
the NMF algorithm for face recognition, which include most
of the standard distance measures used in face recognition,
as well as two new non-negative vector similarity coefficient-
based (NVSC) distances that we recommend for use in NMF-
based pattern recognition. Recognition experiments are
performed using the CMU AMP Face Expression database,
CBCL2 database, MIT-CBCL database, YaleB database, and
FERET database.

We also compared the performance of NMF with Eigen-
face method and showed that the NMF algorithm using the
NVSC distance yielded the best recognition results.

Index Terms— face recognition, non-negative matrix factor-
ization, distance measures

I. INTRODUCTION

During the past decade, face recognition has attracted
significant attention for its wide range of applications.
Principal Component Analysis (PCA) (i.e. Eigenface) has
been proven to be a successful face-based method to this
problem [1].

Whereas, it has some limitations. Firstly, although
PCA gives a very good representation of the images, it
has a poor discriminatory ability. Secondly, PCA basis
images lack intuitive visual meaning. Finally, the case
with occlusions is difficult to deal with since it is based
on extracting global face features.

Recently, a new method has been proposed for obtain-
ing a linear representation of data [2], which is called
non-negative matrix factorization (NMF), differing from
other methods by the usage of non-negativity constraints.
The initial data matrix representing the whole database
is approximately factorized into two nonnegative matrix
factors and consequently a part based representation of
images are produced because it allows only additive, not
subtractive, combinations of basis images.

In the paper, all the faces are projected into this NMF
space to obtain their corresponding feature vectors, and
then the distance between these vectors is calculated.
Although there exist many distance, such as the Euclidean
distance, the L1 and Mahalanobis distance, we are able to
find only few attempts to propose, compare and use other
distance measures [3]–[6] for NMF-based face recogni-
tion to achieve better recognition results. In [3], [4], a
few distance measures are discussed: the L1, L2, Cosine
and Earth Movers Distance (EMD), Cosine and Earth
Movers Distance (EMD), and a handwritten digit database
(MNIST) is used to obtain the performance evaluation of
different distance measures. There was no relevant result
corresponding to face image databases.

In this paper, the recognition performance of 19 dis-
tance measures are compared, including two new non-
negative vector similarity coefficient-based (NVSC) dis-
tance measures that we are advocating for use in NMF-
based face recognition. The experiments show that these
new distance measures are always among the best distance
measures with respect to different image databases and at
different settings.

We have used the Principal Component Analysis (i.e.
Eigenface) combined with its some distance measures
in common use for a direct comparison, and the ex-
perimental result also supports the conclusion that our
new distance measure combined with NMF can achieve
a better performance when identifying the probe images
in database.

This paper is organized as follows. The background
theory of PCA and NMF are introduced in Section
2. Sect.3 introduced the detailed definition of distance
measures used in this paper. In Sect.4, some description
of the image databases used in the paper are given.
Sect.5 discusses the experimental results of our face
recognition system based on the NMF algorithm. Finally,
the conclusions and the future work are presented in
Sect.6.

II. REVIEW OF PCA AND NMF
This section provides the background theory of PCA

and NMF for face recognition, which are both unsuper-
vised learning methods.
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A. Principal Component Analysis

Let X = {Xn ∈ Rd| n = 1, . . . , N} be an set of
vectors. First, the mean vector EX and covariance matrix
M are computed for the full data set.

EX =
1

N

N∑
n=1

Xn,

X̂ = {X̂n, n = 1, . . . , N} with X̂n = Xn − EX,

M = cov(X̂),

with

M(i, j) =
1

N − 1

N∑
n=1

(X̂n(i)X̂n(j)), 1 ≤ i, j ≤ d.

Next, the eigenvectors and eigenvalues of the matrix
M are computed, and sorted according to decreasing
eigenvalue. From matrix theory, it’s well known the
eigenvectors of the matrix M form an orthonormal basis.

Finally, the largest k such eigenvectors are chosen, then
the PCA of a vector y can be calculated by projecting it
onto the subspace which is spanned by these k eigenvec-
tors. It can be shown that this representation minimizes a
squared error criterion [7].

