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Abstract—Although there has been significant progress in 
the past decade, object tracking under complex environment 
is still a very challenging task, due to the irregular changes 
in object appearance. To alleviate these problems, this 
research developed an object tracking algorithm via tensor 
kernel space projection. In the initial stage of tracking, a 
template matching algorithm was used to obtain a priori 
images of the appearance of the object. The steps taken were 
as follows: define the tensor kernel function based on a 
multi-linear singular value decomposition, view the object 
appearance color image as tensor data, calculate the kernel 
matrix for the priori appearance image samples, use KPCA 
to obtain the projection matrix of the image samples in 
kernel space, and finally, obtain an optimal estimate of the 
object state through Bayesian sequence interference. 
Meanwhile, the projection matrix in kernel space was 
updated on-line. Experiments on two real video surveillance 
sequences were conducted to evaluate the proposed 
algorithm against two classical tracking algorithms both 
qualitatively and quantitatively. Experimental results 
demonstrate that the proposed algorithm is robust in 
handing occlusion and object scale changes. 
 
Index Terms—object tracking, tensor kernel, SVD, kernel 
pace, projection 

I.  INTRODUCTION 

Object tracking as an important research area in 
computer vision and pattern recognition, has many 
applications, such as: object recognition, video 
surveillance, traffic monitoring, human-computer 
interaction, video compression, weapon automatic 
tracking, etc.  [1-3].  

The chief challenge in object tracking is how to adapt 
to appearance variability in the object. The appearance 
variability includes the effects of: camera motion, camera 
viewpoint changes, illumination change, pose variation, 
shape deformation and occlusions [4]. To solve this 
problem, there are two types of methods based on 
different appearance models: generative and 
discriminative methods.  

Generative methods model appearance of targets use 
gray value or other features, and predict the target state 
by find the image patch most similar to the target. The 
classical mean-shift [5-6] tracking method using the 
kernel function forms a weighted model of the color 
histogram, and defining the similarity measure by its 
Bhattacharyya coefficient, seeks the most similar region 
to the reference template by a first-order gradient descent 
algorithm. The CBWH tracker [7] transforms only the 
object model but not the object candidate model. Ross [4] 
uses an incremental sub-space model combined with a 
particle filter to adapt to appearance changes. Gao [8] 
uses a Mexican hat wavelet to change the mean-shift 
tracking kernel and embedded a discrete Kalman filter to 
achieve satisfactory tracking. The l1-tracker [9] uses a 
visual tracking problem as a sparse approximation, 
obtains sparse representation by solving l1 regularisation, 
and finally finds the minimum reconstruction error region. 
Gao [10] fused multi-feature weights through DS 
evidence theory and combined with a particle filter 
achieves better results when considering the particle 
degeneration phenomenon. 

Discriminative methods formulate object tracking as a 
binary classification problem for separates the target from 
the background. The Support Vector Tracking [11] 
integrates SVM into optical flow classifier for object 
tracking. Avidan [12] combined weak classifiers into a 
strong classifier to distinguish the object with background. 
The online boosting tracker [13] selects features using 
boosting classifier. The MIL tracker [14] using Multiple 
Instance Learning to overcome slight inaccuracies in 
labeled training examples can cause drift, the samples are 
considered within positive and negative bags. 

The authors proposed an algorithm that uses tensor 
kernel space projection for object tracking to estimate the 
object state in real-world scenarios. For the purpose of 
highlighting the real differences between color images, a 
tensor kernel based on multi-linear singular value 
decomposition was defined. The Bayesian sequence 
interference framework was combined therewith to 
project the observe image samples in kernel space using a 
kernel matrix. Experimental results showed that the 
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proposed algorithm could achieve object tracking in real-
world and occlusion environments, it was also adaptive to 
object scale changes. 

II.  TENSOR KERNEL BASED ON MULTI-LINEAR SINGULAR 
VALUE DECOMPOSITION 

A.  Tensor Algebra 
A tensor can be seen as a multi-order array which 

exists in multiple vector space, meanwhile, tensor algebra 
forms the mathematical basis of the multi-linear analysis 
[15]. A scalar is a zero-order tensor, a vector is a first-
order tensor and a matrix is a second-order tensor. It is 
obviously that a color image is a third-order tensor. An N-
order tensor can be denoted by 1 2 NRX I I I× × ×∈ , the 
element of X is

1 N, , , ,ni i ix , where1 n ni I≤ ≤ . 
Definition 1: The n-mode unfolding matrix of a tensor 

data X is denoted as  
1 1 1( )

( )
n n n NI I I I I

n
− +× × × × × ×∈X R   (1) 

The element
1 N, , , ,ni i ix  of X  in ( )nX at ni -th row and at 

1 2 1 1 1 1 1 2[( 1) ( 1) ( 1)n n N n N ni I I I I i I I i I+ + − −− + + − + −

1 1]n nI i− −+ -th column. 

