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Abstract—Aimed at fuzzy clustering based on the 
generalized entropy, an image segmentation algorithm 
by joining space information of image is presented in 
this paper. For solving the optimization problem with 
generalized entropy’s fuzzy clustering, both Hopfield 
neural network and multi-synapse neural network are 
used in order to obtain cluster centers and fuzzy 
membership degrees. In addition, to improve 
anti-noise characteristic of algorithm, a window is 
introduced. In experiments, some commonly used 
images are selected to verify performance of 
algorithm presented. Experimental results show that 
the image segmentation of fuzzy clustering based on 
generalized entropy using neural network performs 
better compared to FCM and BCFCM_S1. 
 
Index Terms—image segmentation, spatial information, 
generalized entropy, neural network 
 

I. INTRODUCTION 

Image segmentation is considered as an important part 
of image processing and pattern recognition system, and 
it directly impacts on the quality of the image analysis 
and the final discrimination result. For this reason, some 
scholars have done a lot of researches about it. After that, 
they presented some image segmentation algorithms, 
where image segmentation based on clustering is 
commonly used method. Since Zadeh proposed fuzzy 
concept, Ruspini firstly proposed fuzzy c-partitions in 
1969 and some researchers started to focus on fuzzy 
clustering algorithm. In 1974, Dunn proposed fuzzy 
C-means with a weighting exponent m equal to 2, later in 
1981 Bezdek popularized it with m>1, that is fuzzy 
C-means(FCM). Since then, fuzzy clustering algorithm 
attracted a lot of attentions and successfully was applied 
in many fields, such as image processing, pattern 
recognition, medical, artificial intelligence and data 

mining, etc. In 2002, Ahmed et al. [1] considered a 
bias-corrected fuzzy c-means (shortening as BCFCM) 
with introducing spatial neighborhood information into 
the objective function to overcome the drawback of FCM 
that is sensitive to salt and pepper noise and image 
artifacts. In 2004, Chen et al. [2] pointed out a 
shortcoming of a computational complexity for BCFCM 
and then proposed BCFCM_S1. In 2012, Wang et al. [3] 
presented a pavement image segmentation algorithm 
based on FCM using neighborhood information to reduce 
the effect of noise. In 2013, Gong et al. [4] introduced a 
tradeoff weighted fuzzy factor to improve FCM. Later, 
Despotovic et al. [5] presented a new method based on 
FCM for spatially coherent and noise-robust. Besides, 
Karayiannis et al. [6], Li et al. [7] and Tran et al. [8] also 
studied entropy based fuzzy clustering method. What 
attracts us most is that scholars have combined entropy 
with fuzzy clustering method, and proposed fuzzy 
clustering based on entropy. The general case of fuzzy 
weight m in generalized FCM has come out by Zhu et al. 
[9]. Sun et al. [10] redistricted segmented regions and 
further classified the segmented image pixels with the 
method of the minimum fuzzy entropy to improve 
segment result of entropy in 2012. In this paper, we study 
the problem of image segmentation with fuzzy clustering 
based on the generalized entropy, where Hopfield neural 
network and multi-synapses neural network[11] are used 
to solve optimization problem with fuzzy clustering based 
on the generalized entropy.  In addition, spatial 
information of image is also considered.  

The rest of this paper is organized as follows. In 
section 2, we briefly introduce the fuzzy clustering and 
other related algorithms. In section 3, we present the 
method of image segmentation with fuzzy clustering 
based on the generalized entropy. In section 4, some 
experimental results are given. In section 5, we have our 
conclusion and prospects for future work. 

II. FUZZY CLUSTERING BASED ON GENERALIZED 
ENTROPY 

A.  Fuzzy C-Means Clustering and Its Variants 
Clustering method attempts to organize unlabeled data 
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into clusters or groups, such that the data within a group 
are more similar to each other than the ones belonging to 
different groups. One of commonly used methods is 
fuzzy c-means clustering (FCM). The fuzzy clustering 
problem is described as follows: Given that 
X={x1,x2,…,xn} (n>1) is a finite data set, c is the number 
of cluster, m is fuzzy weight with 1<m<∞, V={vi , 1≤i≤c} 
represents the cluster center, and U={μij, 1≤i≤c, 1≤j≤n} 
represents membership degree matrix, where μij is the 
fuzzy membership degree from the data point xj to center 
vi. The objective function of FCM is written as 
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Fuzzy clustering is viewed as solving the following 
optimization problem: 
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By using Lagrange method, membership degree μij (1≤i≤c, 
1≤j≤n) and cluster center vi (1≤i≤c) are obtained in the 
following. 
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It can be seen from (2) and (3) that membership degree 
μij and cluster center vi are dependent to each other. So, 
FCM algorithm uses iterative method to find the optimal 
fuzzy clustering partition.  

