
Tasks Distribution Strategy based on Cluster in 
MWfSCC 

 
Xiuguo Wu 

Shandong University of Finance and Economics/School of Management Science and Engineering, Jinan, China 
Email: xiuguosd@163.com 

 
 

Abstract—Cloud computing technology offers a new way to 
develop workflow system. Migrating workflow system based 
on cloud computing paradigm (MWfSCC) can obtain high 
system performance and service quality in cloud computing 
environment, where an agent (called CMI) is deployed to 
fulfill several tasks by migrating to other computers (called 
work machines).  In general, task execution involves several 
input data sets usually placed on distributed work machines. 
On the other hand, task execution will also generate some 
data sets, which may be regard as input data sets for other 
tasks. Traditionally, CMI moves to work machines one by 
one for the reason that tasks execution places are also 
distributed. In this way, it is very important to arrange the 
tasks on different work machines in order to reduce CMI’s 
movements. In this paper, we propose a tasks distribution 
strategy based on cluster in MWfSCC, which contains tasks 
classifications and arrangements. Simulations show that 
tasks distribution strategy based on cluster can effectively 
reduce CMIs movements during workflow execution, and 
hence can significantly improve the performance of 
MWfSCC. 
 
Index Terms—workflow, cloud computing, tasks 
distribution 
 

I.  INTRODUCTION 

Cloud computing technology offers a new way to 
enable massive amounts of data sets to work together, 
since it supplies a pool of abstracted, virtualized, 
dynamically-scalable, highly available, and configurable 
and reconfigurable computing resources (e.g., networks, 
servers, storage, applications, data) [1]. However, as 
solving problems becomes more and more complex, 
especially the exponential growth of data sets, the data 
movements is a challenge for the sake of network 
bandwidth limitation. In this way, migrating workflow is 
an emerging technology that applies mobile agent 
technology to workflow management, which deploys an 
agent (called CMI) to fulfill several tasks by migrating to 
other computers (called work machines) [2-4]. By taking 
advantage of cloud computing technology, migrating 
workflow system based on cloud computing paradigm 
(MWfSCC) could gain a wider utilization. MWfSCC 
obtains so many advantages in system performance, such 
as easy interaction, intelligent decision making, 
especially in distributed, dynamic and unpredictable 
environment [5-6].  

Yet there are still some new challenges have to face, 
and the tasks distribution is one of them [7]. There are 

many tasks in MWfSCC, and each task can be bound to a 
certain work machines for execution, where store a large 
amount of data sets. Similarly, each task execution 
usually includes several input data sets, which are usually 
placed on distributed work machines. On the other hand, 
a series of output data sets will be generated after tasks 
completed, which may be required by other tasks as input 
data sets. Traditionally, a CMI’s tasks execution involves 
many work machines; and it needs to move on these 
machines one by one for the reason that tasks are also 
distributed. However, if one work machine can fulfill one 
or more tasks, then CMI’s movements can be reduced 
effectively during workflow execution, and the 
performance of cloud workflow system can be 
significantly improved in this way.  

Based on the above analysis, it is an urgent question to 
find the tasks relations and arrange them in a suitable 
work machine in order to reduce the CMI movements. So, 
in this paper, we propose a tasks distribution strategy 
based on cluster in MWfSCC. In our strategy, we try to 
classify the different tasks into sub-classes, which are 
linked by input and output data sets. In this way, the 
performance of cloud workflow system will be greatly 
improved when some tasks are distributed on the same 
machine.  

The remainder of the paper is organized as follows: 
Section II presents the related works, including migrating 
workflow system based on cloud computing paradigm 
and tasks scheduling in traditional distributed system, 
Section III gives models for task distribution in MWfSCC, 
including models of task and other related conceptions, 
and Section IV demonstrates the strategy for tasks 
distribution based on cluster using a simple example. 
Section V presents the simulation results and the 
evaluation. Finally, Section VI addresses our conclusions 
and future work. 

