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Abstract—Reinforcement Learning (RL) can solve practical 
sequential decision problems, even when structures of the 
problems are less understood. However, some sequential 
decision problems intrinsically have structural parts that 
are easily to formulate and distinguish from less understood 
parts. Exploiting this knowledge may help improve 
performance of RL. This study proposed and investigated 
an approach to exploit the knowledge of structural parts of 
inventory management problems in the context of RL. The 
proposed method is motivated by human behavior of 
ruminating on what has happened and what would happen 
if alternative choices would have been taken. Our 
investigation provides an insight into RL mechanism and 
our experimental results show viability of the approach.   
 
Index Terms—Temporal difference learning, ruminative 
behavior, markov decision problem, artificial intelligence, 
reinforcement learning, inventory control, approximate 
dynamic programming 
 

I.  INTRODUCTION 

Reinforcement Learning (RL) is an approach to solve 
practical sequential decision or sophisticated control 
problems, even when structures of the problems are less 
understood. RL has been studied extensively and applied 
in wide range of applications, including virtual machine 
configuration [1], robotics [2], helicopter control [3], 
ventilation, heating and air conditioning control [4], 
financial management [5], water resource management 
[6], and inventory management [7]. Prevalence of RL in 
current research is credited to RL's effectiveness, 
potential possibilities [8], link to mammal learning 
processes [9], and its model-free property [10]. 

Despite fascination of RL's model-free property, some 
application domain can naturally be formulated into a 
well-structured part interacting with a part that is less 
understood. An example is a domain of inventory 
management problems, costs of issuing replenishment 
order, handling inventory, and loss due to inventory 
shortage can be determined precisely in advance. On the 
other hand, customer demand, delivery time, availability 
of supplies or in an extreme case the length of the horizon 
is less predictable. However, once values of less 
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predictable variables are known, the period cost can be 
precisely determined. It is as a warehouse would know its 
inventory cost after it has received its replenishment and 
seen the demand. The formulation to calculate period cost 
is a well-structured part, while another part, e.g., demand, 
is unpredictable.  Knowledge about a well-structured part 
can be exploited, while learning mechanism takes care of 
the less understood part. 

Inventory management is an essential business activity. 
Inventory problems appear in various forms and their 
forms often change over time. Many articles, including 
[11], addressed the need for an efficient and flexible 
inventory solution that is also simple to implement in 
practice. This may explain extensive studies of RL 
application to inventory management. Most of the 
previous works applying RL to inventory management 
mainly focus on learning-based schemes. However, there 
are some studies, e.g., [10] and [12], investigating 
simulation-based schemes. Nonetheless, learning- and 
simulation-based schemes are not mutually exclusive. 
Kim et al. [13] proposed asynchronous action-reward 
learning method. They used simulation to evaluate 
consequences of actions not taken in order to accelerate a 
learning process in a stateless system. An extension to a 
state-based system would allow applicability to a wider 
range of problems.  

Our proposed method, “Ruminative Reinforcement 
Learning” (RRL), can be seen as this extension. The 
findings here provide an insight into RL mechanism. Our 
results show viability of RRL in different phases of 
operation. Regarding to applicability of the framework, 
another example is an area of water resource management. 
Precipitation, evaporation, and water demand are hard to 
predict. The capacities of reservoirs, size of a serving area, 
and length of irrigation canal are known. Once values of 
precipitation, evaporation, and demand are realized, how 
well the management can keep water levels as promised 
can be evaluated in high accuracy. It can be formulated in 
a similar manner. In additions, this framework can be 
applied to any sequential decision problem, where state 
and period cost variables can be determined precisely, 
once a stochastic variable is realized, as illustrated in 
Figure 2. 

II.  BACKGROUND 
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The sequential decision problem can be formulated as a 
Markov Decision Problem (MDP) [14]. Given an action 
is determined by a policy π, the long-term state cost can 
be written as, 

 Cπ(s) = r(s) + γ Σs’ pπ (s’|s) Cπ (s’), (1) 

where r(s) is an expected state cost, γ is a discounted 
factor, pπ(s’|s) is a probability that a state in the next step 
is s’ given a state of the current step s. In practice, the 
expected long-term cost is difficult to find. RL provides a 
framework to approximate it and find a good action 
policy. An approximate long-term cost Q(s) = r(s) + γ 
Q(s’). 

