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Abstract—An ensemble of classifiers is a system consisting of 
multiple member classifiers which are trained individually 
and whose outcomes are aggregated into an overall outcome 
for a testing data instance. Voting is a common approach 
used to aggregate outcomes generated by member classifiers. 
Ensembles based on weighted voting have been studied for 
some time. However, the focus of most studies is more on 
weight assignment rather than on weight adjustment, whose 
basic idea is to increase the weights of votes from member 
classifiers performing better on data instances of higher 
difficulty. In this paper, we present our study on adjustment 
functions in each of which both the performance of a 
member classifier and the difficulty of a data set are 
determined nonlinearly. We report results from 
experiments conducted on several data sets, demonstrating 
the potential of the studied functions. 
 
Index Terms—Classification, ensemble, voting 
 

I.  INTRODUCTION 

A classifier is trained with a given set of data instances, 
or a given data set; after training, it generates an outcome 
or a result of classification for a testing data instance. An 
ensemble of classifiers, or a multiple classifier system, is 
a system that consists of multiple member classifiers 
which are trained individually and whose outcomes are 
aggregated into an overall outcome for a testing data 
instance [1], [2]. It is a form of collective intelligence and 
has caused general interests. Using an ensemble is 
advantageous in that a group of classifiers working 
together is usually superior to individual classifiers 
working alone [3]. 

For training member classifiers that will be used to 
construct an ensemble, a commonly used approach is to 
perform sampling on a given data set so as to make 
member classifiers different. Because using a group of 
multiple identical member classifiers is the same as using 
just one of them and is not favorable from the point of 
view of collective intelligence, member classifiers are 
expected to be different so that they would generate 
diverse outcomes. For example, bootstrap aggregating, or 
bagging for short, uses the bootstrap procedure to 
perform sampling on a given data set when training 

member classifiers that will be used to construct an 
ensemble [4], [5]. For using an ensemble to generate an 
outcome for a testing data instance, a common approach 
is to use voting to aggregate outcomes generated by 
member classifiers [6]. For example, bagging uses voting 
to aggregate outcomes [4], [5]. Despite its simplicity, 
voting has been found effective in practice and has been 
applied in various applications, such as character 
recognition [7], spam filtering and intrusion detection [8]. 

Intuitively, after member classifiers are trained, one 
can extend the simple voting process by assigning a 
weight to votes from each member classifier according to 
its performance, such as accuracy [9]. One can find 
situations where the weighted voting process is better 
than the simple voting process [10]. In fact, ensembles 
based on weighted voting have been studied for some 
time [11]. However, the focus of most studies is more on 
weight assignment [11] rather than on weight adjustment 
[12]; the basic idea of the former is to assign higher 
weights to votes from member classifiers that perform 
better, while the basic idea of the latter is to increase the 
weights of votes from member classifiers performing 
better on data sets that are more difficult to be classified 
correctly. 

In this paper, we present our study on functions used in 
weight adjustment. The idea of using weighted voting to 
aggregate outcomes generated by member classifiers is 
not new, and neither is the idea of using weight 
adjustment. This paper is different from others because in 
each of the studied functions both the performance of a 
member classifier and the difficulty of a data set are 
determined nonlinearly. Considering the reproducibility 
of this study, for evaluation, we extended an open-source 
machine learning package and conducted experiments on 
several data sets available on the Internet. We report the 
experimental results and demonstrate the potential of the 
studied functions. 

The rest of this paper is organized as follows: We 
discuss related work in Section II, describe ensemble 
construction in Section III, report experimental results in 
Section IV, and give conclusions in Section V. 

II.  RELATED WORK 

The weighted voting process extends the simple voting 
process by counting weights of votes from member 
classifiers of an ensemble. It has been used in many areas. 
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For example, Stepenosky et al. proposed to use the 
weighted combination rules to construct ensembles, 
targeting to help fight Alzheimer's disease [13]. The 
weight of votes from a member classifier of an ensemble 
usually depends on the performance achieved by the 
member classifier [9]. Bella et al. considered the posterior 
probabilities associated with outcomes generated by 
classifiers, and they presented a study on probability 
calibration and classifier combination [14]. 

Littlestone and Warmuth offered a different view of 
the weighted voting process, using results of serial trials 
to set weights [15]. Tsoumakas, Katakis, and Vlahavas 
stated that the simple (unweighted) voting process and 
the weighted voting process are two of the simplest 
approaches used in classifier combination and both work 
for homogeneous member classifiers (trained by the same 
algorithm) and heterogeneous member classifiers (trained 
by different algorithms) [16]. 

