
Ruminative Reinforcement Learning:
Improve Intelligent Inventory Control by

Ruminating on the Past

Tatpong Katanyukul
Khon Kaen University/Computer Engineering, Khon Kaen, Thailand

Email: tatpong @kku.ac.th

Abstract—Reinforcement Learning (RL) can solve practical
sequential decision problems, even when structures of the
problems are less understood. However, some sequential
decision problems intrinsically have structural parts that
are easily to formulate and distinguish from less understood
parts. Exploiting this knowledge may help improve
performance of RL. This study proposed and investigated
an approach to exploit the knowledge of structural parts of
inventory management problems in the context of RL. The
proposed method is motivated by human behavior of
ruminating on what has happened and what would happen
if alternative choices would have been taken. Our
investigation provides an insight into RL mechanism and
our experimental results show viability of the approach.

Index Terms—Temporal difference learning, ruminative
behavior, markov decision problem, artificial intelligence,
reinforcement learning, inventory control, approximate
dynamic programming

I. INTRODUCTION

Reinforcement Learning (RL) is an approach to solve
practical sequential decision or sophisticated control
problems, even when structures of the problems are less
understood. RL has been studied extensively and applied
in wide range of applications, including virtual machine
configuration [1], robotics [2], helicopter control [3],
ventilation, heating and air conditioning control [4],
financial management [5], water resource management
[6], and inventory management [7]. Prevalence of RL in
current research is credited to RL's effectiveness,
potential possibilities [8], link to mammal learning
processes [9], and its model-free property [10].

Despite fascination of RL's model-free property, some
application domain can naturally be formulated into a
well-structured part interacting with a part that is less
understood. An example is a domain of inventory
management problems, costs of issuing replenishment
order, handling inventory, and loss due to inventory
shortage can be determined precisely in advance. On the
other hand, customer demand, delivery time, availability
of supplies or in an extreme case the length of the horizon
is less predictable. However, once values of less

Manuscript received July 25, 2013; revised August 20, 2013;

accepted September 15, 2013.

predictable variables are known, the period cost can be
precisely determined. It is as a warehouse would know its
inventory cost after it has received its replenishment and
seen the demand. The formulation to calculate period cost
is a well-structured part, while another part, e.g., demand,
is unpredictable. Knowledge about a well-structured part
can be exploited, while learning mechanism takes care of
the less understood part.

Inventory management is an essential business activity.
Inventory problems appear in various forms and their
forms often change over time. Many articles, including
[11], addressed the need for an efficient and flexible
inventory solution that is also simple to implement in
practice. This may explain extensive studies of RL
application to inventory management. Most of the
previous works applying RL to inventory management
mainly focus on learning-based schemes. However, there
are some studies, e.g., [10] and [12], investigating
simulation-based schemes. Nonetheless, learning- and
simulation-based schemes are not mutually exclusive.
Kim et al. [13] proposed asynchronous action-reward
learning method. They used simulation to evaluate
consequences of actions not taken in order to accelerate a
learning process in a stateless system. An extension to a
state-based system would allow applicability to a wider
range of problems.

Our proposed method, “Ruminative Reinforcement
Learning” (RRL), can be seen as this extension. The
findings here provide an insight into RL mechanism. Our
results show viability of RRL in different phases of
operation. Regarding to applicability of the framework,
another example is an area of water resource management.
Precipitation, evaporation, and water demand are hard to
predict. The capacities of reservoirs, size of a serving area,
and length of irrigation canal are known. Once values of
precipitation, evaporation, and demand are realized, how
well the management can keep water levels as promised
can be evaluated in high accuracy. It can be formulated in
a similar manner. In additions, this framework can be
applied to any sequential decision problem, where state
and period cost variables can be determined precisely,
once a stochastic variable is realized, as illustrated in
Figure 2.

II. BACKGROUND

1530 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.7.1530-1535

The sequential decision problem can be formulated as a
Markov Decision Problem (MDP) [14]. Given an action
is determined by a policy π, the long-term state cost can
be written as,

 Cπ(s) = r(s) + γ Σs’ pπ (s’|s) Cπ (s’), (1)

where r(s) is an expected state cost, γ is a discounted
factor, pπ(s’|s) is a probability that a state in the next step
is s’ given a state of the current step s. In practice, the
expected long-term cost is difficult to find. RL provides a
framework to approximate it and find a good action
policy. An approximate long-term cost Q(s) = r(s) + γ
Q(s’).