B. Eigenfaces

Essentially, Eigenface is the eigenvector associated with
large eigenvalues from the PCA method. After represent-
ing a face image using a weighted sum of eigenfaces, face
recognition is performed by comparing the corresponding
weight vectors between probe and reference faces.

C. NMF method

The algorithm is to acquire a linear representation of
data under non-negativity constraints. The following is the
basic idea.

First, an image database is represented as a n × m
matrix V , with each column corresponding to a initial face
image, including n non-negative elements characterizing
the pixel value and m is the number of images.

Then two new non-negative matrices (W and H) are
found to approximate the original matrix [2].

Vij ≃ (WH)ij =
r∑

a=1

WiaHaj ,W ∈ Rn×r,H ∈ Rr×m.

(1)
where matrix W consists of r non-negative basis vectors
and column vectors of H mean the weights when approx-
imating the corresponding column in V using the bases
from W .

No subtractions occur in the above NMF procedure
compared with the PCA approach, thus the non-negativity
constraints are compatible with the intuitive idea of com-
bining parts to form a whole face.

The update rule for NMF is shown below:
First an objective function to characterize the similarity

between V and WH is constructed:

F =

n∑
i=1

m∑
j=1

[
Vij log

Vij

(WH)ij
− Vij + (WH)ij

]
. (2)

Then an iterative algorithm converging to a local maxi-
mum of this objective function is derived [2]:

Wia ←Wia

∑
j

Vij

(WH)ij
Haj , (3)

Wia ←
Wia∑
j

Wja
, (4)

Haj ← Haj

∑
i

Wia
Vij

(WH)ij
. (5)

For the application of face recognition, the NMF algo-
rithm includes training and recognition stages, which are
detailed as below.

D. NMF-based training stage

This process contains 3 major steps. In the first step,
a n × m matrix V1 is used to represent all the training
images in one database.

Secondly, the NMF algorithm is applied to V1 and two
new matrices (W1 and H1) are obtained as in Sect.II-C,
s.t.

(V1)ij ≃ (W1H1)ij =
r∑

a=1

(W1)ia(H1)aj

where W1 is the base matrix, and H1 is the weight matrix.
Finally, different libraries are built to save the training

image representations and their corresponding representa-
tional bases for all the face databases described in Sect.4.

E. NMF-based recognition stage

Face recognition in the NMF linear subspace is per-
formed as follows.

1) Feature extraction: There are two ways to obtain
the feature vectors of training images and test images
[8], [9] (in the following text, we will refer to these two
approaches as proj = 1 or 2).

I. Approach 1 (i.e. proj = 1): Let W+ =
(WT

1 W1)
−1 WT

1 , then we project each training face
image Vi into the linear space as a feature vector
H ′

i = W+Vi which is then used as a prototype
feature point. A test face image Vt to be classified
is represented as H ′

t = W+Vt.

II. Approach 2 (i.e. proj = 2): Using the bases W1

obtained from the training process, the iterative
technique can be used in the original NMF algo-
rithm while keeping W1 fixed (i.e. do not use the
iterative update rules (3) and (4) to update W1).
Then, the weight matrix H2 could be acquired by
using the fixed set of bases (W1). The matrices H1

and H2 are the feature vectors of training images
and test images respectively.
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2) Classification: In this step, the mean feature vector
Hm of each class in the training set is calculated at
first; then we calculate all the distance measures (defined
in Sect.3) between the feature vector of test image and
the mean vector, dist(Ht,Hm); finally, we classify the
test image into the class which the closest mean vector
belongs to.

III. DISTANCE MEASURES

Provided that X,Y are feature vectors of length n
obtained by NMF method where X is the weight of probe
images, and Y is the weight of training images. While σ
is the auto-covariance matrix for weight vector of training
images, and {si, i = 1, · · · , n} represents the square root
of diagonal element in σ, i.e. the standard deviation for
training images. Then the distances between these feature
vectors can be calculated. All the definitions of distance
measures used in this paper are described as following
[3], [7], [10]–[14].

