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Abstract—The efficiency and performance of the Twin 
Support Vector Machines (TWSVM) are better than the 
traditional support vector machines when it deals with the 
problems. However, it also has the problem of selecting 
kernel functions. Generally, TWSVM selects the Gaussian 
radial basis kernel function. Although it has a strong 
learning ability, its generalization ability is relatively weak. 
In a certain extent, this will limit the performance of 
TWSVM. In order to solve the problem of selecting kernel 
functions in TWSVM, we propose the twin support vector 
machines based on the mixed kernel function (MK-TWSVM) 
in this paper. To make full use of the learning ability of local 
kernel functions and the excellent generalization ability of 
global kernel functions, MK-TWSVM selects a global kernel 
function and a local kernel function to construct a mixed 
kernel function which has the better performance. The 
experimental results indicate that the mixed kernel function 
makes TWSVM have the good learning ability and 
generalization ability. So it improves the performance of 
TWSVM.  
 
Index Terms—mixed kernel function; TWSVM; kernel 
function 

I.  INTRODUCTION 

Support Vector Machine (SVM) was proposed by 
Vapnik [1-3] et al firstly. It is based on the VC dimension 
theory and the principle of structural risk minimization in 
the statistical learning theory [4-5]. It has been applied in 
many fields [6-11] and there have been many 
improvements [12]. In 2001, Fung and Mangasarian [13] 
proposed the Proximal Support Vector Machines (PSVM). 
PSVM uses the equality constraints instead of the 
inequality constraints in the traditional SVM to make the 
calculation of PSVM simple. But for the points near the 
separating hyperplane, the classification accuracy is 

insufficient. In 2006, based on the study of PSVM, 
Proximal SVM based on Generalized Eigenvalues 
(GEPSVM) was proposed by Mangasarian [14] et al. 
GEPSVM cancels the constraint that the two hyperplanes 
must be parallel in PSVM. GEPSVM makes each type of 
sample points as close as possible to its hyperplane and as 
far away as possible from the other sample points. 
Further, the solution of the problem is converted to the 
solution of the smallest eigenvalue of the two generalized 
eigenvalue problems to obtain the global extremum [15]. 
Thereafter, in 2007, based on the PSVM and GEPSVM, 
Jayadeva [16] et al proposed Twin Support Vector 
Machines (TWSVM). TWSVM solves a hyperplane for 
each type of sample points and makes each type of 
sample points as close as possible to its hyperplane and as 
far away as possible from another type of sample points’ 
hyperplane. The two hyperplanes in TWSVM have no 
constraint on the parallel condition. The binary 
classification problem is converted to two smaller 
quadratic programming problems by TWSVM. 

Because TWSVM has the solid theoretical foundation 
and the superiority of solving problems, many scholars 
have contributed to the study of TWSVM since TWSVM 
was proposed [17-18]. There have been many 
achievements in the efforts of research workers. For 
example, Jing Chen [19] proposed Weighted Least 
Squares TWSVM (WLSTWSVM), Qi Zhiquan [20] 
proposed a new type of Robust Twin Support Vector 
Machine for pattern classification, in 2009, Xinsheng 
Zhang [21] et al applied TWSVM to the detection of 
MCs. 

However, all of these improved algorithms have the 
problem of selecting kernel functions consistently. The 
selection of the kernel function will affect the 
performance of the algorithm directly. Most algorithms 
only select a global kernel function or a local kernel 
function. However, both the global kernel function and 
the local kernel function have certain deficiencies. The 
global kernel function has a good generalization ability, 
but its learning ability is relatively weak. The local kernel 

Manuscript received August 1, 2013; revised September 2, 2013;
accepted September 28, 2013. 
This work is supported by the National Natural Science Foundation of
China (No.61379101), and the National Key Basic Research Program of
China (No.2013CB329502). 
Corresponding author, Shifei Ding, Email:dingsf@cumt.edu.cn. 