Moreno-Seco et al. presented linear as well as 
nonlinear functions to assign weights to votes from 
member classifiers of an ensemble and they proposed 
three methods for weighted voting [17]: First, RSWV 
(Re-Scaled Weighted Vote), whose basic idea is to assign 
no weights to votes from any member classifier in which 
the number of training errors is larger than a threshold. 
Second, BWWV (Best-Worst Weighted Vote), whose 
basic idea is to set the weight for the best member 
classifier to 1, set the weight for the worst member 
classifier to 0, and have the weights for other member 
classifiers linearly proportional to their training 
performance. Third, QBWWV (Quadratic best-worst 
weighted vote), whose basic idea is similar to the basic 
idea of BWWV but different in that it uses a quadratic 
function taking the training performance as the input to 
set weights for member classifiers other than the best and 
the worst. Major differences between their work and our 
work are as follows: First, their functions are used in 
weight assignment instead of weight adjustment. Second, 
their functions do not consider the difficulties of data sets 
used in training. 

Some researchers proposed to use numerical 
optimization techniques in weight assignment. For 
example, He, Yang, and Kong used a genetic algorithm to 
determine weights of support vector machine based 
member classifiers of an ensemble [18]. For training 
neural network based member classifiers to construct an 
ensemble, Shen and Kong used a genetic algorithm to 
determine weights that would be given to votes from 
these member classifiers [19], while Chen and Yu used a 
particle swarm optimization based method to determine 
weights [20]. 

Kim et al. proposed an approach to weight adjustment 
whose basic idea is to decrease the biases caused by the 
different quality levels of the data sets used to train 
member classifiers [12]. They used two weight vectors: 
One is instance weight vector, which represents the 
difficulty of a data set; the more difficult a data set tends 
to be classified correctly, the higher weight the data set 
will receive. The other is classifier weight vector, which 
represents the effectiveness of each member classifier of 

an ensemble and is used in the weighted voting process; 
the better a member classifier is, the better performance it 
will achieve, and the higher weight it will receive. 
Furthermore, the content of one vector depends on and 
recursively calculated by the content of the other vector: 
The weight of a data set is higher as more good member 
classifiers make errors on it, and the weight of a member 
classifier is higher as it correctly classifies more difficult 
data sets (as it correctly classifies more data instances in 
data sets that are difficult and/or as it correctly classifies 
data instances in data sets that are more difficult). Kim et 
al. presented an iterative procedure to obtain the optimal 
values of these two vectors, and they proved that these 
two vectors can be obtained with eigenvectors [12]. The 
basic idea of the weight adjustment functions studied in 
this paper is similar to that of the approach proposed by 
Kim et al., but there are differences between our work 
and theirs: First, in our work, the influence of the weights 
of data sets on the weights of member classifiers is 
nonlinear, and vice versa. Second, we adjust weights 
iteratively because the computational complexity of 
finding eigenvectors is high. Third, Kim et al. assume 
that data sets are of good quality but we do not make such 
an assumption. 

Moreover, some researchers proposed to dynamically 
update weights of member classifiers of an ensemble that 
adopts weighted voting [21], [22]; however, they worked 
on the setting for incremental learning, while the setting 
of our study is for batch learning. 

III.  ENSEMBLE CONSTRUCTION 

Figure 1 presents the pseudo code of our ensemble 
construction procedure. It is in a C-like style, and so are 
the following procedures. Additionally, in Figures 1-3, 
names of functions are in bold text and names of constant 
variables are in italic text. 

In brief, the procedure presented in Figure 1 works as 
follows: It trains a number of member classifiers, assign 
weights to them, and finally adjusts weights to them; a 
weight of a member classifier will be used as the weight 
assigned to votes from the member classifier. In order to 
train a member classifier, by using the bootstrap 
procedure to perform sampling on the data set, the 
procedure generates a data set (which would be different 
from the data sets used in training other member 
classifiers) that will be given to an algorithm that builds a 
classifier in a systematic way. 
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Figure 1. Pseudo code of our ensemble construction procedure. 

 
Figure 2 presents the pseudo code of the weight 

assignment procedure used in our ensemble construction 
procedure. Accuracy and F1-measure are common 
options for weight assignment. In Figures 2 and 3, the 
array v[][] holds elements whose values are evaluation 
results measured in accuracy or F1-measure. Accuracy or 
F1-measure is often calculated by referring to labels of 
sampled data instances (used in training). However, the 
performance that a classifier achieves on the data set used 
in its training may not be an ideal indicator to its 
performance on new and unseen data instances. That is, 
assigning weights to votes of member classifiers 
according to how they performed in training may increase 
the risk of overestimating what they will achieve. The 
risk could be reduced by using unsampled data instances 
(not used in training) to evaluate member classifiers. 