II.  RELATED WORK 

In this section, we will briefly introduce the existing 
literatures related to this research. There are two parts, 
including migrating workflow system based on cloud 
computing paradigm, and tasks management about 
workflow in traditional distributed system. 

A. Migrating Workflow System based on Cloud 
Computing Paradigm 

A framework of MWfSCC is shown in Figure 1. There 
are four components, including cloud workflow engine, 

1470 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.6.1470-1477



service cloud server, service cloud network and cloud 
migrating instance (CMI) [2].  

 
• Cloud workflow engine (CWfE). The main 

function of cloud workflow engine is to 
administrate the execution of whole system, 
including the management of service cloud servers 
and service cloud networks. It has the capabilities 
to create, to call and to kill a cloud migrating 
instance. Also, it controls the generation and 
elimination of CMIs. 

• Service cloud server (SCS). Service cloud server 
is the main place of cloud migrating instance. It 
accepts the queries and requests from CMI, and 
supplies the service once an instance arrives. In 
special circumstances, it can also create and kill 
cloud migrating instance. 

• Service cloud network (SCN). Service cloud 
network is the provider of resource and service.  

• Cloud migrating instance (CMI). Cloud migrating 
instance is the main body of workflow execution, 
which is assigned a task description before 
execution. And CMI also manages and monitors 
tasks execution process. 

According to the framework of MWfSCC, the core 
question of SCS is to administrate a table of tasks list, 
which is associated with a task description, input and 
output data. Figure 2 describes the architecture of service 
cloud server. 

• Task engine: the main function of task engine is to 
administrator the task list table, such as adding, 
deleting and updating the service of SCS, and to 
take over the execution of a CMI. 

• Task list table: the list of service is stored in task 
list table, indicating the capability of SCS. Each 
element in task list table includes task description, 
its input data and output data.  

• Migrating tree: once a CMI decides to achieve its 
goals in SCS, migrating tree will tell the routine of 
how to find the nearest (most appropriate) work 
machine.  

• Tasks directory: a blue print of service list table.  
• Tasks lib: a library containing all the tasks 

description. 

 
B. Task Scheduling in Traditional Distributed System 

Task managements in the traditional distributed 
computing system include tasks scheduling and tasks 
placement strategy. As for cloud workflow systems, 
scheduling is a very important component similar to 
many other workflow systems. It directly determines the 
performance of the whole system. According to [8], there 
are two major types of workflow scheduling: best-effort 
based and QoS constraint based. Best-effort based 
scheduling attempts to minimize the execution time 
without considering other factors such as the cost of 
accessing resources and various users’ QoS satisfaction 
levels. 

Generally speaking, the algorithms usually are 
designed for scheduling a single workflow instance. 
However, for instance-intensive workflows on a cloud 
computing platform, fierce competition on 
servers/services may occur and failures may happen from 
time to time. Thus scheduling strategy needs to 
incorporate these situations accordingly. In addition, 
scheduling algorithm needs to consider the characteristics 
of cloud computing in order to accommodate instance-
intensive cost-constrained workflows by compromising 
execution time and cost with user intervention, which is 
not considered in other strategies [9-12]. 

In cloud computing system, the infrastructure is hidden 
from users. Hence, for most of the application tasks, the 
system will decide where to perform them. Dependencies 
exist among these tasks via input and output data sets 
[13-15]. In this paper, we initially adapt the cluster 
algorithms for tasks distribution in order to reduce the 
number of CMIs movements. 

III. MODELS FOR TASKS DISTRIBUTION IN MWFSCC 

In this section, we will define some models related to 
research, including migrating workflow system based on 
cloud computing paradigm, cloud migrating instance, 
data set, etc. 

Definition 1.  Migrating Workflow System based on 
Cloud Computing Paradigm (MWfSCC). 