1690 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.7.1690-1696



-12 -10 -8 -6 -4 -2 0 2 4 6 8
-10

-8

-6

-4

-2

0

2

4

6

8

Figure.1 the basic idea of TWSVM 

function has a good learning ability, but its generalization 
ability is relatively weak. This will affect the performance 
of the algorithm. This paper proposes Twin Support 
Vector Machines based on Mixture Kernel Function 
(MK-TWSVM) to further improve the performance of 
TWSVM. MK-TWSVM uses a global kernel function 
and a local kernel function to construct a new kernel 
function. This mixed kernel function takes the learning 
ability and generalization ability into full account to find 
a best balance point among them. Since MK-TWSVM 
makes use of the learning ability of the local kernel 
function and the generalization ability of the global 
kernel function, it improves the performance of TWSVM. 

The rest of this paper is organized as follows: Section 
II briefly describes the mathematical model of TWSVM 
and analyzes the learning ability and generalization 
ability of several commonly used kernel functions in 
detail. Section III constructs the mixed kernel function 
and describes MK-TWSVM. Section IV analyzes the 
experimental results in detail. Finally, we summarize and 
conclude the paper. 

II. TWSVM 

In 2007, Twin Support Vector Machines (TWSVM) 
was proposed by Jayadeva[16] et al. The solution of 
binary classification problem is converted to the solution 
of two smaller quadratic programming problems by 
TWSVM [14]. And then it gets two non-parallel 
hyperplanes. It makes each type of sample points as close 
as possible to its hyperplane and as far away as possible 
from another type of sample points’ hyperplane. We use 
A and B to represent the two hyperplanes. If a sample 
point is closer to A, it belongs to the category which A 
represents. If a sample point is closer to B, it belongs to 
the category which B represents. Shown in Figure 1, the 
two lines represent the two classified hyperplanes, and 
the purple dots and green dots represent the training 
points of Category 1 and Category -1. 

 

A. The mathematical model of TWSVM 

We assume that there are l training samples in the 
space of nR  and they all have n  attributes. 1m samples 

of them are part of the positive class and 2m samples of 
them are part of the negative class. We use the matrix of 

1A(m n)×  and the matrix of 2B(m n)×  to represent them 
respectively. Finding two non-parallel hyperplanes in the 
space of nR is the solving process of TWSVM: 

1 1 2 2+ 0 + 0T Tx w b x w b= = and              (1) 
However, in the nonlinear separable case, we need to 

introduce the kernel function ( , )T TK x C . At this time the 
two hyperplanes of TWSVM are as following: 

1 1 2 2( , ) + 0 ( , ) + 0T T T TK x C w b and K x C w b= =    (2)   
We construct the solution of the problems and it is as 

following: 
21

min ( , ) +e1 1 1 1 22
T TK A C w b c e ζ+             (3) 

. ( ( , ) +e ) , 0,1 2 1 2
Ts t K B C w b eζ ζ− + ≥ ≥     (4) 

21
min ( , ) +e2 2 2 2 12

T TK B C w b c e ζ+            (5) 

. ( ( , ) +e ) , 0,2 1 2 1
Ts t K A C w b eζ ζ− + ≥ ≥    (6) 

In the above formula, [ ]TTC A B= , 1e is the unit column 
vector which has the same number of rows with the 
kernel function of ( , )TK A C , 2e is the unit column vector 
which has the same number of rows with the kernel 
function of ),( TCBK . ξ  is the slack vector, 

T
mxxxA ],...,,[ )1(

1
)1(

2
)1(

1= , T
mxxxB ],...,,[ )1(

1
)1(

2
)1(

1= , )( i
jx  

represents the j th sample in the i th class. 
The distance between the test samples and the 

hyperplanes determines which category the test samples 
will be classified as. It means that if 

1,2
( , ) min ( , )T T T T

r r l ll
K x C w b K x C w b

=
+ = + ,           (7) 

 x belongs to the r th class and }2,1{∈r . 

