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Abstract—It is known that kernel regularized online 
learning has the advantages of low complexity and simple 
calculations, and thus is accompanied with slow 
convergence and low accuracy. Often the algorithm are 
designed with the help of gradient of the loss function, the 
complexity of the loss may influence the convergence. In this 
paper, we show, at some extent, the strong convexity can 
increase the learning rates. 
 
Index Terms—Online learning, Strong convex loss, Learning 
rates 

I.  INTRODUCTION 

Online learning is an important research area of 
machine learning (see [1,2,3,4]). In addition to the novel 
learning theory questions that they arise, online 
algorithms are also attractive in processing large data sets 
since they process one example at a time and can be more 
efficient than that of the batch algorithms (see [5,6,7,8,9]). 

Let :K X X R× → be a function of continuous, 
symmetric and positive semi-definite, i.e., for any finite 
set of distinct points { }1 2, , , Tx x x X⊂… , the matrix 

( )
, 1

( , )
T

i j i j
K x x

=
is positive semi-definite. Such a kernel is 

called a Mercer kernel. The RKHS KH  associated with 
the kernel K is defined to be the closure of the linear span 
of the set of functions { }: ( , ) :xK K x x X= ⋅ ∈ with the 

inner product ,
K

⋅ ⋅  satisfying , ( , )x t K
K K K x t= . The 

reproducing property is given by 
, ( ), ,x KK

K f f x x X f H= ∀ ∈ ∈ . 
Denote ( )C X as the space of continuous functions on 

X with the norm 
∞

⋅ . Then the reproducing property 

tells us that 
, sup ( , ), KK

x
f k f k K x x f H

∞
≤ = ∀ ∈ .          

Let X be a compact subset of nR  and { }1,1Y = − . The 

relation between the input x X∈ and the output y Y∈   
is described by a probability distribution 

( , ) ( | ) ( )Xx y y x xρ ρ ρ=  on Z X Y= × , where ( | )y xρ  
is the conditional probability of y given x and ( )X xρ is 
the marginal probability of x . The distribution ρ is 
known only through a set of 
samples { } { }1 1

( , )T T
i i ii i

Z z x y
= =

= =  independently drawn 
according to ρ .  

Classification algorithms produce binary 
classifiers :C X Y→ . The misclassification error is used 
to measure the prediction power of a classifier C . If ρ is 
a probability distribution on Z X Y= × , then the 
misclassification error of C is defined by 

{ }( ) : Pr ( ) ( ( ) | ) XX
C ob C x y P y C x x dρℜ = ≠ = ≠∫ . 

Here ( | )P y x is the conditional probability at x X∈ . The 
classifier minimizing the misclassification error is called 
the Bayes rule cf and is given by 

1, ( 1| ) ( 1| ),
1, .c

P y x P y x
f

otherwise
= ≥ = −⎧

= ⎨−⎩
 

The performance of a classifier C can be measured by the 
excess misclassification error ( ) ( )cC fℜ − ℜ . 

The binary classifiers :C X Y→ may be induced from 
real functions :f X R→ by sgn( )fC f= which is 
defined by sgn( )( ) 1f x =  if ( ) 0f x ≥ and 
sgn( )( ) 1f x = − otherwise.  

A loss function :V R R+→ is often used for the real-
valued function f to measure the local error suffered 
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from the use of sgn( )f as a model for the process 
producing y at x X∈ . 

The batch learning algorithm for a classification 
associated with RKHS KH  , the sample and a 
classification loss function ( )V t is 

 2
,

1

1: arg min ( ( ))
2K

T

z t t Kf H t
f V y f x f

Tλ
λ

∈ =

⎧ ⎫= +⎨ ⎬
⎩ ⎭
∑ ,        

where we call ( )V t  a normal classification loss function 
if it is a convex function on 1, '(0) 0R V <  and 1 is its 
minimal zero. The most usual classification loss is the 
least square loss  2( ) (1 )V t t= − . 

It is easy to see that ,zf λ has behaviors similar to 

regularization function V
Kf Hλ ∈ defined by 

2: arg min ( )
2K

V
Kf H

f f fλ
λε

∈

⎧ ⎫= +⎨ ⎬
⎩ ⎭

. 

where  
( ) : ( ( ))

Z
f V yf x dρε = ∫ . 