Since FCM did not consider the spatial information of 
image, it is sensitive to salt and pepper noise and image 
artifacts. To overcome this drawback, Ahmed et al. 
proposed BCFCM with the following objective function: 

2 2
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where Nj represents the set of pixels that exist in a 
window around xj and NR is the cardinality of Nj. Later, 
for reducing computation, Chen et al.[2] modified 
objective function (4) which is given as follows: 
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when jx  is the mean of pixel within the window around 

xj, 
CZ
mJ  becomes objective function of BCFCM_S1. The 

effect of neighboring pixels is controlled by the 
parameterα .  

B.  Fuzzy Clustering of the Generalized Entropy 
The concept of entropy is proposed by Rudolf Clausius, 

which is used to represent the uniformity of spatial 
distribution for energy. Specifically, more uniform energy 
distributes, the greater the entropy is. Later, Shannon 
firstly introduced the concept of entropy into information 
theory as a measure of the uncertainty. After that, 
Karayiannis et al. [6], Li et al. [7] and Tran et al. [8] 
employed entropy in fuzzy clustering problem and 
proposed maximum entropy clustering algorithm. In the 
process of fuzzy clustering, by introducing the entropy of 
membership degree and distance from the sample points 
to center, clustering process is gradually transformed 
from the maximum uncertainty into determination. In 
2012, Li et al. [12] generalized fuzzy clustering based on 
entropy and gave the following objective function with 
generalized entropy 
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generalized entropy and α is called as index of 
generalized entropy. 

III. IMAGE SEGMENTATION WITH FUZZY CLUSTERING 
BASED ON GENERALIZED ENTROPY 

A.  Objective Function with Generalized Entropy for 
Image Segmentation 

Motivated by BCFCM algorithm, we introduce spatial 
information into (6) to obtain the following objective 
function: 
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where /j
i
j Rp N N= represents the distribution of pixels 

around xj, i
jN is the number of neighboring pixels that 

belong to the same cluster as xj, NR is the cardinality of 
set Nj, and jx  is the mean of pixels within the window 
around xj.  

Here, we use the augmented Lagrange method to solve 
the constrained optimization problem for objective 
function (7), where the constrained condition is 

1

1, 1
c

ij
i

j nμ
=

= ≤ ≤∑ . So the augmented Lagrange function 

is  
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where λj (j=1,2….,n) is Lagrange multipliers and γ is a 
large value. In the following, we combine Hopfield 
neural network, whose structure is shown in Fig. 1, and 
multi-synapse neural network to solve (8), where 
Hopfield neural network is used to solve cluster center 
and multi-synapse neural network is used to solve fuzzy 
membership degree. After solution of cluster centers are 
obtained, these values are seen as constants to transfer to 
multi-synapse neural network and vice versa.  

B.  Solving Cluster Center Using Hopfield Neural 
Network 

It is seen from (8) that this function is a quadratic 
function about cluster center vi (1≤i≤c). For solving 
cluster centers, we discard the fixed parts in (8). So, 
function above is expressed as follows: 

2
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Figure 1. The structure of Hopfield neural network  

for solving cluster centers 
 

Note that the number of neurons s in this neural 
network is c×p, where p represents the dimension of input. 
By using Hopfield neural network, we obtain the equation 
(9). Some details are seen in ref. [12]. 
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In (12), superscript g represents the gth loop and 
parameter δv is a small initial value for adjusting vj. 

C.  Solving Membership Degree Using Multi-synapse 
Neural Network 

In the following, we mainly optimize membership 
degree μ in objective function (8) which is high-order 
about membership degree. We expand (8) to obtain 
following expression 
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where (1) 2|| ||ij j id x v= −  and (2) 2|| ||jij id x v= − . Now, 

we use multi-synapse neural network to optimize 
membership degree μ . Here, the number of neurons s is 
c n× . The structure of multi-synapse neural network is 
seen in Fig. 2, where two dimensional subscripts for 
membership degree are converted into one dimensional 
subscript. Note that there are more than two weights 
between every two neurons.  