B.  The kernel function 
Data which are linearly inseparable in the low-

dimensional space can be mapped into a high 
dimensional feature space by the kernel function to be 
linearly separable. And this avoids "the curse of 
dimensionality” when it computes in the high 
dimensional feature space. 

Theorem 1 (Mercer) [22]:  
When 2( ) ( )Ng x L R∈ and 2( , ) ( )i N Nk x x L R R∈ × , if 

' '( , ) ( ) ( ) 0k x x g x g x dxdy ≥∫∫ is right, we 
have ' '( , ) ( ( ) ( ))k x x x x= Φ ⋅Φ , it means that k is the inner 
product of the feature space. 

According to the Mercer theorem, the following 
properties of kernel functions can be easily proved out. 
By the following properties, based on the common kernel 
functions, we can construct a new kernel function which 
we want. And this new kernel function can be used to 
improve our algorithm with the better performance. 
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Property 1 [23]: Let 1k  and 2k  are the kernel 
functions defined on X X×  when a R+∈ . Then the 
following functions are kernels: 

1 2( , ) ( , ) ( , )k x z k x z k x z= +                         (8) 
1( , ) ( , ) 0k x z ak x z a= >                          (9) 

The most commonly used kernel functions are the 
linear kernel function, the polynomial kernel function, 
Gaussian radial basis kernel function and the sigmoid 
kernel function. Their expressions are as follows: 

1. The linear kernel function: 
( , )i iK x x x x= ⋅                               (10) 

2. The polynomial kernel function: 
( , ) ( ( ) ) , 0d

i iK x x x x rγ γ= ⋅ + >             (11)  
3. The Gaussian radial basis kernel function: 

2

2( , ) exp( )
2

i
i

x x
K x x

σ
⋅

= −                     (12) 

4. The sigmoid kernel function: 
( , ) tanh( ( ) )i iK x x x x cν= ⋅ +                  (13) 

In TWSVM, once the kernel function and its 
parameters are determined, the model of TWSVM is 
determined. It evaluates the model of an algorithm with 
its learning ability and generalization ability. The kernel 
functions can usually be divided into two categories: 
global kernel functions and local kernel functions. The 
global kernel functions have a good generalization ability. 
Because it allows the data points which are very far away 
from each other to have an effect on the kernel function. 
But its learning ability is weak. The local kernel functions 
have a good learning ability, but its generalization ability 
is weak. That is because it only allows closely spaced 
data points to have an effect on the kernel function. 

The next we will analyze the sigmoid kernel function 
which is one of the global kernel functions and Gaussian 
radial basis kernel function which is one of the local 
kernel functions. 

The sigmoid kernel function is a common global 
kernel function and its expression is as following: 

 ( , ) tanh( ( ) )i iK x x x x cν= ⋅ +                   (14) 
Figure 2 is a graph at the test point of 0.1when c in the 

sigmoid kernel function is a fixed value and v  in the 
sigmoid kernel function has different values.From the 
Figure 2 we can see that the sigmoid kernel function has 
better results and generalization ability when v  has the 
value of 1 or 2. 

Figure 3 is a graph at the test point of 0.1when v in the 
sigmoid kernel function has the value of 2 and c  in the 
sigmoid kernel function has different values. From the 
Figure3 we can see that the sigmoid kernel function has 
better results and generalization ability when 4≥c , and 
the output values reach a steady state. 

If we further analyze the Figure 3, we can know 
whether the data points near the test data point or not can 

have an effect on the sigmoid kernel function, but at the 
test point its learning ability is relatively poor. After 
several experiments, we conclude that v with the value of 
2 is more appropriate.  