Migrating workflow system based on cloud computing 
paradigm is a 4-tuple: (Wid, CMI, SC, Eng), where, 

(1) Wid is an identifier of MWfSCC; 
(2) CMI={CMI1, CMI2,…, CMIn}, representing a set of 

cloud migrating instances (CMIs). Each CMI pursues a 
certain goal on behalf of an independent business process; 

 

Task Engine 

Task 1 

Task 2  

Task 3 

…… 

Task n 

Task1 Description

Input Data 

Output Data 

Task2 Description

Input Data 

Output Data 

Migrating Tree Tasks Directory 
Tasks Lib 

Taskn Description

Input Data 

Output Data 

Task List  

…… 

 
Figure 2. Architecture of service cloud server. 

 

Service Cloud Server Service Cloud Network

Work Place 

 

Cloud Workflow Engine 

Service Cloud Server Service Cloud Network

Work Place 

☺

☺
CMI 

CMI 

☺CMI 

 
Figure 1.  Framework of MWfSCC. 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1471

© 2014 ACADEMY PUBLISHER



(3) SC={sc1, sc2, …, scn}, representing a set of servers 
in cloud computing environment, where CMIs fulfill 
tasks; 

(4) Eng is an engine of MWfSCC, which administers 
the whole workflow system, including creating, killing or 
suspending CMIs and monitoring the activities, etc.  

Definition 2.   Cloud Migrating Instance (CMI). 
A CMI can be described with a 8-tuple: (cmiid, TL, t, 

SCcmi, p, Scmi, ToL, MC), where, 
(1) cmiid is an identifier of a CMI, which is exclusive 

in the whole system; 
(2) TL=({〈t1, R1, S1〉, 〈t2, R2, S2〉, …, 〈tn, Rn, Sn〉}, 

Schedule), representing sub-task specifications in CMI, 
including two parts: task list table {〈t1, R1, S1〉, 〈t2, R2, 
S2〉, …, 〈tn, Rn, Sn〉} and task scheduler Schedule. And task 
t is corresponds to the activities ai in business process, Ri 
is the resource requirements for task completion, Si is the 
service requirements of tasks. Schedule is the dependency 
relationship of sub-tasks t1, t2 … tn; 

(3) t is the a task that CMI is processing, equal to one 
of ti; 

(4) SCcmi is the set of available service cloud, 
SCcmi∈SC; 

(5) p is the service cloud that CMI is deployed; 
(6) Scmi describes CMI’s current state; 
(7) ToL is CMI’s life cycle; 
(8) MC is the machine that supplies services or 

resources CMI requires, including task performing and 
halting, multi-tasks coordination, detecting resource and 
service, migrating places query. 

Definition 3.  Service Cloud (SC). 
A service cloud (SC) can be described by a 4-tuple: 

(scid, S, R, Svr), where, 
(1) scid is an identifier of service cloud; 
(2) S={s1, s2, …, sn} represents a set of services that a 

service cloud can supply; 
(3) R={r1, r2 , …, rm} is a set of resources that a 

service cloud can supply; 
(4) Svr is a service engine, which can coordinate the 

running of cloud system. 
Definition 4. Data set type (DST) . 
Data set in MWfSCC can be divided two types: DSini, 

and DSgen, where, 
(1) DSini={di1, di2, di3,…}, representing the original 

data sets uploaded by users, which are usually collected 
from the devices in experiments. And the most important 
feature of these data sets is that they can’t be regenerated 
again if they are deleted; 

(2) DSgen={dg1, dg2, dg3,…}, representing the data sets 
produced in the cloud computing system after tasks 
completion. They are the intermediate or final 
computation results of the applications. 

Definition 5. Task (T). 
A task in MWfSCC can be defined as a 3-tuple <ti, din, 

dout>, where, 
(1)  ti means the identifier of a task; 
(2) din means input data sets for performing a task ti; 
(3) dout means output data sets after a task ti execution. 
A task model can be described as Figure 3. 