We call (1) the batch learning scheme since it uses all 
the samples up once, which makes the computations more 
complexity when the number (i.e., the T ) of samples is 
large. On the contrary, online learning algorithms operate 
by repetitively drawing random examples, one at a time, 
and adjusting the learning variables using simple 
calculations that are usually based on the single example 
only. Of course, the low computational complexity (per 
iteration) of online algorithms is often associated with 
their slow convergence and low accuracy in solving the 
underlying optimization problems. Therefore, the 
investigation on the problem of what cause will influence 
the performance is needed. Many papers have devoted to 
this field (see e.g.[10,11,12,13]). Among the researches, 
[14] defined a kind of general classification learning 
algorithm associating with convex loss and reproducing 
kernel spaces and showed the convergence rates. The 
algorithm is improved in as the fully online learning 
algorithms. On this basis, [16] defined a kind of online 
classification learning algorithm with the generalized 
gradient of the loss function. The new online algorithm 
needs only less additional assumption on the loss and 
derives a strong convergence rate in case of convex loss 
(the algorithm are redesigned in [17,18] basing on the 
strong convexity of the loss). 
Definition 1. The generalized gradient descent online 
algorithm is defined by 1 0f = and 

1 ( ( ))
tt t t t t t t x tf f G y f x y K fη λ+ ⎡ ⎤= − +⎣ ⎦ ,    1, ,t T= …       (2) 

where ( ) ( )G t V t∈∂  and ( )V t∂ is the generalized 
gradient (see the Appendix) of ( )V t at t , 0tη > is the 
step size. 

The problem that we are most interested in is whether 
the classifiers 1sgn( )Tf + will converge to cf . The aim of 
theory analysis for the classification algorithm (2) is to 
bound the excess misclassification error 

1(sgn( )) ( )T cf f+ℜ − ℜ .                          (3) 

By [16] we know that if ( )V t is a convex loss and 
satisfies some differentiable assumptions, then there is a 
constant VC  such that for any measurable function f  

1/2( ) ( ) ( ( ) ( ))V
c Vf f C f fρε εℜ − ℜ ≤ − , 

where  
{ }arg inf ( ) :Vf f f is measurable on Xρ ε= . 

Moreover, there are 
( ) ( ) ( ) ( ) ( ) ( )V Vf f f f f fρ λ λ ρε ε ε ε ε ε− = − + −  

( ) ( ) ( )f f Dλ λε ε≤ − + , 
where  

2( ) inf ( ) ( )
2K

V
Kf H

D f f fρ
λλ ε ε

∈

⎧ ⎫= − +⎨ ⎬
⎩ ⎭

 

is called the regularization error which measures the 
approximation ability of the space  KH . If KH is dense 
in ( )C X , then we know 

0
lim ( ) 0D
λ

λ
→

=  . We usually 

assume that there is a constant 0A >  such that 
( )D A βλ λ≤ (see [14,19]). 

    Also, by [16] we know there exists a constant 
, fC

λλ such that 

,( ) ( ) f K
f f C f f

λλ λ λε ε− ≤ − . 

Then, to bound (3) we need to estimate 1T K
f fλ+ − . 

When ( )V t  is a normal convex classification loss, [16] 
shows that if we choose the step as 1

( )t tθη
μ λ

= for some  

(0,1]θ ∈  and 2( ) ( )M kμ λ λ λ≥ + . Define { }tf by (2) 

and 
2 2

2

[ | (0)/ |, | (0)/ |]
4 o

C k G k G
C k Vλ

λ λ∞ −
=  for 1, ,t T= … . 