(1) Manhattan distance (L1 metric, city block distance)

d(X,Y ) =
n∑

i=1

|xi − yi| (6)

(2) Euclidean distance (L2 metric)

d(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2 (7)

(3) Chebychev distance (L-∞ norm)

d(X,Y ) = max
1≤i≤n

|xi − yi| (8)

(4) Mahalanobis distance

d(X,Y ) =
√
(X − Y )′σ−1(X − Y ) (9)

(5) Lance distance

d(X,Y ) =
n∑

i=1

|xi − yi|
|xi|+ |yi|

(10)

(6) Statistical distance

d(X,Y ) =
n∑

i=1

∣∣∣∣xi − yi
si

∣∣∣∣ (11)

(7) Divergence

d(X,Y ) =
n∑

i=1

(xi ln
xi

yi
− xi + yi) (12)

Like the Euclidean distance, it is also bounded below by
zero, and vanishes if and only if X = Y . But it is not a
metric, because it is not symmetric in X and Y , we will
refer to it as the divergence of X from Y .

(8) Kullback-Leibler distance (Relative Entropy)

d(X,Y ) =
n∑

i=1

x′
i log2

x′
i

y′i
, x′

i =
|xi|
n∑

i=1

|xi|
, y′i =

|yi|
n∑

i=1

|yi|
(13)

Like divergence, it also is not a metric, because it is not
symmetric in X and Y . Symmetrized versions of these
two distance measures are given below.

(9) Symmetrized divergence

d(X,Y ) =
n∑

i=1

(
xi ln

xi

yi
− xi + yi

)
+

n∑
i=1

(
yi ln

yi
xi
− yi + xi

)
=

n∑
i=1

(
xi ln

xi

yi
+ yi ln

yi
xi

)
(14)

(10) Symmetrized Kullback-Leibler distance

d(X,Y ) =
n∑

i=1

x′
i log2

x′
i

y′i
+

n∑
i=1

y′i log2
y′i
x′
i

,

x′
i =

|xi|
n∑

i=1

|xi|
, y′i =

|yi|
n∑

i=1

|yi|
(15)

(11) Earth mover’s distance (EMD)
The EMD distance, which can be understood as the

minimal cost for transforming one feature distribution into
another [3], is defined below:

Find a set of fij that minimizes the overall cost:

d(X,Y ) = min
∑
i

∑
j

dijfij , (16)

subject to the following constraints:

fij ≥ 0, xi ≥ 0, yj ≥ 0,∑
i

fij ≤ yj ,∑
j

fij ≤ xi,

∑
i

∑
j

fij = min

∑
i

xi,
∑
j

yj

 .

where dij = 1 − corr(wi, wj), and corr(wi, wj) means
the correlation coefficient between the NMF basis vectors
wi and wj .

This metric has been used in problems where models
were non-negative feature distributions, such as color
histograms.
(12) Mahalanobis angle distance

d(X,Y ) = 1− X ′σ−1Y√
X ′σ−1X

√
Y ′σ−1Y

(17)

(13) Chi square distance

d(X,Y ) =

n∑
i=1

(xi − yi)
2

xi + yi
(18)

(14) Exponential similarity coefficient-based distance

d(X,Y ) = 1−γ2(X,Y ), γ(X,Y ) =
1

n

n∑
i=1

e
− 3

4

(xi−yi)
2

s2
i

(19)
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(15) Non-parametric similarity coefficient-based distance

d(X,Y ) = 1− γ2(X,Y ), γ(X,Y ) =
n+ − n−

n+ + n−
(20)

here x′
i = xi−xi, y

′
i = yi−yi, n+ means the frequency of

{x′
iy

′
i ≥ 0, i = 1, · · · , n}, and n− means the frequency

of {x′
iy

′
i < 0, i = 1, · · · , n}.

(16) Cosine distance

d(X,Y ) = 1− cos(X,Y ) = 1−

n∑
i=1

xiyi√(
n∑

i=1

x2
i

)(
n∑

i=1

y2i

)
(21)

(17) Correlation coefficient-based distance (CCBD)

d(X,Y ) = 1− γ(X,Y ),

γ(X,Y ) =

n∑
i=1

(xi − x)(yi − y)√
[
n∑

i=1

(xi − x)2][
n∑

i=1

(yi − y)2]

(22)