 
Definition 6.  Use relation matrix Ru. 
Given a data set D={d1, d2, .., dn}, and a task set T={t1, 

t2, …, tm}, then using relation matrix Ru can be defined as 
follows: Ru=(rij)m×n, where,  

  
else         0  

; data using  task executing where          1  

⎩
⎨
⎧

= ji
ij

dt
r  

Definition 7.  Generation relation matrix Rc.  
Generation relation matrix Rc can be defined as follows: 

Rc=(rij) m×n, where,   

⎩
⎨
⎧

=
else         0  

; data generating  task executing where          1  ji
ij

dt
r

Definition 8.  Task data graph (TDG). 
A task data graph can be defined as a 4-tuple <T, D, Ci, 

Dai>, where, 
(1) T is a task set;  
(2) D is a data set;  
(3) Ci represents the control flow between task ti; 
(4) Dai refers to data flow relation. 
According to the above definition, we can depict a 

graph including tasks, data sets and their relations.  
Figure 4 shows a simple task data graph, where each node 
in the graph denotes a data set. In Figure 4, data set d1 
points to task t4, which means that d1 is an input data set 
of task t4; and task t3 points to data set d4, which means 
the data set d4 can be acquired by performing task t3. 

 
In this way, the use relation matrix and generation 

relation matrix can be represented as follows: 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

11111111
00000101
00000001
01000000
10000000
01000010

uR ,  and 

d1

d5

d6 

t1

t2 t3

t4 t5

t6 d3

ti task 

di data 

control flow 

data flow 
d2

d8

d4 

d7

Figure 4. An example of task data graph. 

 

Din Dout 

ti 
task 
data 

 
Figure 3. Model of task in MWfSCC. 

1472 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00000000
00100000
00000010
10001000
01010000
00000101

cR . 

Definition 9. Work machine. 
A work machine can be defined as a 4-tuple <wi, pi, si, 

D>, where, 
(1) wi means the identifier of work machine;  
(2) pi is the performance value related to the CPU 

speed, memory size and other hardware factors;  
(3) si is the size for data storage;  
(4) D is a data sets stored in work machine wi.  
A work machine can fulfill a number of tasks; also, 

each task can perform on many work machines.  
Definition 10. Dependency relation. 
R→ denotes that two data sets have a generation 

relationship, where di→dj means that dj can be acquired 
by calculation from data set di, that di is the predecessor 
of dj. Also, we can define relation  ¬→ denotes that the 
two data sets do not have a generation relationship, where 
di and dj are in different branches in TDG. 

IV. ALGORITHM FOR TASKS DISTRIBTION BASED ON 
CLUSTER 

In workflow modeling stage, all the data sets should be 
logically assigned to different work machines, which can 
optimize the distribution schema.  

Use relation matrix describes the using relation 
between data sets and tasks; and we will calculate the 
relativity using matrix Ru in the succeeding paragraph. An 
element rij means a data set dj can be used in fulfilling a 
task ti directly. 

A. Algorithm for Tasks Distribution 
In this section, we will present task distribution 

algorithm based on cluster. 
 
Algorithm 1: Tasks distribution algorithm based on 
Cluster 
Input: A set of tasks T; 

Output: Tasks subset for distribution on work 
machines. 

01. Construction input data set Din from task ti, 
Din={ti.din| ti ∈T}; 

02. Construction output data set Dout from task ti, 
Dout={ti.dout| ti ∈T}; 

03. Calculate the use relation matrix Ru; 

04. Calculate generation relation matrix Rc; 

05. Calculate the one-step arrival matrix G 

06. i=2; 

07. While i<|T| Do //multi-steps arrival matrix 

08.   Begin 

09. Gi=Gi-1× G1; 

10.          i=i+1; 

11.   End; 

12.   G= G1∨…∨ G|T|-1∨ G|T| 

13. Calculate the mutual accessibility among data 
sets; 

14. Calculate sub-strong mutual accessibility 
matrix; 

15.      Row adjustment; 

16.      Column adjustment;  

17. Acquire the classification of task sets; 

18. End. 

 
In Algorithm 1, function |T| means the number of tasks 

in cloud environment. Here, we will analyze the time 
complexity of Algorithm 1. An adjacent matrix is used to 
represent task data graph. And the Line 09 will execute 
less than n3 times, where n is the tasks number. So, the 
total time complexity of tasks distribution algorithm 
based on cluster is O(n3). A simple example will be 
shown in the following sub-section. 