In multi-synapse neural network, the conversions are 
as follows: 

ijμ convert to ( 1)j c iμ − × +   
ijd convert to 

( 1)j c id − × +
 

The matrix form used to express the total input of 
multi-synapse neural network is 

NET W U Z U Y U I= ⋅ + ⋅ + ⋅ +          (14) 

In addition, we define the following matrixes: 
1
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,   m>1, where 
1U U=     (15) 
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,   α>1, where 
1Y Y=      (16) 

The transposition of U<m-1> can be written as UT
<m-1> 

and Y<α-1> as YT
<α-1>. For (14), the energy function is  
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By contrasting (13) and (17), we can express W, Z, Y 
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Figure 2. The structure of multi-synapse neural network  

for solving membership degrees 
 

Next, we need a relation between the energy function 
and the input of neural network. What we hope is that the 
value of energy function decreases while the iteration 
increases, just like the values of objective function is. To 
discover the relation between the energy function and the 
input of neural network, we find that matrix W and Y is 
symmetrical, so L·W·RT=R·W·LT and L·Y·RT=R·Y·LT, 
where matrix L and R are nonzero matrixes with size of 
1 s× . Therefore, we obtain a variant of (17) as follows: 
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With the same way of transforming (14) to (17), we 
can get a new meaning between (14) and (22). 
Specifically, the net turns U<m-1> to weight W, a new U to 
Z and U<α-1> to Y. So far, we get a new multi-synapse 
neural network, whose input matrix of the new net can be 
written as: 

1 1mN E T W U Z U Y U Iα< − > < − >= ⋅ + ⋅ + ⋅ + . 

According to the new neural network, the activation 
function is 
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The total input of new neural network is given as: 
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Meanwhile, the energy gradient function of (22) can be 
written as: 
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What we can get by comparing (23) and (24) is shown 
as: 

1,2, ,jE net j s∇ = − =          (25) 

Equation (25) is exact what we need, and it means that 
the energy function decreases with the increase of 
iteration. The relevance for μ

 
is the same with the 

cluster center v, so we can use a same activation function 
with solution of v to adjust μ . 
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In (26), g represents the gth loop and δμ is a small 
initial value for adjusting jμ . 

On the other hand, we may need to adjust the 
membership degree μ

 
by (27) when necessary. 
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The termination condition of iteration loop is that the 
difference of membership degree value between this 
cycle and the last cycle is less than a given value ε. The 
proposed algorithm is named as ISGEFCM (Image 
Segmentation of Generalized Entropy Fuzzy C-Means) 
which is given in the following. 

Step 1 Initialize the value of cluster number c, fuzzy 
coefficient m, augmented Lagrange coefficient γ, 
adjustment δv and δμ for v and μ respectively, 
termination condition Δv for Hopfield neural network, Δμ 
for multi-synapse neural network and ε for the algorithm. 

Step 2 Initialize the center jv  among xj , 
membership degree iju  within [0,1], and  λ 
within[1,10]. 
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Step 3  Set the initial value of input net(0)j=0 and 
the iteration counter g=1 in Hopfield neural network. 

Step 4  Calculate NET by (9), I by (10) and W by 
(11) in Hopfield neural network. 

Step 5  for j= 1 to s  
 if netj

(g)*netj
(g-1) <=0  

then δv=δv/2. 
Step 6  for j=1 to s  

 if netj
(g) >=0  

then jv = jv + δv  
else jv = jv - δv. 

Step 7  If ((δv1<=Δv)&(δv2<=Δv)&...&(δvs<=Δv))  
then go to step (8) 
else g=g+1, go to step (4). 

Step 8  Set iteration counter g=1 in multi-synapse 
neural network. 

Step 9  Calculate W by (18), Z by (19), Y by (20), I 
by (21) and NET by (23) in multi-synapse neural 
network. 

Step 10 for j=1 to s 
 if netj

(g)*netj
(g-1) <=0 

 then δμ=δμ/2. 
Step 11 for j= 1 to s  

 if netj
(g)>=0 then jμ = jμ + δμ  

else jμ = jμ - δμ. 
Step 12 for j=1 to s  

if jμ >1 then jμ =1 
else 

 if jμ <0  
then jμ =0. 