Then 

( )2
1T T Kx Z

E f fλ+∈
−                       

( )

1

1 2

1
1

3 ( )

2 ( ) 9
(1 )2 ( ( ))

(1 2 )exp , 0 1,
3(1 ) ( )

2 ( ) 25 , 1.
( ) 3 ( )

D C T

T

D C T

θ
λ

θ

θ
θ

λ
λ μ λ

λ
λ θ μ λ

λ θ
θ μ λ

λ θ
λ μ λ μ λ λ

−

−

−
−

−

⎧ ⎛ ⎞
+⎪ ⎜ ⎟−⎪ ⎝ ⎠

⎪ ⎧ ⎫−⎪≤ × − < <⎨ ⎨ ⎬−⎩ ⎭⎪
⎪⎛ ⎞⎪ + × =⎜ ⎟⎜ ⎟⎪ −⎝ ⎠⎩

  (4) 

     On the other hand, we notice that, besides [17,18], 
there are other papers(see e.g.[10]) which borrow the 
strong convexity of the loss function to design online 
algorithm. Then, whether the convergence is influenced 
by the strong convexity is a topic needed to be 
investigated. This is the main motivation for writing the 
present paper. We give the following results. 
Theorem 1. Let ( )V t be a strong convex loss with 

modulus 0 3c< < . Define{ } 1

T
t t

f
=

 as in (2) and 

2 2 2 2
2 2

(0) (0) (0) (0), , , ,
2 (0)

k G k G k G k GV V
C kL kG L kλ

λ λ λ λ
⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= + +  . 

Then, we have for ,0 1t θη θ−= < <  that 
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( )2
1T T Kx Z

E f fλ+∈
−  

1 1

1

1

1 1

/3

( ) 3exp ( 1) 2
3(1 )

64 9
(1 )2

(1 2 ) ( 1)exp , 0 1,
3(1 )

( ) 1 24exp log , 1.
3 2 (3 )( 1)c

D T

C T
T

c T

D c T C
c T

θ θ

θ
λ

θ θ

θ θ

λ

λ
λ θ

θ

θ
θ

λ θ
λ

− −

−

−

− −

⎧ ⎧ ⎫⎡ ⎤× − + −⎨ ⎬⎪ ⎣ ⎦−⎩ ⎭⎪
⎪
⎪ + +

−⎪≤ ⎨
⎧ ⎫− +⎪ × − < <⎨ ⎬⎪ −⎩ ⎭⎪

⎪ +⎧ ⎫× − + =⎨ ⎬⎪ − +⎩ ⎭⎩

 (5) 

    Comparing (5) with (4), we can see that the strong 
convexity actually increase the learning rates since the 
modulus c . 

II.  PROOFS 

To prove (5), we need some lemmas. 
Lemma 1. (see [16]) Let V be a strongly convex with 
modulus 0c > , { }tf be defined by (2). Then 

| (0) | ,t K

k Gf
λ

≤         t∀ ∈ Ν .            (6) 

(6) shows that the sequence{ } 1

T
t t

f
=

 is bounded in KH . 
Lemma 2. Assume ( )V x is a convex loss function, then 
for any ( ( )) ( ( ))V VG yf x V yf xλ λ∈∂ and any Kf H∈ there 
holds 

( ( )) , , 0V V V V

KZ K
yG yf x d f f f f fλ λ λ λρ λ− + − =∫ .  (7) 

Proof. Since ( )V x is a strong convex function, we know 
( )Vfλε is also a strong convex function on KH  as well. 

Therefore, we have 
2 210 ( ) ( )

2 2
V V V V

K K
f f f f f fλ λ λ λ

λ λθ θ
θ

ε ε⎧ ⎫⎛ ⎞ ⎛ ⎞≤ + + + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 

( )1 ( ( ) ( )) ,V

Z K
yG y f x f x d fλ θ ρ θ

θ
≤ +∫  

2,
2

V
KK

f f fλ
λθλ+ +  .                                            (8) 

Taking 0θ → , we have for any Kf H∈ that 

( )0 ( ) , , 0V V

KZ K
yG yf x d f f fλ λρ λ≤ + =∫ , 

which together with the variousness of Kf H∈ gives 

( )( ) , 0V V

Z K
yG yf x d f fλ λρ λ+ =∫ . 

Thus (7) holds. 
Lemma 3. Let V be a strongly convex loss function with 
the modulus 0c > and 0λ > . Then, for any Kf H∈ , there 
holds 

2 22( ) ( )
6 2 2

V V V
KK K

c f f f f f fλ λ λ
λ λε ε⎛ ⎞ ⎛ ⎞− ≤ + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.        (9) 

Proof. Define a univariate function ( )H H θ=  on [0,1] by 

( ) 2
( ) ( ) ( ) ,

2
V V V V

K
H f f f f f fλ λ λ λ

λθ θ θε= + − + + −  

[0,1]θ ∈ , Kf H∈ . 