B. A Simple Example  
In this section, we will present the proposed tasks 

distribution algorithm step by step using a simple 
example. The tasks are described in Table I. And there 
are eight data sets, representing as d1, d2, d3, d4, d5, d6, d7, 
d8, and six tasks, representing as task1, task2, task3, task4, 
task5, task6.  

TABLE I  

TASKS DESCRIPTIONS 

Tasks Input Data Output Data 
t1 {d2, d6} {d1, d3} 
t2 {d8} {d5, d7} 
t3 {d7} {d4, d8} 
t4 {d1} {d2} 
t5 {d1,d3} {d6} 

t6 
{d1,d2,d3,d4, 
d5,d6,d7,d8} Ø 

 
Step 1 
The use relation matrix Ru can be obtained from Table 

I using Definition 6.  And the matrix Ru is described as 
follows: 

 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1473

© 2014 ACADEMY PUBLISHER



.

11111111
00000101
00000001
01000000
10000000
00100010

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=uR  

Step 2 
The generation relation matrix Rc can be obtained from 

Table I using Definition 7. And the matrix Rc is described 
as follows: 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00000000
00100000
00000010
10001000
01010000
00000101

cR . 

Step 3 
Calculate one-step arrival matrix G using the following 

formula: 
)),(),(()( 1(, jkRkiRngRRG T

uckm*mT
uc ji ∧∨==⋅= = , 

i=1, 2… m, and j=1, 2 …n. 

.

000000
100001
100001
100010
100100
111000

100010
100100
100001
100000
100000
110000
100001
111000

00000000
00100000
00000010
10001000
01010000
00000101

11111111
00000101
00000001
01000000
10000000
00100010

00000000
00100000
00000010
10001000
01010000
00000101

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

T

G

 
Step 4 
Two-step arrival matrix G can be obtained by 

calculation using following formula: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧∨=⋅=

=
)),(),((

1

2 jkGkiGGGG
m

k
, 

i=1, 2… m, and j=1, 2 …n. 
So,  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000000
100001
100001
100010
100100
111000

000000
100001
100001
100010
100100
111000

2G  

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000000
111000
111000
100100
100010
100001

      .  

Similarly, we can calculate the three-step arrival 
matrix G3, four-step arrival matrix G4 and five-step 
arrival matrix G5

. Then the arrival matrix R can be 
obtained using following formula: 

.

100000
111001
111001
100110
100110
111001

;5432

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∨∨∨∨=

R

GGGGGR

 

Step 5 
In order to calculate the accessible relationship among 

data sets, we will first give definitions of accessibility and 
mutual accessibility. 

Definition 11. Accessibility. 
In matrix R, if there is an element R(i, j)=1, we call 

task ti is accessible to task tj. In other words, accessibility 
means the ti’s output data sets are also the input data sets 
for task tj. 

For example, in matrix R, the element R(4, 5) =1, we 
can see from Figure 1 that the output data set of t4  (d2) is 
also the input data set of task t1. On the same way, task 
t1’s output data set d3 is also the input data set of task t5. 

Definition 12. Mutual accessibility. 
If a data set di is accessible to data set dj, and dj is also 

accessible to di, then these two data sets are mutual 
accessible. 

As is shown in Figure 5, where data set di and dj are 
mutual accessible. 

 

 
We use Q=R∧RT to calculate the mutual accessibility. 