 

 
Figure 2. Pseudo code of the weight assignment procedure used in 

our ensemble construction procedure. 
 
Figure 3 presents the pseudo code of the weight 

adjustment procedure used in our ensemble construction 
procedure. For an ensemble, the process that it uses to 
aggregate outcomes generated by its member classifiers 
related to its overall performance, and so are the 
algorithm and the data sets used to train its member 
classifiers. Here we use weighted voting, and we focus 
more on weight adjustment rather than on weight 
assignment. When adjusting weights, we consider both 
the performance of each member classifier and the 
difficulty of each data set. 

In Figure 3, E is the Euler's number; p[] is the array of 
the relative performance of each member classifier, and 
d[] is the array of the relative difficulty of each data set 
used in training or evaluation; fp and fd are coefficients 
associated with the relative performance and the relative 
difficulty, respectively. The functions used in weight 
adjustment are based on logarithmic and exponential 
functions. They are illustrated in Figure 4, where the x-
axis is evaluation result obtained in weight assignment 
and the y-axis is fp or fd. They determine nonlinearly 
both the performance of a member classifier and the 
difficulty of a data set. Such nonlinearity is what makes 
the weight assignment procedure presented in Figure 3 
different from the approach proposed in Ref. [12]. 
 

 
Figure 3. Pseudo code of the weight adjustment procedure used in 

our ensemble construction procedure. 
 

Figure 4. Coefficients fp (left) and fd (right) against evaluation 
results obtained in weight assignment. 

 
The basic idea of the above weight adjustment 

functions can be divided into the following points: 
 As more member classifiers perform poorly on a 

data set, the data set would be more difficult. 
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Among the member classifiers performing 
poorly on the data set, as more are classifiers that 
show good performance in general, we are more 
confident that the data set is a difficult data set. 

 As more member classifiers perform well on a 
data set, the data set would be easier. Among the 
member classifiers performing well on the data 
set, as more are classifiers that do not show good 
performance in general, we are more confident 
that the data set is an easy data set. 

 As a classifier performs well on more data sets, 
the classifier is a good classifier. Among the data 
sets on which the classifier performs well, as 
more are difficult data sets, we are more 
confident that the classifier is a good classifier. 

 As a classifier performs poorly on more data sets, 
the classifier is not a good classifier. Among the 
data sets on which the classifier performs poorly, 
as more are easy data sets, we are more confident 
that the classifier is not a good classifier. 

Of course, there are other possible functions for weight 
adjustment, and part of our future work is to investigate 
other possible functions that follow the above points. 

Last but not least, what is presented in Figure 3 is an 
iterative procedure, while we can use an additional 
condition, such as a condition for convergence, to stop 
the procedure early. 

IV.  EXPERIMENTAL RESULTS 

Data sets used in experiments were downloaded from 
the Internet [23], [24]. They are binary data sets and 
summarized in Table I, where the first (leftmost) column 
is for their names, the second column is for their numbers 
of data instances, the third column is for their numbers of 
attributes, and the fourth (rightmost) column is for their 
percentages of the minority class. The rows are sorted by 
the number of data instances in ascending order. 

TABLE I. 
SUMMARY OF DATA SETS. 

name instances attributes minority 
cyyoung8002 189 7 23%

sonar 208 60 47%
biomed 209 8 36%

bodyfat-bin 252 13 19%
vote 435 16 39%

credit 490 15 44%
boston 506 13 26%
hprice 546 11 50%

breast-w 699 9 34%
diabetes 768 8 35%

 
We extended WEKA [25] in order to implement our 

ensemble construction procedure described earlier. For 
each ensemble, the number of member classifiers was set 
to 10, and all of them were trained by the C4.5 decision 
tree algorithm [26]. Ensembles of decision trees are 
commonly used [27], [28], [29]. 

In Table II, we report the results from 5x2-f CV (5 
iterations of 2-fold cross-validation), which is commonly 
used by machine learning researchers and practitioners 
especially when the data sets used in performance 

evaluation are small. In the first row of header, Accuracy 
and F1-measure indicate results measured in accuracy 
and F1-measure, respectively; in the second row of the 
header, S and NS refer to using sampled and unsampled 
data instances to evaluate member classifiers in weight 
assignment, respectively; in the second column, Acc and 
F1 refer to using accuracy and F1-measure in weight 
assignment, respectively; in the third column, B is for 
bagging (baseline), while L and E are for the logarithmic 
and exponential functions, respectively. For a data set, we 
report identical results given by bagging, to which S and 
NS are not applicable, for better presentation. In each cell, 
the number is obtained by averaging results from 5 
iterations. In each column, the best results for a data set 
are in bold text. 