Temporal Difference (TD) learning uses TD error ψ 
(Eq. 2) to estimate the long-term cost in an iterative 
manner (Eq. 3), 

 ψ = r + γ Q(s’,a’) – Q(s,a), (2) 

 Q(new)(s,a) = Q(old)(s,a) + α ψ, (3) 

where r is a sampling period cost, corresponding to take 
action a in state s; α is a learning rate; s’ and a’ are a 
state and an action taken in the next period, respectively. 

Once values of Q(s,a) are learned sufficiently, they are 
presumed to be good approximation of the long-term 
costs. SARSA [15], a widely used RL algorithm, uses 
Q(s,a)⎯often called “Q-value”⎯ along with an action 
policy to determine an action to take. Q-value is updated 
based on TD learning (Eq. 2 and 3). In each period, an 
action is determined based on a policy π. An action 
policy π can be stochastic, such that it defines a 
probability to take an action a given state s: π(s,a) = 
p(a|s). The policy has to balance between taking the best 
actions and try other actions, so that it can learn new 
possibilities. This is the issue of balancing exploitation 
and exploration, as discussed in [15]. 

An ε-greedy policy is a simple policy. At each period, 
with probability ε, the policy takes an action randomly 
picked from a ∈ A(s), where A(s) is a set of allowable 
actions given state s. Otherwise, it takes an optimal action 
a* based on the current Q-value, a* = argmina Q(s,a). 

III.  RUMINATIVE REINFORCEMENT LEARNING 

SARSA algorithm assumes that the agent knows only 
current state s, action it takes a, period cost r, next state s’, 
and action it will take a’. Interaction of SARSA agent and 
its environment are shown in Fig. 1.  

 
Figure 1. SARSA agent and interacting signals. 

Each period, once period cost r and next state s’ are 
realized, SARSA algorithm updates Q-value based on TD 
error (Eq. 2 and 3), requiring only values of s, a, r, s’, and 
a’. However, in some problem domains, we may have 
extra knowledge about the problem and want to take this 
advantage.  

Suppose the problem structure can naturally be 
formulated such that period cost r and next state s’ are 
determined by a function k: s, a, ξ |→ r, s’, where ξ is an 
extra information. Variable ξ is assumed to capture the 
stochastic aspect of the problem. The process generating 
ξ is unknown, but the value of ξ is fully observable, after 
the period is over. Given a value of ξ, along with s and a, 
deterministic function k can determine r and s’, precisely.  

Original SARSA updates only one entry of Q(s,a) each 
period, since it can provide only one set of required 
values of (s, a, r, s’, a’). With mapping function k and an 
observed value of ξ, we can do rumination: evaluating 
consequences of other actions â’s that were not taken. 

 

 
Figure 2. Knowledge of problem’s structure and rumination. 

TABLE I.   

RSARSA: REINFORCEMENT LEARNING WITH RUMINATION 

Initialize Q(s,a). 
Observe s. 
Determine a by policy π. 
 

For each period 
Observe r, s’, and ξ. 
Determine a’ by policy π. 
ψ := r + γ Q(s’,a’) − Q(s,a). 
Q(s,a) := Q(s,a) + α ⋅ψ. 
For each â∈Â(s) 
(1) calculate �, ŝ’ by k(s, â, ξ), 
(2) determine â’, 
(3) calculate ψ := � + γ Q(ŝ’, â’) − Q(s, â), 
(4) update Q(s, â) := Q(s, â) + α ⋅ψ. 
Until ruminating all â∈Â 
s := s’; a := a’. 

Until termination 
 
Rumination can be done by (1) choosing a ruminative 

action â∈Â(s) and (2) use k(s, â, ξ) to determine 
ruminative period cost � and next state ŝ’. (3) Then, 
ruminative next action â’ can be determined with policy π. 
(4) Values of (s, â, �, ŝ’, â’) can be used to evaluate Eq. 
2 and 3. Table 1 shows Ruminative SARSA (RSARSA) 
algorithm. 
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Fig. 2 illustrates knowledge of problem’s structure (on 
the left side) and our proposed rumination (on the right) 
resembling the problem’s structure to provide � and ŝ’.  