Gaussian radial basis kernel function is a common 
local kernel function and its expression is as following: 

2

2( , ) exp( )
2

i
i

x x
K x x

σ
⋅

= −                       (15) 

Figure 4 is a graph of Gaussian radial basis kernel 
function at the test point of 0.1when σ  expressed in 
Figure 4 by p  has different values. As it can be seen 
from Figure 4, Gaussian radial basis kernel function at 
the test point has a strong learning ability. But its 
generalization ability is relatively poor, because it only 
allows closely spaced data points to have an effect on the 
kernel function. We can see from the figure 4, the 
parameter value and learning ability are inversely 
proportional. That means the greater the parameter value 
is, the worse its learning ability will be. After a lot of 
experiments and practice, we know that the value of σ  
between 0.1 and 1 is better in general. 
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c5=5,v=2
c6=10,v=2

 

Figure.3 The graph of the sigmoid kernel function ( 2=v ) at the test 
point of 0.1 
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Figure.2 The graph of the sigmoid kernel function ( 1=c ) at the test 
point of 0.1 
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Figure.4 The graph of Gaussian radial basis kernel function at the test 

point of 0.1 
 

III. USING THE MIXED KERNEL FUNCTION TO IMPROVE 
THE TWSVM  

Although there are many improved algorithms of 
TWSVM including optimization of parameters in kernel 
functions, these algorithms don’t fundamentally change 
the learning ability and generalization ability of the 
kernel functions to improve the performance of TWSVM. 
We take the improvement of the generalization and 
learning ability in the kernel function as a starting point, 
and then this paper proposes the twin support vector 
machines based on the mixed kernel function. This 
algorithm makes full use of the generalization ability of 
global kernel functions and the learning ability of local 
kernel functions to improve the performance of TWSVM. 

A. The Mixed Kernel Function 
This paper selects the sigmoid kernel function which is 

a common global kernel function and Gaussian radial 
basis kernel function which is a common local kernel 
function as the basic kernel functions to construct a 
mixed kernel function. Then it will be used to improve 
the performance of TWSVM. Based on this idea, we 
construct a function which is as following: 

1 2( , ) ( , ) ( , ), 0, 0i i iK x x aK x x bK x x a b= + > >            (16) 
In formula (16), 1( , )iK x x  is the sigmoid kernel function 

and 2 ( , )iK x x  is Gaussian radial basis kernel function. 
The next, let us prove that this mixed function is an 

admissible kernel function. 
Proof: According to the above-mentioned formula (9), 

1( , )iaK x x  with 0a > is an admissible kernel function. 

Similarly, 2 ( , )ibK x x with 0b >  is an admissible kernel 
function. Let 3 1( , ) ( , ) 0i iK x x aK x x where a= > and 

4 2( , ) ( , ) 0i iK x x bK x x where b= > ， then both 

3 ( , )iK x x  and 4 ( , )iK x x are admissible kernel functions. 

Let 5 3 4( , ) ( , ) ( , )i i iK x x K x x K x x= + , then according to the 

above-mentioned formula (8), 5 ( , )iK x x  is an admissible 

kernel function. 5 ( , )iK x x is just the ( , )iK x x . Therefore, 

1 2( , ) ( , ) ( , ) 0 0i i iK x x aK x x bK x x with a and b= + > >  is an 
admissible kernel function. QED. 

a and b in the formula (16) represent the percentages of 
the sigmoid kernel function and Gaussian radial basis 
kernel function in the mixed kernel function. In order to 
ensure that the mixed kernel function does not change the 
reasonableness of the original mapping, generally, let 
0 , 1a b≤ ≤ and 1a b+ = [23]. According to this, the formula (16) 
can be converted to: 

1 2( , ) ( , ) (1 ) ( , ) 0 1i i iK x x K x x K x xλ λ λ= + − ≤ ≤          (17) 
In formula (17), 1( , )iK x x  is the sigmoid kernel function 

and 2 ( , )iK x x  is Gaussian radial basis kernel function. 
Therefore, the final mathematical expression of the mixed 
kernel function is as following: 

2

2( , ) tanh( ( ) ) (1 ) exp( ) 0 1
2

i
i i

x x
K x x x x cλ ν λ λ

σ
⋅

= ⋅ + + − − ≤ ≤   (18) 