Temporal Difference (TD) learning uses TD error ψ
(Eq. 2) to estimate the long-term cost in an iterative
manner (Eq. 3),

 ψ = r + γ Q(s’,a’) – Q(s,a), (2)

 Q(new)(s,a) = Q(old)(s,a) + α ψ, (3)

where r is a sampling period cost, corresponding to take
action a in state s; α is a learning rate; s’ and a’ are a
state and an action taken in the next period, respectively.

Once values of Q(s,a) are learned sufficiently, they are
presumed to be good approximation of the long-term
costs. SARSA [15], a widely used RL algorithm, uses
Q(s,a)⎯often called “Q-value”⎯ along with an action
policy to determine an action to take. Q-value is updated
based on TD learning (Eq. 2 and 3). In each period, an
action is determined based on a policy π. An action
policy π can be stochastic, such that it defines a
probability to take an action a given state s: π(s,a) =
p(a|s). The policy has to balance between taking the best
actions and try other actions, so that it can learn new
possibilities. This is the issue of balancing exploitation
and exploration, as discussed in [15].

An ε-greedy policy is a simple policy. At each period,
with probability ε, the policy takes an action randomly
picked from a ∈ A(s), where A(s) is a set of allowable
actions given state s. Otherwise, it takes an optimal action
a* based on the current Q-value, a* = argmina Q(s,a).

III. RUMINATIVE REINFORCEMENT LEARNING

SARSA algorithm assumes that the agent knows only
current state s, action it takes a, period cost r, next state s’,
and action it will take a’. Interaction of SARSA agent and
its environment are shown in Fig. 1.

Figure 1. SARSA agent and interacting signals.

Each period, once period cost r and next state s’ are
realized, SARSA algorithm updates Q-value based on TD
error (Eq. 2 and 3), requiring only values of s, a, r, s’, and
a’. However, in some problem domains, we may have
extra knowledge about the problem and want to take this
advantage.

Suppose the problem structure can naturally be
formulated such that period cost r and next state s’ are
determined by a function k: s, a, ξ |→ r, s’, where ξ is an
extra information. Variable ξ is assumed to capture the
stochastic aspect of the problem. The process generating
ξ is unknown, but the value of ξ is fully observable, after
the period is over. Given a value of ξ, along with s and a,
deterministic function k can determine r and s’, precisely.

Original SARSA updates only one entry of Q(s,a) each
period, since it can provide only one set of required
values of (s, a, r, s’, a’). With mapping function k and an
observed value of ξ, we can do rumination: evaluating
consequences of other actions â’s that were not taken.

Figure 2. Knowledge of problem’s structure and rumination.

TABLE I.

RSARSA: REINFORCEMENT LEARNING WITH RUMINATION

Initialize Q(s,a).
Observe s.
Determine a by policy π.

For each period
Observe r, s’, and ξ.
Determine a’ by policy π.
ψ := r + γ Q(s’,a’) − Q(s,a).
Q(s,a) := Q(s,a) + α ⋅ψ.
For each â∈Â(s)
(1) calculate �, ŝ’ by k(s, â, ξ),
(2) determine â’,
(3) calculate ψ := � + γ Q(ŝ’, â’) − Q(s, â),
(4) update Q(s, â) := Q(s, â) + α ⋅ψ.
Until ruminating all â∈Â
s := s’; a := a’.

Until termination

Rumination can be done by (1) choosing a ruminative

action â∈Â(s) and (2) use k(s, â, ξ) to determine
ruminative period cost � and next state ŝ’. (3) Then,
ruminative next action â’ can be determined with policy π.
(4) Values of (s, â, �, ŝ’, â’) can be used to evaluate Eq.
2 and 3. Table 1 shows Ruminative SARSA (RSARSA)
algorithm.

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014 1531

© 2014 ACADEMY PUBLISHER

Fig. 2 illustrates knowledge of problem’s structure (on
the left side) and our proposed rumination (on the right)
resembling the problem’s structure to provide � and ŝ’.

As our experimental results shown in Section 4,
RSARSA has shown significant improvement over
SARSA performance in early periods. However, its
performance in later periods was shown to be inferior to
SARSA.

This may be explained by that, despite having faster
convergence rate, RSARSA’s approximate long-term
costs may converge to wrong values. Lack of transition
probability pπ(s’|s), Long-term cost estimated by TD
learning (Eq. 2 and 3) relies on sampling trajectory:
natural state-action visitation provides frequency of
updates, equivalent to pπ(s’|s).