Definition 2: The n-mode product of a tensor data 
1 2 NI I I× × ×∈X R and a matrix n nJ I×∈U R  denoted 

as 1 1 1 Nn n nI I J I I
n

− +× × × × ×× ∈X U R .The element of n×X U is 

( ) 1 2 N
1 1 1 N

n n
n n n

n

n i i i j ii i j i i
i

x u
− +

× =∑X U         (2) 

Definition 3: The inner product of two tensors 
1 2 N, I I I× × ×∈X Y R  denoted as 

1 N 1 N

1 2

,
n n

N

i i i i i i
i i i

x y=∑∑ ∑X Y         (3) 

B. Tensor Kernel Based on Multi-linear Singular Value 
Decomposition 

Tensor data can retain the original spatial structure of 
an object. Viewing the object color image as tensor data 
can help us exploit the intrinsic geometric relationships of 
object classes. The object image data belong to the same 
class reside in a low-dimensional manifold embedded in 
high-dimensional vector space. 

The purpose of the kernel method is to identify and 
learn the relationship in a data set.  

   

 

 

Fig.1 The schematic diagram of tensor kernel based on multi-linear SVD. 
 

The original data can be embedded in high-dimensional 
feature space through a nonlinear mapping ϕ . The 

traditional kernel function ( , )k x y  for vector data is 
known as: R R RN N× → and 
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satisfied ( , ) ( ), ( )k ϕ ϕ=X Y X Y , so the kernel 

function ( , )k x y  for tensor data must obey the rule: 
1 2 N 1 2 NR R RI I I I I I× × × × × ×× →  . 
Kernel methods for non-linear models have proven 

successful in many computer vision fields[16]. So it is 
feasible to improve the discriminatory power of 
supervised tensor-based models using a tensor kernel. 
The most recent tensor-based techniques are based on 
matrix unfolding. The multi-linear singular value 
decomposition of tensor data X can be reduced to the 
SVD of ( )nX , where ( )nX  is the matrix unfolding of X , 

Nn I≤ , 

( ) ( ) ( ) ( )X X XX
n n n

T
n U V= Σ                 (4) 

where ( )X n
U , ( )X n

Σ ,
( )X n

TV are the three components of this 
SVD, and can be sated in block-partitioned form, 

( )( ) ( ) ( )

1 2
X X Xn n n

U U U=                    (5) 

( )

( )

1 0

0 0
X

X
n

n

⎛ ⎞Σ
Σ = ⎜ ⎟⎜ ⎟

⎝ ⎠

                   (6) 

( )

( )

( )

1

2

X

X
X

n

n

n

T

T
T

V
V

V

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

                    (7) 

 
Definition 4: Given a dataset X : 1 2, , , m ∈X X X X , 

the kernel matrix of this set is an N N× matrix K , and 
the element ijk is 

( , )ij i jk k= X X                 (8) 

A simple template matching object tracking method 
used in the first m frame images, then we can get the 
prior acquisition object sample tensor 
dataset 1 2{ , , , }X X Xm . 

Because 0ijk ≥ ,  the kernel matrix K is non-negative, 
and positive semi-definite. 

( , )ik X Y  correspond to the kernel function in mode i of 
the two tensors, and can be calculated by: 

( ) ( ) ( ) ( )

1 1 1 1

2( , ) exp
2

i i i i

T T

i

V V V V
k

σ

⎛ ⎞−⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

X X Y Y
X Y      (9) 

Where σ indicates an appropriate bandwidth. 
Then the kernel function between tensors is defined as: 

 

1 2 3( , ) ( , ) ( , ) ( , )k k k k=X Y X Y X Y X Y        (10) 

The kernel function of colour image tensor data is 
showed as Figure1. 

III. TENSOR KERNEL SPACE PROJECTION 

Principle component analysis can only handle the 
linear information in a dataset, a kernel trick may be used 
in kernel space to distinguish object and background [17].  