As is shown in Figure 6. 

 
tm

di

ti task 

di data

tn

dj 

Figure 5. Mutual accessibility of two data sets. 

1474 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



T

Q

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∧

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

111111
011001
011001
000110
000110
011001

100000
111001
111001
100110
100110
111001

 

.

100000
011001
011001
000110
000110
011001

    

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=  

 
Step 6 
Sub-strong mutual accessibility matrix can be obtained 

by adjusting the rows and columns order. And there are 
three steps. 

Step 6.1  
Create a set of random sequence numbers, which can 

be a Fibonacci sequence. In this paper, we use a number 
list as follows: 

a1=1,  
a2=3,  
a3=a1+a2+1=5, 
aj=2aj�1 ( j≥4). 
In this way, random sequence numbers can be 

calculated as: 1, 3, 5, 10, 20, 40, 80 … 
Step 6.2  
Adjust the columns using random sequence numbers. 

Each element Q[i][j] is multiplied by corresponding 
sequence number, then a series values can be obtained for 
adjusting the columns. As is shown in Figure 7(a) and (b). 

 

 
Step 6.3 
Adjust the rows using random sequence numbers. Each 

element Q[i][j] is multiplied by corresponding sequence 
number, then a series values can be obtained for adjusting 
rows. As is shown in Figure 8. 

 

 
Step 7 
The last step is to acquire the classification of tasks 

sets. As is shown in Figure 9. 

 
In this way, we have divided all the tasks into three sub 

sets, including {t2, t3}, {t1, t4, t5} and {t6}. In the tasks 
distribution, these tasks in one sub sets should be 
arranged in the same work machine for reducing the 
CMIs movements. And the classification result can be 
seen in Figure 10. 

 t1 t2 t3 t4 t5 t6  
t1 1 0 0 1 1 0 1 
t2 0 1 1 0 0 0 3 
t3 0 1 1 0 0 0 5 
t4 1 0 0 1 1 0 10

 t5 1 0 0 1 1 0 20
t6 0 0 0 0 0 1 40
 31 8 8 31 31 40  

                                           (a) 

 t2 t3 t1 t4 t5 t6 
t2 1 1     
t3 1 1     
t1   1 1 1  
t4   1 1 1  
t5   1 1 1  
t6      1 

Figure 9. Result of classification Matrix. 

 t2 t3 t1 t4 t5 t6  
t1 0 0 1 1 1 0 35
t2 1 1 0 0 0 0 4

 t3 1 1 0 0 0 0 4
t4 0 0 1 1 1 0 35

 t5 0 0 1 1 1 0 35
t6 0 0 0 0 0 1 40
 1 3 5 10 20 40  

                                          (a)  
  t2 t3 t1 t4 t5 t6  
 t2 1 1 0 0 0 0 4 
 t3 1 1 0 0 0 0 4 
 t1 0 0 1 1 1 0 35
 t4 0 0 1 1 1 0 35
 t5 0 0 1 1 1 0 35
 t6 0 0 0 0 0 1 40
  1 3 5 10 20 40  

                                                 (b) 

Figure 8. Adjustment the column of Matrix(ii).  

  t2 t3 t1 t4 t5 t6  
 t1 0 0 1 1 1 0 1 
 t2 1 1 0 0 0 0 3 
 t3 1 1 0 0 0 0 5 
 t4 0 0 1 1 1 0 10
 t5 0 0 1 1 1 0 20
 t6 0 0 0 0 0 1 40
  8 8 31 31 31 40  

                                                 (b) 

Figure 7. Adjustment the column of Matrix(i). 

 t1 t2 t3 t4 t5 t6 
t1 1 0 0 1 1 0 
t2 0 1 1 0 0 0 
t3 0 1 1 0 0 0 
t4 1 0 0 1 1 0 
t5 1 0 0 1 1 0 
t6 0 0 0 0 0 1 

 
Figure 6. Mutual accessibility among data sets. 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1475

© 2014 ACADEMY PUBLISHER



 

 

V. EXPERIMENTAL DETAILS AND COMPARISONS 

MWfSCC (Migrating Workflow System Model based 
on Cloud Computing Paradigm) is developed on 

migrating workflow system. The prototype is designed in 
Java and currently running on the simulation environment. 
As is shown in Figure 11. 