However, rumination mechanism employed in
RSARSA does not take this visiting frequency into
account. Since rumination is done over an action set, it
does not spoil state visiting frequency. To correct, action
visiting frequency, probability of visiting each action
should be accounted.

Given state s and ε-greedy policy, probability of taking
action â:

 p(â) = ε/| Â(s) |, for â ≠ â * and

 p(â) = ε/| Â(s) | + (1 − ε) , for â = â *, (4)

where |Â(s)| is a size of a ruminative action set and â* =
argminâ Q(s,â). An algorithm for Policy-weighted
RSARSA (PRS) is shown in Table 2.

TABLE II
PRS: POLICY-WEIGHTED RSARSA

Initialize Q(s,a).
Observe s.
Determine a by policy π.

For each period
Observe r, s’, and ξ.
Determine a’ by policy π.
ψ := r + γ Q(s’,a’) − Q(s,a).
Q(s,a) := Q(s,a) + α ⋅ψ.
For each â∈Â(s),
(1) calculate �, ŝ’ by k(s, â, ξ),
(2) determine â’,
(3) calculate ψ := � + γ Q(ŝ’, â’) − Q(s, â),
(4) calculate p(â) according to policy π (Eq. 4 for ε-

greedy),
(5) β = α ⋅ p(â),
(6) update Q(s, â) := Q(s, â) + β ⋅ψ.
Until ruminating all â∈Â
s := s’; a := a’.

Until termination

The computational cost increased by rumination varies

directly to the size of ruminative action set: that is
roughly |Â(s)| times of SARSA. Although this may not be
critical in inventory management, it is still worth to
investigate an opportunity to improve rumination on this
aspect. We have tried to use TD error ψ to control when
to do rumination. This is based on intuition that high
magnitude of TD error associates to an agent’s urge to

learn fast and the urge declines as TD error fades: when
an agent is put in a new environment; the environment is
changing; or, what an agent knew is not correct; any of
these situations would cause high TD error.

In this early stage of an attempt using TD error to
guide rumination, each period we use magnitude of a
normalized TD error to define the probability to do
rumination:

 p(rumination) = 1 − exp(−|2 ψ/(r + Q(s,a)|) . (5)

In Eq. 5, value of probability is in [0,1). Large
magnitude ψ gives a large probability to do rumination,
and vice versa. For example, if ψ = average of r and
Q(s,a), the chance to do rumination is 62%.

IV. EXPERIMENTS AND RESULTS

Our study uses computer simulations to conduct
numerical experiments, on two inventory management
problems. Both problems are periodic review single-
echelon with one-period leadtime and nonzero setup cost.
The same markov model are used to govern both problem
environments, but with different settings. The problem
state space is I × {0, I+}, for on-hand and in-transit
inventories: x and b, respectively. The action space is {0,
I+}, for replenishment order a. State transitions are
specified by (1) xt+1 = xt + bt – dt and (2) bt+1 = at, where
dt is normally distributed. The inventory period cost is
calculated from rt = K δ(at) + G at + H at δ(at) − B at
δ(−at), where K, G, H, and B are setup, unit, holding,
penalty costs, respectively; and δ(⋅) is a step function.

Four RL agents, SARSA, RSARSA, PRS, and PRS.TD,
are tested. PRS.TD is an abbreviation for PRS algorithm
with rumination controlled by TD error, as described in
Eq. 5. Each experiment is repeated for 10 times. In each
repetition, an agent is initialized with all zero Q-values.
Then, it is run consecutively for NE episodes. Each
episode starts with random initial state and action and
ends when the episode has reached NP periods or an agent
has visited a termination state, which are states lying
outside a valid range of Q-value implementation. The
maximum number of periods in each episode, NP, defines
length of a problem horizon, while the number of
episodes NE specifies variety of problem scenarios, i.e.,
different initial states and actions.

Two problem settings are used in our experiments.
Problem 1 (P1) has NP = 1000, NE = 200, K = 100, G =
100, H = 20, and B = 200. Environment’s state [x,b] is set
as RL agent’s state: s = [x,b]. Therefore, RL agent’s state
is two-dimensional. Problem 2 (P2) has NP = 60, NE =
500, K = 200, G = 50, H = 20, and B = 200. RL agent’s
state is set as an inventory level: s = x + b. RL agent’s
state is one-dimensional.