Given a training dataset 1 2, , , mα α α , using kernel 
mapping ϕ projecting them into kernel space, we 
get 1 2( ), ( ), , ( )mϕ α ϕ α ϕ α , Let 1 2[ , , , ]mα α αℵ=  and 

1 2( ) [ ( ), ( ), , ( )]mϕ ϕ α ϕ α ϕ αℵ = . Projecting ( )iϕ α in 
kernel space along projection direction p , 

( )T
i ipβ ϕ α=                               (11) 

The total dispersion of the projected training dataset is 

 

1

1

1 ( )( )

1 ( ( ) )( ( ) )

m
T

i i
i

m
T T

i i
i

T

D
m

p p
m

p Sp

β β β β

ϕ α α ϕ α α

=

=

= − −

⎡ ⎤= − −⎢ ⎥⎣ ⎦
=

∑

∑       (12) 

Where 
1

( )
m

i
i

mϕ ϕ α
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑ is the mean value of the 

dataset in kernel space. 
The purpose of this kernel space projection is to find the 
optimal projection direction p by maximizing the total 
dispersion of the projected training dataset D . Thus, 

( ) arg max T

p
J p p Sp=                        (13) 

To maximize the objective function, we need to find the 
Eigen-value decomposition to S . 

1

1

1 ( ( ) ) ( ( ) )

1= ( ( ) ) ( ( ) )

n
T

i i
i

m
T

i i
i

p Sp p
m

p
m

λ ϕ α ϕ ϕ α ϕ

ϕ α ϕ ϕ α ϕ

=

=

= = − −

⎡ ⎤− −⎢ ⎥⎣ ⎦

∑

∑
      (14)

                         
Here p can be regarded as the feature vector of S . It can 
also be seen that the projection direction p is the linear 
composition of ( ( ) )iϕ α ϕ− , Namely that 

[ ]1 2( ) ( ( ) ), ( ( ) ), , ( ( ) )mψ ϕ α ϕ ϕ α ϕ ϕ α ϕℵ = − − −
 (15) 

That is 

1
( ( ) ) ( )

m

i i
i

p c Cϕ α ϕ ψ
=

= − = ℵ∑                   (16) 

Where [ ]1 2, , , T
lC c c c= is the matrix which comprising 

the linear combination coefficients. Now, solving for the 
optimal projection direction was transformed into a 
problem whereby solving the combination coefficient 
matrix was required, the objective function became: 

21( ) arg max ( ) ( )T T

C
J C C C

m
ψ ψ⎡ ⎤= ℵ ℵ⎣ ⎦

     (17)       

Let mA is a m m× matrix with all entries equal to1 m , 
( ) ( )TK ψ ψ= ℵ ℵ . Then,  
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m m m mK K A K KA A KA= − − +               (18) 

Eigen-value decomposition to S , 

( )Sp m pλ=                                (19) 

Then 

( ) ( ) ( )T S C m KCψ ψ λℵ ℵ =                    (20) 

( )KC m Cλ=                                  (21) 

It is can be seen that C is the matrix composed of the 
Eigen-vectors corresponding to the first l maximum 
Eigen-values of K . 
The tensor kernel space projection algorithm works 
as shown in Table1: 
 

TABLE 1.  
TKSP ALGORITHM 

1) Define tensor kernel function ( , )k α β . 
2) Compute kernel matrix K and matrix K . 
3) Eigen-value decomposition to K  to obtain Eigen-values and 
Eigen-vectors, and sort Eigen-values in descending 
order 1 l mλ λ λ≥ ≥ ≥ ≥ , iv is the eigenvector corresponding 

to iλ . Take the first l Eigen-values, let ( 1, 2, , )i i ic v i lλ= = . 

Then, the projection matrix [ ]1 2, , , lC c c c= . 

4)The projected data in kernel space are ( , )TC kβ α= ℵ  
 

IV. BAYESIAN SEQUENCE  INTERFERENCE  FRAMEWORK 
FOR OBJECT TRACKING 

A.   Bayesian Sequence Interference 
In the problem of object tracking, the object state in the 

current frame only related to the object state in the prior 
frame. Define to as the state variables of the object at 
time t. Let ( , , , )t t t t to x y w h= , where , , ,t t t tx y w h denotes 
the center coordinate, the width and height of the tracking 
rectangle. 

Given a set of targets { }1 2, , ,t tZ z z z= , the objective 
of object tracking is to obtain the optimal estimate value 
of the hidden state variables to . According to Bayesian 
theorem, it can be obtained in a similar fashion as that of 
the object state: 

( ) ( ) ( ) ( )1 1 1 1t t t t t t t t tP o Z P z o P o o P o Z do− − − −∝ ∫
                               (22) 

Where ( )1t tP o o − refers to the state transition model 

and ( )t tP z o  refers to the observation model. It can be 

seen that the observation model ( )t tP z o  determine the 

tracking results. 