As our experimental results shown in Section 4, 
RSARSA has shown significant improvement over 
SARSA performance in early periods. However, its 
performance in later periods was shown to be inferior to 
SARSA. 

This may be explained by that, despite having faster 
convergence rate, RSARSA’s approximate long-term 
costs may converge to wrong values. Lack of transition 
probability pπ(s’|s), Long-term cost estimated by TD 
learning (Eq. 2 and 3) relies on sampling trajectory: 
natural state-action visitation provides frequency of 
updates, equivalent to pπ(s’|s). 

However, rumination mechanism employed in 
RSARSA does not take this visiting frequency into 
account. Since rumination is done over an action set, it 
does not spoil state visiting frequency. To correct, action 
visiting frequency, probability of visiting each action 
should be accounted. 

Given state s and ε-greedy policy, probability of taking 
action â:  

 p(â) = ε/| Â(s) |, for â ≠ â * and 

 p(â) = ε/| Â(s) | + (1 − ε) , for â = â *, (4) 

 
where |Â(s)| is a size of a ruminative action set and â* = 
argminâ Q(s,â). An algorithm for Policy-weighted 
RSARSA (PRS) is shown in Table 2. 

TABLE II 
PRS: POLICY-WEIGHTED RSARSA 

Initialize Q(s,a). 
Observe s. 
Determine a by policy π. 
 

For each period 
Observe r, s’, and ξ. 
Determine a’ by policy π. 
ψ := r + γ Q(s’,a’) − Q(s,a). 
Q(s,a) := Q(s,a) + α ⋅ψ. 
For each â∈Â(s), 
(1) calculate �, ŝ’ by k(s, â, ξ), 
(2) determine â’, 
(3) calculate ψ := � + γ Q(ŝ’, â’) − Q(s, â), 
(4) calculate p(â) according to policy π (Eq. 4 for ε-

greedy), 
(5) β = α ⋅ p(â), 
(6) update Q(s, â) := Q(s, â) + β ⋅ψ. 
Until ruminating all â∈Â 
s := s’; a := a’. 

Until termination 
 
The computational cost increased by rumination varies 

directly to the size of ruminative action set: that is 
roughly |Â(s)| times of SARSA. Although this may not be 
critical in inventory management, it is still worth to 
investigate an opportunity to improve rumination on this 
aspect. We have tried to use TD error ψ to control when 
to do rumination. This is based on intuition that high 
magnitude of TD error associates to an agent’s urge to 

learn fast and the urge declines as TD error fades: when 
an agent is put in a new environment; the environment is 
changing; or, what an agent knew is not correct; any of 
these situations would cause high TD error. 

In this early stage of an attempt using TD error to 
guide rumination, each period we use magnitude of a 
normalized TD error to define the probability to do 
rumination: 

 p(rumination) = 1 − exp(−|2 ψ/(r + Q(s,a)|) . (5) 

In Eq. 5, value of probability is in [0,1). Large 
magnitude ψ gives a large probability to do rumination, 
and vice versa. For example, if ψ = average of r and 
Q(s,a), the chance to do rumination is 62%. 

IV. EXPERIMENTS AND RESULTS 

Our study uses computer simulations to conduct 
numerical experiments, on two inventory management 
problems. Both problems are periodic review single-
echelon with one-period leadtime and nonzero setup cost. 
The same markov model are used to govern both problem 
environments, but with different settings. The problem 
state space is I × {0, I+}, for on-hand and in-transit 
inventories: x and b, respectively. The action space is {0, 
I+}, for replenishment order a. State transitions are 
specified by (1) xt+1 = xt + bt – dt and (2) bt+1 = at, where 
dt is normally distributed. The inventory period cost is 
calculated from rt = K δ(at) + G at + H at δ(at) − B at 
δ(−at), where K, G, H, and B are setup, unit, holding, 
penalty costs, respectively; and δ(⋅) is a step function. 

Four RL agents, SARSA, RSARSA, PRS, and PRS.TD, 
are tested. PRS.TD is an abbreviation for PRS algorithm 
with rumination controlled by TD error, as described in 
Eq. 5. Each experiment is repeated for 10 times. In each 
repetition, an agent is initialized with all zero Q-values. 
Then, it is run consecutively for NE episodes. Each 
episode starts with random initial state and action and 
ends when the episode has reached NP periods or an agent 
has visited a termination state, which are states lying 
outside a valid range of Q-value implementation. The 
maximum number of periods in each episode, NP, defines 
length of a problem horizon, while the number of 
episodes NE specifies variety of problem scenarios, i.e., 
different initial states and actions. 