Then 
2(1) ( ) ,

2 K
H f fλε= +     2

(0) ( )
2

V V

K
H f fλ λ

λε= + . 

Since ( )V x  is strongly convex loss, as a function ofθ ,  
H is also strongly convex. Take ( )V Vf f f fθ λ λθ= + −  . 

Then ( )H θ can be rewritten as 2( ) ( )
2 K

H f fθ θ
λθ ε= + and 

( ) ( )H Hθ θ θ+ Δ −  

( )2 2( ) ( )
2 K K

f f f fθ θ θ θ θ θ
λε ε+Δ +Δ= − + − . 

On one hand, by the mean value theorem for the 
generalized gradient (see the Appendix), we have a 

( ),u θ θ θ∈ + Δ and a ˆ ( ) ( )G u H u∈∂ such that 

ˆ( ) ( ) ( )H H G uθ θ θ θ+ Δ − = Δ , 

and also there is ( ),g f fθ θ θ+Δ∈ such that 
( ) ( )H Hθ θ θ+ Δ −  

( )2
2

( ), ,
2

V V
K K K

g f f f f f f fθ θ θ θ λ λ
λ θ

λ θε +Δ

Δ
= − + Δ − + − . 

When 0θΔ → , then there is a ( ( )) ( ( ))V VG yf x V yf xλ λ∈∂  
such that 

( )ˆ ( ) ( ) , ,V V

KZ K
G G yf x yd f f f f fθ λ θ λθ ρ λ= − + −∫ . 

The definition of fθ gives 

ˆ ( ) ( ( )) , ,V V V

KZ K
G yG yf x d f f f f fθ λ λ λθ ρ λ= − + −∫  

,V V

K
f f f fλ λλθ+ − − . 

    On the other hand, by (7) we have 

( ), ( ) ,V V V V

K Z K
f f f yG yf x d f fλ λ λ λλ ρ− = − −∫ . 

Therefore, 

( )ˆ ( ) ( ( )) ( ( )) ,V V

Z K
G y G yf x G yf x d f fθ λ λθ ρ= − −∫  

2V

K
f fλλθ+ − .                                         (10) 

Since V is a strongly convex function with modulus 
0c > , we have 

( ) ( )( ) 2
( ) ( ) ,V V V

KZ K
y G yf x G yf x d f f c f fθ λ λ λρ θ− − ≥ −∫ . 

                                                                                       (11) 
(10) can be rewritten as 2ˆ ( ) ( ) V

K
G c f fλθ λ θ≥ + − . It 

follows 
(1) (0)H H− ( )1

0
(1) (0)H H dθ= −∫  

( ) ( )1 1

0 0
(1) ( ) ( ) (0)H H d H H dθ θ θ θ= − + −∫ ∫  

1

0
ˆ ( ) (1 ) 0G dθ θ θ≥ ⋅ − +∫  

( ) 12

0
(1 )V

K
c f f dλλ θ θ θ≥ + − −∫  

2 2

6 6
V V

K K

c cf f f fλ λ
λ +⎛ ⎞= − ≥ −⎜ ⎟

⎝ ⎠
. 

(9)  then holds. 
    We now give the quantitative description for the 
convergence of 

1 T

V
T K

f fλ+ − . 
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Lemma 4. Let the sequence { } 1

T
t t

f
=

be defined as (2) and 
there is a constant 0Cλ >  such that the sequence 

( ) ( ( )) ( ) ( )
tt t t t t x tH x G y f x y K x f xλ= + satisfies 

( )1 2

2
, , , tz z z t K

E H Cλ≤" .                        (12) 

Then 

( )1 2

2

, , , 1t

V
z z z t K

E f fλ+ −"  

( )1 1

2 2
, ,1

3 t

Vt
z z t tK

c E f f Cλ λ
η η

−

⎛ ⎞≤ − × − +⎜ ⎟
⎝ ⎠

" .            (13) 