State transition model: This was used to model the object 
motion between consecutive frames. Because of the 
irregular movement of object, the state to  is modeled by 
independent Gaussian distribution around its counterpart 
in state 1to − . Described as 

( ) ( )1 1; ,t t t tP o o N o o Δ− −=               (23) 

Where Δ means the diagonal covariance matrix 
of , , ,t t t tx y w h , and the element is 2 2 2 2, , ,x y w hσ σ σ σ . Point to 
Gaussian distribution, N particles can be randomly 
generated. According to the particle can obtain multiple 
states { }, 1, 2, ,i

to i N= . During the computing process, 
with the increase in the number of particles, the a 
posteriori probability estimate was more accurate, but at 
the same time, the computational efficiency was low, so a 
balance was sought between these factors. 
Observation model: this was used to measure the 
similarity between the appearance observation and the 
object appearance model. Given a drawn particle 
state i

to and a cropped version of the corresponding image 
patch i

tz  from the frame image tI . The probability of an 
image patch being generated from the kernel space is 
inversely proportional to the difference between image 
patch and the appearance model, and could be calculated 
between the negative exponential distance of the 
projected data and the center of dataset 

{ }( ) expi i
t t t F

p z o s s σ= − −            (24) 

Where σ indicates an adjustment factor, 
F

• is the 

Frobenius norm, ( , ),i T i
t ts C k X z= ( , )Ts C k X x= , C is 

the projection matrix in kernel space, and x is the center 
of dataset in kernel space.  
The state i

to corresponding to the maximum ( )i
t tp z o is 

the optimal object state at time t.  

B.   Projection Matrix Online Update 
Along with the movement of the object in scenarios, 

the object appearance also changed. The projection 
matrix in kernel space must be updated on-line so that at 
time t, we have obtained the former t - 1 time object 
states. When t - 1 is the times used as initial training 
dataset numbers, we recalculated the projection matrix in 
kernel space using the newly acquired t - 1 object tensor 
data points. 

The flow chart of whole proposed object tracking 
algorithm is shown as figure 2. 

1506 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



 
Fig.2 The flow chart of the proposed visual tracking algorithm. 

 

V. COMPARATIVE EXPERIMENTS AND ANALYSIS 

All the experiments were carried out in the MATLAB® 
2010a environment running on a Pentium® Dual-Core 
E5200 processor with a clock-speed of 2.50 GHz.  

In these experiments, we use Portuguese shopping 
center video monitoring data to test. The video frame 
image size was 388 284 3× × , and the experimental data 
were compared with classical CBWH, and MIL, tracking 
algorithms. The CBWH tracking algorithm select 
16×16×16 bin histogram.  In MIL tracking algorithm, the 
feature pool is 250, weak classifiers number is 50 and the 
learning rate is 0.85. The variance of Gaussian 
distribution is [2, 2, 0.5, 0.5] in the proposed tracking 
algorithm. In the initial frame, the object tracking 
rectangle was manually/artificially marked, and a 

template matching tracking algorithm was used to get the 
previous twenty frame object states.  

A.   Expeiment A 
We first selected scale changes in an environment of 

complex surveillance scenario, meanwhile the movement 
of object was irregular. The object was walking toward 
the camera. The length of this video was 200 frames.  

The tracking results of experiment A are shown as 
Figure 3. It can be seen from the pictures that when a 
similar object appeared around the target, the CBWH and 
MIL tracking algorithms cannot achieve well tracking; 
our tracking algorithm could adapt thereto. In the tracking 
progress, the size of the object changed from 28 × 79 to 
44 × 111. 

  

 
 

CBWH tracking 
algorithm 

  

 
 

MIL tracking 
algorithm 

  

 
 
Proposed tracking 

algorithm  

The 1st frame The 73rd frame The 96th frame The 114th frame  

Initial stage I: 
Automatic detection 
or artificial marked 
object initial state 

Initial stage II: Obtain 
prior object states 
through template 

matching. 

Learning stage I: 
Calculate tensor 

kernel of prior object 
tensor data. 

Learning stage II: 
Tensor kernel space 

projection. 