TABLE II. 
5X2-F CV RESULTS IN ACCURACY AND F1-MEASURE. 

   Accuracy F1-measure 

   S NS S NS 
cy

yo
un

g8
00

2 B .844 .844 .598 .598 

A
cc

 L .852 .853 .64 .641 

E .851 .854 .638 .645 
F

1 L .853 .853 .646 .644 

E .853 .853 .646 .644 

so
na

r 

B .745 .745 .73 .73 

A
cc

 L .742 .742 .709 .714 

E .743 .742 .709 .714 

F
1 L .738 .746 .705 .717 

E .738 .746 .704 .717 

bi
om

ed
 

B .881 .881 .834 .834 

A
cc

 L .886 .884 .836 .833 

E .887 .884 .837 .833 

F
1 L .884 .884 .834 .833 

E .884 .884 .834 .833 

bo
dy

fa
t-

bi
n 

B .871 .871 .608 .608 

A
cc

 L .869 .863 .621 .621 

E .869 .864 .621 .625 

F
1 L .868 .869 .621 .625 

E .868 .869 .621 .622 

vo
te

 

B .96 .96 .949 .949 

A
cc

 L .96 .96 .948 .949 

E .96 .96 .948 .949 

F
1 L .959 .96 .948 .949 

E .959 .96 .948 .949 

cr
ed

it
 

B .867 .867 .852 .852 

A
cc

 L .869 .871 .852 .855 

E .869 .871 .852 .855 

F
1 L .869 .871 .852 .856 

E .869 .871 .852 .855 

bo
st

on
 

B .912 .912 .823 .823 

A
cc

 L .911 .912 .825 .827 

E .911 .912 .825 .827 

F
1 L .91 .911 .824 .826 

E .91 .912 .824 .828 

hp
ri

ce
 

B .782 .782 .767 .767 

A
cc

 L .787 .786 .777 .776 

E .787 .786 .777 .776 

F
1 L .786 .786 .776 .777 

E .786 .786 .776 .777 

br
ea

st
-w

 B .957 .957 .937 .937 

A
cc

 L .958 .958 .939 .939 

E .958 .958 .939 .939 

F
1 L .958 .958 .939 .94 

1550 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER



E .958 .958 .939 .939 

di
ab

et
es

 

 B .749 .749 .606 .606 

A
cc

 L .754 .75 .631 .625 

E .754 .751 .631 .626 

F
1 L .752 .752 .631 .631 

E .752 .751 .631 .63 

 
From Table II, we have the following findings: First, 

we can observe minor improvements over bagging, while 
sometimes a small increase in accuracy could be of a 
great value in practice. Second, for weight assignment, 
using accuracy is slightly better than using F1-measure, 
and using unsampled data instances is slightly better than 
using sampled ones. Third, using the exponential function 
is slightly better than using the logarithmic function. 

Furthermore, we report the results from 10x10-f CV 
(10 iterations of 10-fold cross-validation) in Table III. 

TABLE III. 
10X10-F CV RESULTS IN ACCURACY AND F1-MEASURE. 

   Accuracy F1-measure 

   S NS S NS 

cy
yo

un
g8

00
2 B 0.851 0.851 0.63 0.63 

A
cc

 L 0.856 0.858 0.66 0.666 

E 0.856 0.858 0.66 0.664 

F
1 L 0.856 0.856 0.66 0.662 

E 0.856 0.857 0.66 0.663 

so
na

r 

B 0.775 0.775 0.762 0.762 

A
cc

 L 0.775 0.777 0.748 0.75 

E 0.775 0.777 0.748 0.75 

F
1 L 0.776 0.776 0.749 0.749 

E 0.776 0.776 0.749 0.75 

bi
om

ed
 

B 0.907 0.907 0.864 0.864 

A
cc

 L 0.908 0.91 0.865 0.868 

E 0.908 0.91 0.865 0.868 

F
1 L 0.909 0.909 0.866 0.867 

E 0.909 0.91 0.866 0.868 

bo
dy

fa
t-

bi
n 

B 0.866 0.866 0.593 0.593 

A
cc

 L 0.864 0.863 0.604 0.601 

E 0.863 0.864 0.603 0.603 

F
1 L 0.866 0.863 0.612 0.605 

E 0.866 0.863 0.612 0.605 

vo
te

 