Let 21 / 2s σ= then the formula (18) can be converted 
to: 

2( , ) tanh( ( ) ) (1 ) exp( ) 0 1i i iK x x x x c s x xλ ν λ λ= ⋅ + + − − ⋅ ⋅ ≤ ≤             
(19) 

Figure 5 is a graph of the mixed kernel function at the 
test point of 0.1 when 2 , 10cν = = and λ  has different 
values. a in the Figure 5 represents the parameter λ  in 
the  mixed kernel function. It can be seen from the Figure 
5 that the generalization ability and learning ability of the 
mixed kernel function will be different when λ has 
different values which means that the percentage of the 
sigmoid kernel function and Gaussian radial basis kernel 
function changes. The generalization ability of the mixed 
kernel function will be enhanced when the value of 
λ increases. For different data sets, λ will have different 

values to achieve the best results. 

B. The Description of MK-TWSVM 
MK-TWSVM is described as follows： 
Step1 Import the data sets and divide these data sets 

into two randomly. One is 80% of the data, and the other 
is 20%. 

Step 2 Set the parameters in the sigmoid kernel 
function and initialize the algorithm. 
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Figure.5 The graph of the mixed kernel function at the test point of 0.1
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Step 3 Take the 80% of the data for training and 
determine the value of λ in the mixed kernel function, 
the value of σ in Gaussian radial basis kernel function 
and the value of 1c 、 2c  in TWSVM by the grid 
searching method.  

Step 4 Calculate the classification accuracy with the 
parameter values from Step 3. 

Step 5 Determine whether it is the global optimum 
accuracy. If it is the global optimum accuracy, update the 
global optimum value and record this optimal parameter 
values. If it is not the global optimum accuracy, Jump to 
the Step 6. 

Step 6 Determine whether it reaches the end condition 
of the grid cycle. If it does not, Jump to the Step 3. If it 
does, Jump to the Step 7.  

Step 7 Bring the optimal parameters from the training 
into TWSVM. And then the final model of MK-TWSVM 
is determined. 

Step 8 After the model of MK-TWSVM is determined, 
take the remaining 20% of the data for testing to get the 
test classification accuracy. 

Step 9 Stop operations. 
The flow chart of MK-TWSVM is shown in Figure 6. 

By this flow chart, we can intuitively understand the 
process of MK-TWSVM proposed by this paper. And the 
nine steps of the algorithm described above are clearly 
expressed in Figure 6. This will help us understand the 
algorithm. 

 
Figure.6 The flow chart of MK-TWSVM 
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IV. ANALYSIS OF THE EXPERIMENTAL RESULTS 

This paper selects five common data sets in the UCI 
machine learning database to test and validate the 
algorithm proposed by us. The 80% of the data will be 
used for training and the remaining 20% of the data will 
be used for testing. Since we want to verify that the 
mixed kernel function proposed by this paper will 
improve the performance of TWSVM, we only do the 
nonlinear experiments. The five data sets are ionosphere 
data set, Sonar data set, votes data set, bupa data set and 
Hepatitis data set. Using the MATLAB environment, we 
do these experiments on a PC. In this algorithm, the value 
of v in the sigmoid kernel function is 2 and the value of 
c  in the sigmoid kernel function is 10. We will get the 
optimal values of λ  in the mixed kernel function, s in 
Gaussian radial basis kernel function and 1 2,c c in 
TWSVM through grid computing. For different data sets, 
their values are different. 

The used data sets are sonar data set, ionosphere data 
set, Votes data set, bupa data set and Hepatitis data set in 
these experiments. Their characteristics are shown in 
Table I. 

TABLE I． 

THE DATA CHARACTERISTICS OF THE DATA SETS 

Data sets The number of 
samples 

The number of 
attributes 

Sonar 208 60 
Ionosphere 351 34 

Votes 435 16 
bupa 345 7 

Hepatitis 155 19 
 
In the experiments, MK-TWSVM randomly selects 

80% of the data to be used for training and then it gets the 
optimal parameters to determine the model. Then, the 
remaining 20% of the data is used for testing to get the 
corresponding classification accuracy. We compare the 
experimental results of MK-TWSVM with PSVM, 
GEPSVM and TWSVM. The Table II shows the results 
of the comparison. 