The above four distance measures are all similarity
coefficient-based distances. Two distance measures are
considered which originated from the theory of multi-
variate clustering analysis [7] and seem not to have been
used in face recognition. Since they are derived from a
similarity coefficient specifically defined for non-negative
vectors, they will be suitable distance measures for NMF
application.
(18) Non-negative vector similarity coefficient-based (N-
VSC1) distance 1

d(X,Y ) = 1− γ2(X,Y ), γ(X,Y ) =

n∑
i=1

min(xi, yi)

n∑
i=1

max(xi, yi)

(23)
(19) Non-negative vector similarity coefficient-based (N-
VSC2) distance 2

d(X,Y ) = 1− γ2(X,Y ), γ(X,Y ) =

n∑
i=1

min(xi, yi)

n∑
i=1

(xi + yi)/2

(24)
The Euclidean distance, the Mahalanobis distance and

Manhattan distance are the most widely-used in pattern
recognition among all the above distance functions.

IV. TESTING DATABASES USED IN THIS PAPER

A. CBCL database

The MIT-CBCL face recognition database [15] involves
face images of 10 subjects which are classified into
two sets: high resolution pictures, and synthetic images
(324/subject) rendered from 3D head models of the 10
subjects. In the paper, the second set is used which
includes images varying in illumination and pose.

B. CMU AMP face expression database

There are 13 subjects and each one has 75 images
showing different expressions in the database (AMP Lab,
CMU).

C. YaleB database

The Yale Face Database B (YaleB) [16] consists of
5850 source images of 10 subjects each captured under
585 viewing conditions (9 poses × 65 illumination con-
ditions). In the preprocess stage, align all frontal pose
images by the centers of eyes and mouth and the rest
images by the center points of the faces. Then normalize
all images with the same resolution 92 × 112.

D. CBCL2 database

This database [17] is from the Center for Biological
and Computational Learning at M.I.T. Similar to the MIT-
CBCL face recognition database, it contains gray-scale
static images of human face of 10 subjects. There are
totally 3080 synthetic images (308/subject) rendered from
3D head models of the 10 subjects.

E. FERET database

The Facial Recognition Technology (FERET) database
was sponsored by the Department of Defenses Counter-
drug Technology Development Program [18]. We selected
120 persons, 6 frontal-view images for each individual.
Face image variations in these 720 images include illu-
mination, facial expression, partial occlusion and aging
[18]. All images are aligned by the centers of eyes and
mouth and then normalized with resolution 92 × 112. The
pixel value of each image will be normalized to [0, 1].

We use matlab to resize all the images in the above
databases to 1/16 of the original size to reduce the
computational complexity, then apply NMF algorithm on
the downsampled image sets.

V. EXPERIMENT

In this section, a face recognition system is built to
evaluate the performance of 19 different distance mea-
sures using images from databases described in Sect.4.
The system applies traditional NMF algorithm for face
recognition as in Sect.2. In all the experiments, tr images
per person are selected from the database to form a
training set and the remainder is the test set. A set
of experiments are set on the above system, then the
performance of all the distance measures for NMF-based
face recognition is assessed.

First, for the NMF algorithm, we compare the two
ways to obtain feature vectors (see Sect.II-E.1), then the
recognition rates for the five different databases with
different experimental settings (tr = 10, 2, 20, 50 and 2;
dimensionality of feature vectors at 80, and proj = 1 or
2 means the way of feature extraction.) are summarized
in Table I. To facilitate comparison, we use bold fonts
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TABLE I.
RECOGNITION RATE OF ALL THE DISTANCE MEASURES (proj = 1, 2)