For both problems, demand dt is normally distributed
with mean 50 and variance 100. RL agent’s period cost
and action are inventory period cost and replenishment
order, respectively. For ruminative algorithms, the extra
information is inventory’s demand variable: ξ = dt.

For all RL agents, Q-value is implemented with grid
tile coding, as explained in [15], without hashing. Tile

1532 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

coding is a function approximation, based on linear
combination of weights of activated tiles. The suitability
and justification of using tile coding for RL is discussed
in [16]. Approximate function of variable z,

 f(z) = w1⋅φ1(z) + w2⋅φ2(z) + . wM⋅φM(z), (5)

where w1, w2,…, wM are tile weights, and φ1(z),
φ2(z), …, φM(z) are tile activation function: φi(z) = 1, only
when z lies within the ith tile hypercube.

Tile configuration, i.e., φ1(z), φ2(z), …, φM(z), are
predefined. Q-value is stored in tile coding through
weights. Given a value Q to store at an entry of z, weights
can be updated with wi = Q/N, for all i’s of tiles activated
by z, where N is a number of activated tiles. However, in
our preliminary experiments, we found that it is more
effective to use:

 wi = wi
(old) + (Q – Q(old))/N, (6)

where wi
(old) and Q(old) are weight and approximation

before new update. We use Eq. 6 to update tile coding in
all our experiments.

For P1, we use tile coding with 5 tiling layers. Each
layer has 11×5×3 three-dimensional tiles, covering space
of [−300,500] × [0,150] × [0,150] corresponding to s=[x,
b] and a. This means that this tile coding allows only a
state lying in [−300,500] × [0,150] and a value of action
between 0 and 150. Dimensions, along x, b, and a, are
partitioned into 11, 5, and 3 partitions, creating 165 three-
dimensional hypercubes for each tiling layer. All layers
are overlapping to constitute an entire set of tile coding.
Layer overlapping is arranged randomly. For P2, we use
tile coding with 5 tilings. Each tiling has 11×5 two-
dimensional tiles, covering space of [−300,650] × [0,150]
corresponding to s=(x+b) and a.

All RL agents are set up with ε = 0.2 (for ε-greedy
policy), learning rate α = 0.7, and discounted factor γ =
0.8.

The results are summarized in Table 3. PRS has shown
to outperform SARSA in both problems: its average costs
6692 and 4288 of P1 and P2, respectively (shown on
rows 6 and 7) are lower than SARSA’s 6777 and 4355.
Both cases are also confirmed by Wilcoxon rank sum test
(WT) with significant level 0.05 (indicating, on rows 9
and 10, by ‘W’, meaning that its average cost is
significantly lower than SARSA).

Regarding to RSARSA, its average costs are higher
than SARSA in both problems. Each case is confirmed by
WT (indicating by ‘L’, meaning that its average cost is
significantly higher than SARSA).

Our attempt of TD-error-controlled rumination turns
out with mixed results: PRS.TD outperformed SARSA in
P1, but underperformed in P2.

Despite inferior overall performance, RSARSA
outperformed SARSA in early periods (1-300) in both P1
and P2 (rows 12-15). PRS and PRS.TD also
outperformed SARSA in P2 in these early periods. In P1,
both PRS and PRS.TD has lower average costs than
SARSA, but these cannot be confirmed by WT (p values
0.529 and 0.684 for PRS and PRS.TD, respectively). Fig.
3 illustrates average costs obtained in P1 (left plots) and

P2 (right plots) during periods 1-300 (top plots), periods
301-3000 (middle row plots), and periods after 3000
(bottom plots). Top plots show that RSARSA also
outperformed PRS and PRS.TD in early periods.
However, for later periods, RSARSA underperformed
others.

Fig. 4 shows moving average of period costs (left plots)
and TD error ψ (right plots) of P1 (upper plots) and P2
(lower plots). Legends are shown in the top left plot. All
four plots show that RSARSA has the fastest rate of
convergence. However, it converged to suboptimal value,
as revealed by the plots of TD error: RSARSA’s ψ
converges to higher value than the others in both P1 and
P2. It should be noted that as the algorithm converges
average cost declines and so does TD error. This is one of
our motivations to use TD error as a clue to control
rumination, in order to reduce the additional
computational costs.