Proof. Rewrite the algorithm (2) by 1t t t tf f Hη+ = − . Then, 
simple computation gives 

2 2

1
V V

t t t tK K
f f f f Hλ λ η+ − = − −  

2 22 2 ,V V
t t t t t tKK K

f f H H f fλ λη η= − + + − .  (14) 

Since 
( ), ( ( )) ( ) ( ) ,V V V

t t t t t t t t t t t tK K
H f f G y f x y f x y f x f f fλ λ λλ− = ⋅ − + −  

( ) ( ) ( )2 2( ) ( )
2

V V
t t t t t t KK

V y f x V y f x f fλ λ
λ≤ − + −  

and tf depends on { }1 1, , tz z −… but not on tz , we have 

( ) 2 2, ( ) ( )
2 2t

V V V
z t t t t KK K

E H f f f f f fλ λ λ
λ λε ε⎛ ⎞ ⎛ ⎞− ≤ + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

                                                                                     (15) 
Combining (15) with (9), we have 

( ) ( )1 1 1

2

, , , ,,
6t t

V V
z z t t z z tK K

cE H f f E f fλ λ−
− ≤ − −" "

.    (16) 

(14),(16) and (12) give (13). 
Lemma 5. Let { } 1

T
t t

f
=

satisfy the assumptions of Lemma 4. 

Then, we have for 0T t> that 

( )1

2

, , 1T

V
z z T K

E f fλ+ −…
 

( )1 2 1 00
0

2

, , ,exp
3 t

T
V

t z z z t K
t t

c f fλη
−

=

⎧ ⎫⎪ ⎪≤ − × Ε −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ …
 

0

2

1
exp

3

T T

t j
t t j t

cCλ η η
= = +

⎧ ⎫
+ × −⎨ ⎬

⎩ ⎭
∑ ∑ .                                     (17) 

Proof. Applying the relation iteratively for 
0, 1, ,t T T t= − … , we have 

     ( )1

2

, , 1T

V
z z T K

E f fλ+ −…
 

( )1 2

22 2
1 , , 1 11 1

3 3 T

V
T T T z z T TK

c cC E f f Cλ λ λη η η η
−− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞≤ + − − × − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
…

 

( )1 2

22
1 , , 11 1

3 3 T

V
T T T z z T K

c cC E f fλ λη η η
−− −

⎛ ⎞⎛ ⎞= + − − × −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

…
 

2
11

3 T T
cCλ η η −

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

≤"  

( )1 1 00
00

2 2
, ,1

3 t

T T
V

t z z t tK
t tt t

c E f f Cλ λη η
−

==

⎛ ⎞≤ − × − +⎜ ⎟
⎝ ⎠

∑∏ "  

    
1

1
3

T

j
j t

cη
= +

⎛ ⎞× −⎜ ⎟
⎝ ⎠

∏ ,        1 0Tη + = .                            (18) 

Since 1 uu e−− ≤ for 0u > , we obtain (17) by (18) . 
Lemma 6. Let { } 1

T
t t

f
=

satisfy the assumptions of Lemma 4. 

Then, for ,0 1t θη θ−= < ≤ we have  

( )2

1T
V

Tx Z K
E f fλ+∈

−  

2

1 1 1

2 ( ) exp exp
3 3

T T T

t t j t

D c ct C t jθ θ θ
λ

λ
λ

− − −

= = = +

⎧ ⎫⎧ ⎫≤ × − + × −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

∑ ∑ ∑ . 

                                                                                       (19) 
To make precise estimate for the right side of (19), we 

cite two lemmas. 
Lemma 7. (see Lemma 4 of [14])  For any t T< and 
0 1θ< ≤ , there holds 

( ) ( )1 1

1

1 1 1 , 1,
1

log( 1) log( 1), 1.