B 0.961 0.961 0.95 0.95 

A
cc

 L 0.963 0.963 0.952 0.952 

E 0.963 0.963 0.952 0.952 

F
1 L 0.963 0.963 0.952 0.952 

E 0.963 0.963 0.952 0.952 

cr
ed

it
 

B 0.879 0.879 0.865 0.865 

A
cc

 L 0.878 0.878 0.863 0.863 

E 0.878 0.878 0.863 0.863 

F
1 L 0.878 0.879 0.862 0.863 

E 0.878 0.879 0.862 0.864 

bo
st

on
 

B 0.919 0.919 0.837 0.837 

A
cc

 L 0.919 0.919 0.839 0.84 

E 0.919 0.919 0.84 0.84 

F
1 L 0.919 0.919 0.84 0.84 

E 0.919 0.918 0.84 0.839 

hp
ri

ce
 

B 0.789 0.789 0.774 0.774 

A
cc

 L 0.787 0.786 0.777 0.776 

E 0.786 0.786 0.777 0.776 

F
1 L 0.787 0.786 0.777 0.777 

E 0.787 0.786 0.778 0.777 

br
ea

st
-

w
 B 0.959 0.959 0.941 0.941 

A
c c L 0.961 0.961 0.943 0.944 

E 0.961 0.961 0.943 0.944 

F
1 L 0.96 0.961 0.943 0.944 

E 0.96 0.961 0.943 0.944 

di
ab

et
es

 

B 0.755 0.755 0.616 0.616 

A
cc

 L 0.752 0.754 0.63 0.633 

E 0.751 0.753 0.629 0.633 

F
1 L 0.751 0.753 0.632 0.635 

E 0.751 0.753 0.631 0.634 

 
Likewise, 10-fold cross-validation is also a common 

approach used to evaluate the performance of a classifier. 
Compared to 2-fold cross-validation, 10-fold cross-
validation is used to evaluate the performance of a 
classifier under the situation where the portion of a given 
data set used for training is much larger than the portion 
of the data set used for testing. 

The format of Table III is the same as that of Table II, 
and the notations used in Table III are the same as those 
used in Table II. Similarly, in each column of Table III, 
the best results for a data set are in bold text; however, 
the number in each cell is obtained by averaging results 
from 10 iterations. 

From Table III, we can observe minor improvements 
given by the presented weight assignment and adjustment 
procedures over bagging. For example, improvements 
over bagging can be observed in cyyoung8002, biomed, 
vote, and breast-w, no matter accuracy or F1-measure is 
used in evaluation, no matter if unsampled data instances 
are used in weight assignment, and no matter what 
function is used in weight adjustment. For weight 
assignment, when considering the same data set and the 
same weight adjustment function, we find that the final 
results given by using F1-measure are slightly better than 
those given by using accuracy. We also find that using 
unsampled data instances in weight assignment is slightly 
better than using sampled ones. Finally, we find it 
difficult to conclude if using the exponential function in 
weight adjustment is better than using the logarithmic 
function. 

V.  CONCLUSIONS AND FUTURE WORK 

For classification, an ensemble consists of multiple 
member classifiers, and it generates an overall outcome 
by aggregating outcomes generated by member classifiers 
for a testing data instance. A common approach to 
aggregation is to use voting. It usually shows good 
performance and has been applied in various applications. 
A common extension of the simple voting process is the 
weighted voting process. However, most related studies 
focus more on weight assignment rather than weight 
adjustment. In this paper, we present our study on weight 
adjustment functions. For each member classifier of an 
ensemble, a weight is initially assigned to its votes 
according to the performance in accuracy or F1-measure 
that it achieved in training; the weights of member 
classifiers are then adjusted according to the relative 
performance of each member classifier and the relative 
difficulty of each data set used in training. This paper is 
different from others in that each of the studied functions 
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determines nonlinearly both the performance of a 
member classifier and the difficulty of a data set. 

The future work of this paper is as follows: First, we 
would like to study the use of measures other than 
accuracy and F1-measure in weight assignment. Second, 
we would like to study weight adjustment functions 
different from those studied in this paper. Moreover, a 
recently proposed technique takes into account the 
characteristic of the training data set and the 
characteristic of the underlying algorithm when 
constructing an ensemble [30]. It would be worth 
investigating the integration of the weight assignment and 
adjustment procedures presented in this paper into such a 
technique, in order to construct an ensemble better 
suitable for the given data sets. 
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