For each period, computation of RSARSA spent 10.59
and 20.28 times of SARSA in P1 and P2, respectively
(rows 3-4). PRS spent a little bit longer than RSARSA.
These computation times correspond to size of ruminative
action space |Â(s)|, here as partitions of action space 15
and 25 in P1 and P2, respectively. Partitioning is nature
of tile coding, implemented Q-value. PRS.TD spent only
2.19 and 3.12 times of SARSA.

Sarsa RSarsa PRS PRS.TD

80
00

10
00

0
12

00
0

P1: avg. cost
epochs 1−300

Sarsa RSarsa PRS PRS.TD

50
00

65
00

80
00

P2: avg. cost
epochs 1−300

Sarsa RSarsa PRS PRS.TD

68
00

72
00

76
00

P1: avg. cost
epochs 301−3000

Sarsa RSarsa PRS PRS.TD

42
00

45
00

P2: avg. cost
epochs 301−3000

Sarsa RSarsa PRS PRS.TD

65
00

68
00

71
00

P1: avg. cost
epochs 3001+

Sarsa RSarsa PRS PRS.TD

41
00

43
00

45
00

P2: avg. cost
epochs 3001+

Figure 3. Average period costs at different period ranges: boxplot shows
maximum, 3rd-quantile, median, 1st-quantile, minimum, and outliers of

average costs obtained by SARSA, RSARSA, PRS, and PRS.TD.

V. DISCUSSION AND CONCLUSIONS

PRS has shown to be a viable algorithm, when
structural part of the problem can be distinguished.
Although RSARSA may converge to suboptimal policy
in long run, it is shown to be a formidable candidate for
short run. Therefore, it may be suitable for finite,
especially short, horizon applications.

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014 1533

© 2014 ACADEMY PUBLISHER

With major improvement of rumination’s computing
times, PRS.TD showed good results in early periods.
However, its performance in long run reveals that attempt
to control rumination by TD error requires further
investigation. In addition, based on our intuition that high
TD error associates to need for fast learning, the concept
of PRS.TD can be extended to other aspects, such as
using TD error to control learning rate or degree of
exploration. RL has been associated to mammalian
learning, as TD error is associated to dopamine activity.
So are learning rate and degree of exploration to
acetylcholine and noradrenaline, respectively [17]. The
knowledge of interaction of these chemicals from
neuroscience may reveal key mechanism to develop a
self-adjusting RL agent, or vice versa.

Our results show domination of RSARSA in fast
learning and PRS in quality of what it learns. In PRS, we
use simple term β = α ⋅ p(â) for ruminative learning rate,
where α is the same learning rate, used in regular TD
learning. The development of better ruminative learning
rate may lead to an algorithm that is both fast learning
and good in long run.

0 1000 2000 3000 4000 5000

50
00

10
00

0
20

00
0

P1: ma(R, 1000); periods 1 − 5000

epoch

co
st

Sarsa
RSarsa
PRS
PRS.TD

0 1000 2000 3000 4000 5000

0
50

00
10

00
0

15
00

0

P1: ma(PSI, 1000); periods 1 − 5000

epoch

P
S

I

0 500 1000 1500 2000 2500

40
00

80
00

12
00

0
18

00
0

P2: ma(R, 1000); periods 1 − 2500

epoch

co
st

0 500 1000 1500 2000 2500

0
40

00
80

00
12

00
0

P2: ma(PSI, 1000); periods 1 − 2500

epoch

P
S

I

Figure 4. Moving average of period costs.

EXPERIMENTAL RESULTS

Row SARSA RSARSA PRS PRS.TD
Relative computation time/epoch

3 P1 1 10.59 11.95 2.19
4 P2 1 20.28 20.91 3.12

Average cost (AC)
6 P1 6777 6830 6692 6709
7 P2 4355 4406 4288 4392

Wilcoxon rank sum test (WT)
9 P1 L W W
10 P2 L W L

Periods 1-300
12 P1: AC 11144 9042 11129 10898
13 P1: WT W p 0.529 p 0.684

14 P2: AC 7604 5562 6621 6844
15 P2: WT W W W

Lastly, every component of RL affects its overall
performance, to develop more effective and efficient RL
application, we may need to consider state-of-the-arts,
such as policy gradient, transfer learning, active learning,
adaptive step size, adaptive action search space, and
efficient Q-value representation, including deep learning.
Regarding efficient Q-value representation, widely used
functions, i.e., look-up tables, neural networks, radial
basis functions, and tile coding, are good for interpolation,
but RL applications needs extrapolation, as well. If this
need is met, it would yield more efficient RL applications
as well as faster developing processes.