Distance CBCL (tr=10, p=80) CMU AMP (tr=2, p=80) YaleB (tr=20, p=80) CBCL 2 (tr=50, p=80) FERET (tr=2, p=80)
measure proj = 1 proj = 2 proj = 1 proj = 2 proj = 1 proj = 2 proj = 1 proj = 2 proj = 1 proj = 2
distance 1 0.8147 0.8879 0.9810 1.0000 0.2940 0.2853 0.5806 0.6101 0.6688 0.6292
distance 2 0.8182 0.8920 0.9810 0.9874 0.3066 0.2832 0.6004 0.5934 0.6729 0.6208
distance 3 0.5344 0.6213 0.9579 0.9157 0.2490 0.2527 0.3271 0.3833 0.4688 0.4188
distance 4 0.7917 0.8475 0.9831 0.9947 0.3696 0.3561 0.6004 0.6097 0.7042 0.6500
distance 5 0.3850 0.7545 0.8662 0.9737 0.1607 0.2554 0.3841 0.5392 0.5479 0.4875
distance 6 0.3914 0.4395 0.3920 0.6575 0.1046 0.1697 0.4795 0.5450 0.1250 0.1438
distance 7 0.5334 0.8847 0.9515 0.9842 0.2609 0.3618 0.4988 0.5965 0.5771 0.6521
distance 8 0.5430 0.8691 0.9536 0.9842 0.2632 0.3320 0.4992 0.5926 0.5729 0.6667
distance 9 0.8143 0.8873 0.9768 0.9990 0.2851 0.3039 0.5419 0.5868 0.6646 0.6479
distance 10 0.8048 0.9127 0.9789 1.0000 0.2749 0.3501 0.5415 0.5926 0.6729 0.6875
distance 11 0.1643 0.7656 0.0938 0.9536 0.1062 0.1979 0.1333 0.4810 0.0063 0.3896
distance 12 0.8357 0.9038 0.9926 0.9895 0.2131 0.2761 0.6287 0.6194 0.7396 0.7188
distance 13 0.8726 0.9140 0.9800 0.9990 0.3331 0.3239 0.5845 0.6174 0.6896 0.6708
distance 14 0.3392 0.6478 0.7724 0.8714 0.1011 0.1710 0.3190 0.5225 0.2125 0.1875
distance 15 0.1000 0.1000 0.0769 0.0769 0.1000 0.1000 0.1000 0.1000 0.0083 0.0083
distance 16 0.8662 0.9392 0.9842 0.9905 0.3689 0.3899 0.6078 0.6054 0.7125 0.6875
distance 17 0.8503 0.9226 0.9968 0.9926 0.3614 0.3869 0.6093 0.6190 0.7167 0.6896
distance 18 0.3901 0.9436 0.9831 0.9979 0.1039 0.3722 0.5752 0.6198 0.6625 0.6938
distance 19 0.3768 0.9436 0.9831 0.9979 0.1012 0.3722 0.5752 0.6198 0.6583 0.6938

for the best 3 measures in each experimental setting.
From the last two rows of Table I, we see that the
NVSC1 and NVSC2 distance almost always have the
same performance, thus in later experiments we shall just
display the results from NVSC1.

From Table I, we can see that:
If proj = 1, the best distance measures are the Cosine

distance (distance 16) and the CCBD distance (distance
17); and if proj = 2, the best distance measures are the
CCBD distance and the NVSC distance.

Comparing the results between proj = 1 vs. proj = 2,
then clearly, the second feature extraction method is better
overall, especially for the CBCL, CMU AMP and YaleB
image databases. (however, the advantage of the first
feature extraction approach is less computation load and
time, so it’s the more common in use.) Some typical
cases are further shown in Fig.1, where we vary the
dimensionality of feature vectors and just use the best
distance measures corresponding to different feature ex-
traction method to make the comparison. From this figure,
we see the second approach almost always achieves the
better result as p varies. (In the following text, therefore,
we shall just focus on the result of the second feature
extraction method for comparison.)

We find that the commonly used Euclidean distance
(distance 2), Mahalanobis distance (distance 4) and Man-
hattan distance (distance 1) were not particularly effective
based on the second feature extraction method. Among
these three popular distance measures, Mahalanobis dis-
tance (distance 4) performed best but was ranked in the
top 3 in just 1 case (when proj = 2). Among all the
conventional distance measures (distance 1–6, and 12–
17), the CCBD distance (distance 17) achieved the best
result and was ranked as one of the best 3 measures in 4
cases (when proj = 2).

For the distance measures designed for non-negative
vectors, the divergence (distance 7), Kullback-Leibler dis-
tance (distance 8), as well as their symmetrized versions

(distance 9, 10), were not particularly effective; the EMD
distance, which involves linear optimization and therefore
takes much more computational time, also failed to obtain
a satisfactory result. We obtained the best result by the N-
VSC distance (distance 18-19) so far. The NVSC distance
was one of the best 3 measures in all (when proj = 2)
but one case [CMU AMP database, with dimensionality
set at 80 and 2 training images]. And even in that case, it
was the 4th ranked with a recognition rate 0.9979 ! The
NVSC distance was in fact ranked the top performer in
2 cases out of the 5 sets of experiments in addition to
being a consistently good performer. Moreover, it’s also
computationally very efficient since its definition is very
simple.