To simulate the cloud computing environment, we set 
up VMware software on the physical servers and PCs as 
work machines. In order to testify the validity of task 
classification strategy, we design an experiment of 
sorting random numbers. The main object is to compare 
mean execution time between task classification and no 
task classification. 

In experiments, each CMI is assigned a task to arrange 
2,000 random numbers into a sequence. In task 
classification, most of tasks are stored on the same work 
machine, while each task is arranged in different work 
machines with no task classification. Table II recorded 
the execution time among different number of CMIs. 

 
 

TABLE II. 

EXECUTION TIME AMONG DIFFERENT NUMBER OF CMIS 

Number of 
CMIs 

Execution Time with 
No Tasks classification 

Execution Time with 
Tasks classification

100 1.156 0.756 

150 1.239 0.839 

250 1.508 1.008 

300 1.602 1.202 

350 2.676 1.376 

400 3.889 1.667 

450 6.581 2.743 

500 9.541 4.652 

 
Figure 12 describes the execution time for workflows 

across scheduling with different number of CMIs. From 
Figure 12, we can see that the execution time with tasks 
classification has gradually deceased compared with the 
time without tasks classification. In addition, the 

execution time will be saved up to half of the whole time 
with CMIs number 500.  

 

VI.  CONCLUSIONS AND FUTURE WORKS 

Large scale sophisticated workflow applications are 
commonly seen in both e-business and e-science areas. 

1.239
1.508 1.602

2.676

3.889

6.581

9.541

0.839 1.008
1.202 1.376

1.667

2.743

4.652

0

2

4

6

8

10

12

150 250 300 350 400 450 500
Number of CMIs

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
S
e
c
o
n
d
)

Execution Time without Task classification

Execution Time with Task classification

Figure 12.  Execution time for workflow among different 
number of CMIs 

 

t1 t4 

t5 

t2 t3 

t6 

S1 

S2 

S3 

 
Figure 10. Result of tasks distribution. 

 

 
 

Figure 11.  Prototype of MWfSCC. 

1476 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



Workflow system built on high performance computing 
infrastructures such as p2p and grid computing are often 
applied to support the process automation of large scale 
workflow applications. MWfSCC is not built from 
scratch but from its predecessor GoMWfS (goal oriented 
migrating workflow system). The practical applications 
show the simplicity and validity of our prototype system 
in modeling and executing cloud computing transactions. 
Traditional scheduling strategy usually emphasize on the 
data place, not involving the tasks distribution. 

In this paper, a novel task distribution strategy based 
on cluster has been presented. Simulations in our 
MWfSCC indicated that our task distribution strategy can 
effectively reduce execution time.  

In the future, more functional components will be 
designed and deployed to enhance the capability of 
MWfSCC. And different types of tasks should be 
performed many times to guarantee the task classification 
reliability. Also, we will develop some efficient 
replication strategies for data sets placements according 
different types of tasks, which could balance the data sets 
and tasks storage usage.  

ACKNOWLEDGMENTS 

This work presented in this paper is partly supported 
by Project of Shandong Province Higher Educational 
Science and Technology Program (No.J12LN33), China; 
the Doctor Foundation of Shandong University of 
Finance and Economics under Grant (No.2010034), and 
the Project of Jinan High-technology Independent and 
Innovation (No.201303015), China. 

REFERENCES 

[1] Raghavan B., Ramabhadran S., Yocum K. and Snoeren A. 
C. “Cloud control with distributed rate limiting”. In 
Proceedings of the 2007 conference on Applications, 
technologies, architectures, and protocols for computer 
communications (ACM SIGCOMM) , Kyoto, Japan, 2007, 
pp.337–348. 