T

j t

T t
j

T t

θ θ
θ θ

θ
θ

− −
−

= +

⎧ ⎡ ⎤+ − + <⎪ ⎣ ⎦≥ −⎨
⎪ + − + =⎩

∑    (20) 

Lemma 8. (see Lemma 5 of [14]) Let 0 1υ< ≤  and 
0 1θ< ≤ . Then 

1

2
1 1

1 exp
T T

t j t

j
t

θ
θ υ −

= = +

⎧ ⎫
−⎨ ⎬
⎩ ⎭

∑ ∑  

is bounded by 
1 1

1
1

18 9 (1 2 )exp ( 1) , 1,
(1 )2 1

8 ( 1) , 1.
1

T T
T

T

θ θ
θ

θ θ

υ

υ θ
υ θ θ

θ
υ

− −
−

−

−

⎧ ⎧ ⎫−+ × − + <⎨ ⎬⎪⎪ − −⎩ ⎭⎨
⎪ + =⎪ −⎩

     (21) 

Proof of Theorem 1. By (6) we know 
2

( )

(0)
t tC X K

k Gf k f
λ

≤ ≤ . 

It follows 
2 (0)( )t t t

k Gy f x
λ

≤ and for any ( ) ( )G t V t∈∂  

we have 

( ) 2 2(0) (0), ,
( )t t t k G k GV

G y f x L
λ λ

⎡ ⎤
−⎢ ⎥
⎢ ⎥⎣ ⎦

≤ . 

Therefore, 

( )1 2

2
, , , tz z z t K

E H"  

( )1 2

2 2 2
, , , ( ( )) ( , ) 2 ( ( )) ( ) ( )

tz z z t t t t t t t t t t t tE G y f x K x x G y f x y f x f xλ λ= + +"

1 2

2
, , , (| ( ( )) ( , ) 2 ( ( )) ( )

tz z z t t tZ Z
E G yf x K x x d G yf x yf x dρ λ ρ= +∫ ∫"

 

   2 2( ) |)tf x Cλλ+ ≤ .                                                  (22) 
    Combining (22),(21) and (20) with (19), we have (5). 
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APPENDIX : RESULTS ON CONVEX ANALYSIS 

Let ( , , )X ⋅ ⋅ a given Hilbert space with inner product 

,⋅ ⋅ which induces the norm  ,⋅ = ⋅ ⋅  . Then, we say a 

function :f X R→  is strongly convex on X  if for any 

[0,1]λ ∈ and , 'x x X∈ there holds 
2(1 )( (1 ) ') ( ) (1 ) ( ') '

2
cf x x f x f x x xλ λλ λ λ λ −+ − ≤ + − − − , 

where  0c >  is the modulus of f . It is known that if f is 
a strongly convex function on X , then it is Lipschitz on  
X , i.e., there is a constant 0L > such that for 
any , 'x x X∈  holds 

( ) ( ') 'f x f x L x x− ≤ − . 
    The generalized gradient of f  at x , denoted by ( )f x∂ , 
is a subset of X defined by ( )f xξ ∈∂ if and only if for 
any x X∈ there holds for all l X∈  

0

' , 0

( ' ) ( '), ( ; ) limsup
x x t

f x tl f xl f x l
t

ξ
→ ↓

+ −≤ = . 

By Theorem 6.1.2 of [20] we know if ( )f x  is strongly 
convex with the modulus 0c >  on X , then 

2( ) : ( ') ( ) , ' '
2
cf x X f x f x x x x xξ ξ⎧ ⎫∂ = ∈ − ≥ − + −⎨ ⎬

⎩ ⎭
 

which equals that for all ( )i if xξ ∈∂ holds 
2

2 1 2 1 2 1, x x c x xξ ξ− − ≥ − . 
Also, for any ( )f xξ ∈∂ there holds 

( ) ( ') , 'f x f x x xξ− ≤ − . 
The following mean value theorem for the generalized 

gradient is very important (see Theorem 2.3.7 of [20]). 
When f is Lipschitz on an open set containing the line 
segment 1 2[ , ]x x  for 1 2,x x X∈ , then, there exists 

1 2( , )u x x∈ such that 

1 2 1 2( ) ( ) ( ),f x f x f u x x− ≤ ∂ − . 
Moreover, by Proposition 6.2.2 and Theorem 3.1.2 of 

[20] we know if ( )V t  is a convex function on R with 
Lipschitz constant 0L >  , then, the image ( )V B∂ for a 
bounded set B R⊂  is a bounded set and for any 

( )V Bξ ∈∂ there holds Lξ ≤ . 
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