Secondly, for further comprehensive comparison of
performance corresponding to different value of tr, using
the second approach for feature extraction (proj = 2),
the dimensionality of the feature vectors is fixed and
the recognition rates vs. the value of tr for the CBCL
and CMU AMP databases are plotted in Fig.2, where
p is the dimensionality of the feature space, and we
just concentrate on Euclidean distance, the Manhattan
distance, CCBD distance, Mahalanobis distance and the
NVSC distance.

In Fig.2, we find that our NVSC distance consistently
emerges as the best distance measure across a wide range
of tr. So we consider it’s better than the CCBD distance
corresponding to different experimental setting in face
recognition system.

Thirdly, to make another further comparison, we now
fix the value of tr and vary p, then obtain the recognition
rates for different databases. Some typical cases are shown
in Fig.3, where we plot the respective recognition rates
(given proj = 2) vs. the dimensionality of feature vectors
for the CBCL database (tr = 10), YaleB database (tr =
20), and FERET database (tr = 2).

From Fig.3, we see that although the CCBD distance
and our NVSC distance achieved similar performance
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Figure 1. Recognition rate of different feature extraction methods.

when fixing the value of tr, they both consistently per-
formed better than the Manhattan distance, Euclidean
distance, and Mahalanobis distance clearly across a wide
range of dimensionality.
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Figure 2. Recognition rate of different distance measures when fixing
the dimensionality p.
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Figure 3. Recognition rate of different distance measures when varying
the dimensionality p.
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Figure 4. Result comparison with Eigenface.

Finally, to get an overall performance evaluation of
our method, we use the Eigenface method as benchmark
algorithm. To facilitate the comparison, we just use the
Manhattan distance, Euclidean distance, Mahalanobis dis-
tance (those are all distance measures in common use, and
especially from [11] we know the Mahalanobis distance
generally achieve the best recognition results when com-
bined with the Eigenface method) and NVSC1 distance
for feature vectors based on the Eigenface method.

The results at different dimensionality and databases
are plotted in Fig.4 (the result of CMU AMP database is
omitted since the recognition rates of different methods
are all too close to 1).

From this figure, we see that:
I. The NVSC1 distance did not lead to a good per-

formance when combined with Eigenface method.
In accordance with its definition, it should only be
used for non-negative feature vectors and thus is not
suitable for use with Eigenface.

II. On all the databases, our NVSC1 distance in con-
junction with NMF algorithm (proj = 2) always
achieves the best result and better than any distance
measures combined with Eigenface method.

Based on all the experimental results for face recog-
nition, we conclude that the second feature extraction
approach and the NVSC distance are the most suitable for
the NMF-based face recognition. Using them, the NMF
method performs better than the Eigenface method.

VI. CONCLUSIONS & FUTURE WORK

As a relative new technique for feature extraction, NMF
lacks of a suitable metric distance to work with its non-
negative feature vectors. Some traditional distances such
as L1, L2 and Cosine distance are all in common use
for pattern recognition problem, but they do not take
into account the positive property of NMF-based feature
vector.

In this paper, we compared 19 distance measures for
NMF-based face recognition, then showed that it is pos-
sible to define a metric for NMF that can remarkably
improve the recognition results using the same training set
of face images. All the experiments are performed using
5 different face databases. Based on all the experimental
results, we concluded:

1) The second NMF-based feature extraction method
generally performs better than the first method.

2) Our NVSC distance measure (combined with the
second NMF-based feature extraction method) is
consistently among the best measures in the face
recognition experiments and always performs better
than the Euclidean distance, the Mahalanobis dis-
tance and the Manhattan distance, which are often
used in pattern recognition systems. The effective-
ness of the NVSC measure stems from the fact that
it is specifically designed for non-negative vectors,
so it is the most appropriate for NMF-based face
recognition. The entropy-based measures (distance
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7-10) can also deal with non-negative vectors, but
they are primarily designed for probability distribu-
tions and are not effective in coping with vectors
with many zero coefficients.
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