TABLE II 

THE EXPERIMENTAL RESULTS 

Data sets MK-TWSVM TWSVM GEPSVM PSVM
Sonar 93.02 89.64 85.97 82.79 

Ionosphere 95.77 87.46 84.41 90.83 
Votes 96.59 94.91 94.5 93.70 
bupa 69.57 68.64 68.18 65.8 

Hepatitis 82.35 81.39 79.28 78.57 
 

In order to visually observe the experimental results, 
we plot the results in Figure 7. The ordinate represents 
the classification accuracy values. The abscissa of 1 
represents the sonar data set. The abscissa of 2 represents 
the bupa data set. The abscissa of 3 represents the 
ionoshere data set. The abscissa of 4 represents the 
Hepatitis data set. The abscissa of 5 represents the Votes 
data set. The effect diagram is shown in Figure 7: 
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Figure.7 The effect diagram of the comparison 

We can see from the test results that the classification 
accuracy of MK-TWSVM proposed by this paper has 
increased significantly, compared with the traditional 
classification algorithms. In Figure 7, we can see more 
intuitively that the classification accuracy curve of MK-
TWSVM is obviously above the classification accuracy 
curves of TWSVM, GEPSVM and PSVM. It means that 
the classification accuracy of MK-TWSVM is better than 
theirs and has significantly improved. Why can it be able 
to achieve such a significant effect? It is because that 
MK-TWSVM has used the mixed kernel function. The 
mixed kernel function does not randomly select any 
kernel functions to be combined, but selects a global 
kernel function and a local kernel function to be 
combined. The global kernel function has a good 
generalization ability and the local kernel function has a 
good learning ability. MK-TWSVM adjusts the 
proportion of the global kernel function and the local 
kernel function through adjusting the value of λ  to further 
make the learning ability and generalization ability 
achieve an optimum balance. We can see from this 
analysis that the biggest improvement of MK-TWSVM is 
the introduction of the mixed kernel function. And it 
makes full use of the advantages of the global and local 
kernel functions to improve the performance of TWSVM. 

V.CONCLUSIONS 

In recent years, classification algorithms have various 
improvements and TWSVM also has been developed 
rapidly. But TWSVM still has many defects, such as the 
problem of selecting the kernel function. For this problem, 
we propose the MK-TWSVM in this paper. It makes full 
use of the generalization ability of global kernel functions 
and the learning ability of local kernel functions and then 
it achieves an optimum balance between them to further 
determine the model of MK-TWSVM. This avoids the 
case that the traditional TWSVM only uses a single 
kernel function. In that case, there exists a problem. If it 
selects a global kernel function, its generalization ability 
is good, but the learning ability is relatively weak. If it 
selects a local kernel function, its learning ability is good, 
but the generalization ability is relatively weak. Therefore, 
MK-TWSVM selects a global kernel function and a local 
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kernel function to construct a mixed kernel function 
which has the better performance. And then MK-
TWSVM introduces it into TWSVM. So MK-TWSVM 
can make full use of their respective advantages to 
improve the performance of TWSVM. 

The experiments show that MK-TWSVM improves the 
classification accuracy of TWSVM. But MK-TWSVM 
also has a defect that the parameters are difficult to be 
determined. In addition to the parameters of TWSVM, 
there are parameters of the mixed kernel function. So 
MK-TWSVM relatively has more parameters and finds 
the optimal parameters more difficultly. Because of the 
more parameters, it will take more time. Therefore, we 
can start from this point in the following research work. If 
we can optimize the parameters, we will improve the 
performance of MK-TWSVM to further improve the 
classification efficiency and accuracy of TWSVM. 
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