[2] WFMC, Workflow management coalition terminology and 
glossary, Workflow Management Coalition, Brussels: 
Technical Report WFMC-TC-1011, 1996. 

[3] Zeng Guangzhou and Dang Yan, “The study of migrating 
workflow based on the mobile computing paradigm,” 
Chinese Journal of Computers, Vol.26,(10), pp.1343-1349, 
2003. 

[4] Wu Xiuguo, “MWfSCC: A migrating workflow system 
based on cloud computing paradigm,” Journal of 
Convergence Information Technology, Vol. 7(23), pp. 537-
547, 2012. 

[5] Wu Xiuguo and Zeng Guangzhou, “Goals description and 
application in migrating workflow system”. Expert Systems 
with Application, Vol.37(12), pp.8027-8035, 2010. 

[6] Zhuangjun Wu, Xiao Liu, Zhiwei Ni, Dong Yuan and Yun 
Yang, “A market-oriented hierarchical scheduling strategy 
in cloud workflow system,” The Journal of 
Supercomputing, Vol. 63(1), pp.256-293, 2011.  

[7] D. Yuan, Y. Yang, X, Liu and Jinjun Chen, “A cost-
effective strategy for intermediate data storage in scientific 
cloud workflow systems,” in Proceedings of 24th 
International parallel & Distributed Processing 
Symposium,  Atlanta, USA, pp.1-12, 2010. 

[8] R. Barga and D.Gannon, “Scientific versus business 
workflows,” in Workflows for e-Science, pp.9-16, 2007. 

[9] Yu J, Buyya R and Ramamohanarao K. “Workflow 
scheduling algorithms for grid computing”, Metaheuristics 
for scheduling in distributed computing environments. 
Springer Berlin Heidelberg, pp.173-214, 2008. 

[10] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan and H. Jin, “An 
algorithm in SwinDeW-C for scheduling transaction-
intensive cost-constrained cloud workflows,” in 
proceedings of 4th IEEE International Conference on e-
Science, pp. 374-375, 2008. 

[11] J. Yan, Y. Yang and G. K. Raikundalia, “SwinDeW- A 
P2P-based decentralized workflow management system”, 
IEEE Transactions on Systems, Man and Cybernetics, Part 
A, Vol. 36, pp.922-935, 2006. 

[12] Liu K, Chen J, Yang Y and Jin H, “A throughput 
maximization strategy for scheduling intensive workflows 
on SwinDeW-G,” Concurrency and Computation: Practice 
& Experience - 2nd International Workshop on Workflow 
Management and Applications in Grid Environments 
(WaGe2007), vol.10(15), pp. 1807-1820, 2008. 

[13] Ludscher, B., Altintas, I., Berkley, C., Higgins, etc. 
“Scientific Workflow Management and the Kepler System”. 
In: Concurrency and Computation: Practice and 
Experience, vol.18, pp.1039–1065, 2006. 

[14] D. Ardagna and B. Pernici, “Adaptive service composition 
in Flexible Processes”, IEEE Trans. on Software 
Engineering, vol.33(6), pp. 369-384, 2007. 

[15] Wang M, Kotagiri R and Chen J, “Trust-based robust 
scheduling and run time adaptation of scientific workflow”. 
Concurrency Computation: practice and experience, 
vol.21(16), pp: 1982-1998, 2009.  

 
 
 

Xiuguo Wu received the BEng degree 
from Shanghai University of Electric 
Power, Shanghai, China, in 1999, the 
MEng and PhD degrees from Shandong 
University, Jinan, China, in 2002 and 
2010, respectively, all in computer 
science. He is currently an associate 
professor in School of Management 
Science and Engineering at Shandong 

University of Finance and Economics (SDUFE). His research 
interests include workflow and distributed data management for 
cloud computing, service computing. 
 

 
 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1477

© 2014 ACADEMY PUBLISHER