Two problem settings are used in our experiments. 
Problem 1 (P1) has NP = 1000, NE = 200, K = 100, G = 
100, H = 20, and B = 200. Environment’s state [x,b] is set 
as RL agent’s state: s = [x,b]. Therefore, RL agent’s state 
is two-dimensional. Problem 2 (P2) has NP = 60, NE = 
500, K = 200, G = 50, H = 20, and B = 200. RL agent’s 
state is set as an inventory level: s = x + b. RL agent’s 
state is one-dimensional.  

For both problems, demand dt is normally distributed 
with mean 50 and variance 100. RL agent’s period cost 
and action are inventory period cost and replenishment 
order, respectively. For ruminative algorithms, the extra 
information is inventory’s demand variable: ξ = dt. 

For all RL agents, Q-value is implemented with grid 
tile coding, as explained in [15], without hashing. Tile 
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coding is a function approximation, based on linear 
combination of weights of activated tiles. The suitability 
and justification of using tile coding for RL is discussed 
in [16].  Approximate function of variable z, 

 f(z) = w1⋅φ1(z) + w2⋅φ2(z) + . wM⋅φM(z), (5) 

where w1, w2,…, wM are tile weights, and φ1(z), 
φ2(z), …, φM(z) are tile activation function: φi(z) = 1, only 
when z lies within the ith tile hypercube. 

Tile configuration, i.e., φ1(z), φ2(z), …, φM(z), are 
predefined. Q-value is stored in tile coding through 
weights. Given a value Q to store at an entry of z, weights 
can be updated with wi = Q/N, for all i’s of tiles activated 
by z, where N is a number of activated tiles. However, in 
our preliminary experiments, we found that it is more 
effective to use: 

 wi = wi
(old) + (Q – Q(old))/N, (6) 

where wi
(old) and Q(old) are weight and approximation 

before new update. We use Eq. 6 to update tile coding in 
all our experiments. 

For P1, we use tile coding with 5 tiling layers. Each 
layer has 11×5×3 three-dimensional tiles, covering space 
of [−300,500] × [0,150] × [0,150] corresponding to s=[x, 
b] and a. This means that this tile coding allows only a 
state lying in [−300,500] × [0,150] and a value of action 
between 0 and 150. Dimensions, along x, b, and a, are 
partitioned into 11, 5, and 3 partitions, creating 165 three-
dimensional hypercubes for each tiling layer. All layers 
are overlapping to constitute an entire set of tile coding. 
Layer overlapping is arranged randomly. For P2, we use 
tile coding with 5 tilings. Each tiling has 11×5 two-
dimensional tiles, covering space of [−300,650] × [0,150] 
corresponding to s=(x+b) and a. 

All RL agents are set up with ε = 0.2 (for ε-greedy 
policy), learning rate α = 0.7, and discounted factor γ = 
0.8. 

The results are summarized in Table 3. PRS has shown 
to outperform SARSA in both problems: its average costs 
6692 and 4288 of P1 and P2, respectively (shown on 
rows 6 and 7) are lower than SARSA’s 6777 and 4355. 
Both cases are also confirmed by Wilcoxon rank sum test 
(WT) with significant level 0.05 (indicating, on rows 9 
and 10, by ‘W’, meaning that its average cost is 
significantly lower than SARSA). 

Regarding to RSARSA, its average costs are higher 
than SARSA in both problems. Each case is confirmed by 
WT (indicating by ‘L’, meaning that its average cost is 
significantly higher than SARSA). 

Our attempt of TD-error-controlled rumination turns 
out with mixed results: PRS.TD outperformed SARSA in 
P1, but underperformed in P2. 