REFERENCES

[1] J. Rao, X. Bu, C.Z. Xu, L. Wang, and G. Yin, “VCONF: a
reinforcement learning approach to virtual machines auto-
configuration,” in Proc. 6th int. conf. autonomic computing,
Barcelona, Spain, ACM, 2009, pp. 137–146.

[2] S.G. Khan, G. Herrmann, F.L. Lewis, T. Pipe, and C.
Melhuish, “Reinforcement learning and optimal adaptive
control: An overview and implementation examples,”
Annu. Rev. in Control, vol. 36, 42–59, 2012.

[3] A. Coates, P. Abbeel, and A.Y. Ng, “Apprenticeship
learning for helicopter control,” Commun. ACM, vol. 52,
2009.

[4] C.W. Anderson, D. Hittle, M. Kretchmar, and P. Young,
“Robust reinforcement learning for heating, ventilation,
and air conditioning control of buildings,” in Handbook of
Learning and Approximate Dynamic Programming, Si,
Barto, Powell, and Wunsch Eds. John Wiley & Sons, 2004.

[5] Z. Tan, C. Quek, and P.Y.K. Cheng, “Stock trading with
cycles: a financial application of ANFIS and reinforcement
learning,” Expert Syst. Appl., vol. 38, pp. 4741−4755, 2011.

[6] A. Castelletti, F. Pianosi, and M. Restelli, “A
multiobjective reinforcement learning approach to water
resources systems operation: Pareto frontier approximation
in a single run,” Water Resour. Res., 2013.

[7] T. Katanyukul, E.K.P. Chong, and W.S. Duff, “Intelligent
inventory control: is bootstrapping worth implementing?”
in Intelligent Information Processing VI, Springer,
Vancouver, BC., 2012.

[8] T. Akiyama, H. Hachiya, and M. Sugiyama, “Efficient
exploration through active learning for value function
approximation in reinforcement learning,” Neural
Networks, vol. 23, pp. 639−648, 2010.

[9] A.M. Bornstein and N.D. Daw, “Multiplicity of control in
the basal ganglia: Computational roles of striatal
subregions,” Curr. Opin. Neurobiol., vol. 21(3), pp.
374−380, 2011.

[10] T. Katanyukul, W.S. Duff, and E.K.P. Chong,
"Approximate dynamic programming for an inventory
problem: Empirical comparison," Comput. Ind. Eng., vol.
60, pp.719−743, 2011.

[11] D. Bertsimas and A. Thiele, “A robust optimization
approach to inventory theory,” Oper. Res., vol. 54(1), pp.
150−168, 2006.

[12] J. Choi, M.J. Realff, and J.H. Lee, “Approximate dynamic
programming: application to process supply chain
management,” AIChe J., vol. 52(7), pp. 2473−2485, 2006.

[13] C.O. Kim, I.H. Kwon, and J.G. Baek, “Asynchronous
action-reward learning for nonstationary serial supply
chain inventory control,” Appl. Intell., vol. 28(1), pp. 1−16,
2008.

[14] W.B. Powell, Approximate Dynamic Programming, John
Wiley & Sons, 2011.

1534 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

[15] R.S. Sutton and A.G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 1998.

[16] S. Whiteson, M.E. Taylor, and P. Stone, “Adaptive tile
coding for value function approximation,” AI Technical
Report AI-TR-07-339, University of Texas at Austin, 2007.

[17] K. Doya, “Metalearning and neuromodulation,” Neural
Networks, vol. 15, 2002.

Tatpong Katanyukul, born in Khon
Kaen, Thailand June 1974, graduated
B.Eng (electronics engineering) and
M.Eng (computer science) from King
Mongkut’s Institute of Technology
Ladkrabang and Asian Institute of
Technology, respectively. Both
institutions are in Bangkok, Thailand.
He earned his Ph.D. (Mechanical

Engineering), from Colorado State University, Colorado, USA
in 2010.

Dr. Katanyukul currently works as a lecturer for department
of computer engineering, Khon Kaen University, Thailand. His
research interests are reinforcement learning and applications of
other machine learning techniques.

JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014 1535

© 2014 ACADEMY PUBLISHER