Step 13 If ((δμ1<=Δμ)&(δμ2<=Δμ)&...&(δμs<=Δμ))  
then go to step 14  
else g=g+1, go to step 9. 

Step 14 If ||U(g)-U(g-1)||<=ε 
then exiting the algorithm 

 else go to step 3. 

IV. EXPERIMENT 

For image segmentation, it is emphasized that xj (1≤j≤n) 
is 1-dimensional data which represents the gray value of 
pixels in image. Thus, in Hopfield neural network, the 
number of cluster center is c and the number of neurons s 
is equal to c. In multi-synapse neural network, the 
membership degree (1 )i i c nμ ≤ ≤ ×  is 1-dimensional 
matrix after conversion subscript, thus the number of 
neurons s is equal to c n× .  

In this paper, all pictures are set with size 72×72, all 
algorithms are implemented under the same initial value 
and all algorithms are set with the same stopping thread 
ε=0.0001. In experiments, the window to calculate the 
mean of pixels is set as 3×3.  

First, we use four images without noise to perform the 
algorithm we proposed. The picture Lena is downloaded 
from Internet and the others are built-in-matlab. On the 
other hand, we select FCM and BCFCM_S1 as 
comparison algorithms. Experimental results are given in 
Fig. 3 to Fig. 6. 

Next, salt and pepper noise is added to the images to 
test the robust of these algorithms. The picture binimage 
is artificially synthesized. The results are shown in Fig. 7 
to Fig. 11: 

 
Figure 3. (a) original; (b) FCM; (c) BCFCM_ S1 (α=1); 

(d) ISGEFCM (m=2.5, γ=10000, α=3, δ=-5) 
 

 
Figure 4. (a) original; (b) FCM; (c) BCFCM_ S1 (α=2); 

(d) ISGEFCM(m=5, γ=1000, α=20, δ=-10) 
 

 
Figure 5. (a) original; (b) FCM; (c) BCFCM_ S1 (α=2); 

(d) ISGEFCM (m=5, γ=1000, α=5, δ=-5) 
 

 
Figure 6. (a) original; (b) FCM; (c) BCFCM_ S1 (α=3); 

(d) ISGEFCM (m=4, γ=1000, α=5, δ=-6) 
 

 
Figure 7. (a) original; (b) FCM; (c) BCFCM_ S1 (α=1); 

(d) ISGEFCM (m=2, γ=1000, α=2, δ=-5) 
 

 
Figure 8. (a) original; (b) FCM; (c) BCFCM_ S1 (α=2); 

(d) ISGEFCM (m=2, γ=10000, α=2, δ=-5) 
 

 
Figure 9. (a) original; (b) FCM; (c) BCFCM_ S1 (α=3); 

(d) ISGEFCM (m=5, γ=10000, α=20, δ=-30) 
 

 
Figure 10. (a) original; (b) FCM; (c) BCFCM_ S1 (α=2); 

(d) ISGEFCM (m=2, γ=10000, α=5, δ=-5) 
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Figure 11. (a) original; (b) FCM; (c) BCFCM_ S1 (α=2); 

(d) ISGEFCM (m=10, γ=100000, α=8, δ=-30) 
 

Experimental results of the first group show that the 
proposed algorithm can maintain more details and 
segment more accurately, for example the bordering of 
third coin in Fig. 2 and the edge of hat in Fig. 6. Results 
of the second group show that FCM is invalid to noise, 
BCFCM_S1 algorithm removes most noise, and our 
method almost removes all noise. The comparisons 
suggest that our algorithm achieves better segmentation 
to noise and multi-level image like Fig. 11. What can be 
concluded is that our method is robust to noise and 
effective for image segmentation with some certain 
selection of parameters. Of course, the selections of 
parameters need lots of experiments. 

V. CONCLUSION 

In this paper, it is mainly to realize the image 
segmentation based on generalized entropy by using 
multi-synapse neural network, and introduce spatial 
information of image to the algorithm. The equation pj 
represents the distribution of pixels around xj, by which 
we can automatically adjust the effect of neighbors 
around xj. We get good segmentation results by 
comparing with control experiments. In the future, we 
will focus on the segmentation efficiency of algorithm 
and further study the entropy method combined with 
fuzzy clustering. 
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