Tracking stage I: 
Bayesian sequence 

interference tracking 

Tracking stage II: 
Update kernel space 
projection matrix. 
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CBWH tracking 
algorithm 

  

 
 

MIL tracking 
algorithm 

  

 
 

Proposed tracking 
algorithm 

The 157th frame The 172nd frame The 184thframe The 200th frame  
Fig.3 The tracking results of experiment A. 

B.   Expeiment B 
The second video had scale changes and occlusion in 

the surveillance scenarios studied. The object was 
walking away from the camera. The object was walking 
away from the camera. The length of this video was 300 
frames. 

The tracking results from experiment B are shown in 
Figure 4. It can be seen from the pictures that when the 

object was almost occluded by other moving objects, the 
CBWH and MIL tracking algorithms suffered 
interference from the other objects, and could not have 
tracked the target. Our tracking algorithm overcame the 
problem of occlusion and tracked the target. 

In the tracking progress, the size of object changed 
from 39× 112 to 21× 64. 

  

  

 
 

CBWH tracking 
algorithm 

  

 
 

MIL tracking 
algorithm 

  

 
 
Proposed tracking

algorithm  

The 1st frame The 80th frame The 140th frame The 186th frame  

   

 
 

CBWH tracking 
algorithm 
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MIL tracking 
algorithm 

   

 
 

Proposed tracking
algorithm 

The 194th frame The 200thframe The 260thframe The 300th frame  
Fig.4 The tracking results of experiment B. 

 

C.   The Evaluation of Tracking 
To quantitatively compare the experimental results of 

the tracking algorithms, we used two metrics to describe 
it: Tracking errors and Tracking correct ratio. We 
initially hand-labelled the object state in each 
experimental scenario. 

The error in X-axis xe is  

ex ge x x= −
                           

(25)
 

Where e , gx x are the X-axis coordinates of the center 
of the experiment tracking rectangle and the ground truth 
rectangle. 

The error in Y-axis ye is  

ey ge y y= −
                           

(26)
 

Where e , gy y are the Y-axis coordinates of the center 
of the experiment tracking rectangle and the ground truth 
rectangle. 

The error in center coordinate ce is  
2 2

e e( ) ( )c g ge x x y y= − + −
                   

(27)
 

The error in experiment A and B are shown as Table 2 
and 3. The data in bold refer to optimal results.  

TABLE 2  
THE ERRORS OF EXPERIMENT A 

Items(pixels) x-errors y-errors c-errors 
Proposed Method 1.7145 2.3905 3.2788 

CBWH 4.0725 15.6325 16.9349 
MIL 4.2025 5.0400 6.8776 

 
TABLE 3  

THE ERRORS OF EXPERIMENT B 
Items(pixels) x-errors y-errors c-errors 

Proposed Method 1.8276 2.4318 3.2209 
CBWH 7.0183 19.1450 21.0142 

MIL 12.7800 19.4817 23.5559 
The tracking correct ratio r is 

e

e

( )
( )

g

g

area R R
r

area R R
∩

=
∪                            

(28)
 

Where eR is the experiment tracking rectangle, gR is 
the ground truth rectangle, ()area means the area of the 
region. It was thought that if the tracking correctly ratio 
was greater than 0.5, the tracking in this frame was 

successful. The tracking correctly ratios in two scenarios 
are shown as Figures 5 and 6. The red line indicates the 
results of the proposed tracking algorithm, the green line 
indicates the CBWH tracking algorithm and the blue line 
indicates the MIL tracking algorithm. It can be seen that 
our proposed tracking algorithm had better results than 
the other two tracking algorithms. Also, the tracking 
correctly ratio of our algorithm was almost always greater 
than 0.5, implying that the algorithm was successful. 

 
 
 

Fig.5 The tracking correct ratio in experiment A. 

 
 
 

Fig.6 The tracking correct ratio in experiment B. 

Proposed      CBWH    MIL        

Proposed      CBWH    MIL        
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V I. CONCLUSION 

In this work, we proposed the use of a tensor kernel 
space projection for object tracking in video surveillance 
scenarios. Considering the spatial structure of the object 
image, we defined a tensor kernel function based on 
multi-linear singular value decomposition. We projected 
the object image tensor data into kernel space, and 
combined this with a Bayesian sequence interference 
tracking framework to achieve object tracking. To adapt 
to the object appearance changes, we updated the 
projection matrix on-line and also analyzed the 
performance of our proposed tracking algorithm in an 
assessment against challenging real-world video 
surveillance scenarios and compared the output with two 
classical tracking algorithms. The experimental results 
demonstrated the accuracy and robustness of the 
proposed tracking algorithm. 
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