Despite inferior overall performance, RSARSA 
outperformed SARSA in early periods (1-300) in both P1 
and P2 (rows 12-15). PRS and PRS.TD also 
outperformed SARSA in P2 in these early periods. In P1, 
both PRS and PRS.TD has lower average costs than 
SARSA, but these cannot be confirmed by WT (p values 
0.529 and 0.684 for PRS and PRS.TD, respectively). Fig. 
3 illustrates average costs obtained in P1 (left plots) and 

P2 (right plots) during periods 1-300 (top plots), periods 
301-3000 (middle row plots), and periods after 3000 
(bottom plots). Top plots show that RSARSA also 
outperformed PRS and PRS.TD in early periods. 
However, for later periods, RSARSA underperformed 
others. 

Fig. 4 shows moving average of period costs (left plots) 
and TD error ψ (right plots) of P1 (upper plots) and P2 
(lower plots). Legends are shown in the top left plot. All 
four plots show that RSARSA has the fastest rate of 
convergence. However, it converged to suboptimal value, 
as revealed by the plots of TD error: RSARSA’s ψ 
converges to higher value than the others in both P1 and 
P2. It should be noted that as the algorithm converges 
average cost declines and so does TD error. This is one of 
our motivations to use TD error as a clue to control 
rumination, in order to reduce the additional 
computational costs. 

For each period, computation of RSARSA spent 10.59 
and 20.28 times of SARSA in P1 and P2, respectively 
(rows 3-4). PRS spent a little bit longer than RSARSA. 
These computation times correspond to size of ruminative 
action space |Â(s)|, here as partitions of action space 15 
and 25 in P1 and P2, respectively. Partitioning is nature 
of tile coding, implemented Q-value. PRS.TD spent only 
2.19 and 3.12 times of SARSA. 
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Figure 3. Average period costs at different period ranges: boxplot shows 
maximum, 3rd-quantile, median, 1st-quantile, minimum, and outliers of 

average costs obtained by SARSA, RSARSA, PRS, and PRS.TD. 

V. DISCUSSION  AND CONCLUSIONS 

PRS has shown to be a viable algorithm, when 
structural part of the problem can be distinguished. 
Although RSARSA may converge to suboptimal policy 
in long run, it is shown to be a formidable candidate for 
short run. Therefore, it may be suitable for finite, 
especially short, horizon applications.  
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With major improvement of rumination’s computing 
times, PRS.TD showed good results in early periods. 
However, its performance in long run reveals that attempt 
to control rumination by TD error requires further 
investigation. In addition, based on our intuition that high 
TD error associates to need for fast learning, the concept 
of PRS.TD can be extended to other aspects, such as 
using TD error to control learning rate or degree of 
exploration. RL has been associated to mammalian 
learning, as TD error is associated to dopamine activity. 
So are learning rate and degree of exploration to 
acetylcholine and noradrenaline, respectively [17]. The 
knowledge of interaction of these chemicals from 
neuroscience may reveal key mechanism to develop a 
self-adjusting RL agent, or vice versa. 

Our results show domination of RSARSA in fast 
learning and PRS in quality of what it learns. In PRS, we 
use simple term β = α ⋅ p(â) for ruminative learning rate, 
where α is the same learning rate, used in regular TD 
learning. The development of better ruminative learning 
rate may lead to an algorithm that is both fast learning 
and good in long run. 
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Figure 4. Moving average of period costs. 

EXPERIMENTAL RESULTS 

Row  SARSA RSARSA PRS PRS.TD
Relative computation time/epoch 

3 P1 1 10.59 11.95 2.19 
4 P2 1 20.28 20.91 3.12 

Average cost (AC) 
6 P1 6777 6830 6692 6709 
7 P2 4355 4406 4288 4392 

Wilcoxon rank sum test (WT) 
9 P1  L W W 
10 P2  L W L 

Periods 1-300 
12 P1: AC 11144 9042 11129 10898 
13 P1: WT  W p 0.529 p 0.684

14 P2: AC 7604 5562 6621 6844 
15 P2: WT  W W W 

Lastly, every component of RL affects its overall 
performance, to develop more effective and efficient RL 
application, we may need to consider state-of-the-arts, 
such as policy gradient, transfer learning, active learning, 
adaptive step size, adaptive action search space, and 
efficient Q-value representation, including deep learning. 
Regarding efficient Q-value representation, widely used 
functions, i.e., look-up tables, neural networks, radial 
basis functions, and tile coding, are good for interpolation, 
but RL applications needs extrapolation, as well. If this 
need is met, it would yield more efficient RL applications 
as well as faster developing processes. 
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