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Abstract—Evolutionary algorithms commonly search for the 
best solutions by maintaining a population of individuals 
that evolves from one generation to the next. The evolution 
consists of selecting a set of individuals from the population 
and applying, to some subsets of it, recombination operators 
that create new solutions. In this paper, Estimation of 
distribution algorithms arise as an alternative to genetic 
algorithms. Instead of exchanging information between 
individuals through genetic operators, Estimation of 
distribution algorithms use machine learning methods to 
extract relevant features of the search space through the 
selected individuals of the population. The replacement of 
crossover and mutation operators by probabilistic models 
can bring some benefits. The most important benefit could 
be that the structural component of the probabilistic model 
can provide explicit information about the interactions 
among the variables used to codify the problem solutions. 
 
Index Terms—interaction, machine learning, optimization, 
probabilistic model. 
 

I.  INTRODUCTION 

Looking for the best solutions to problems is not only a 
fundamental task for the development of mankind but 
also seems to be inherent to natural processes, and 
researchers have been able to see this. Proof of this is the 
emergence of evolutionary algorithms (EAs) to solve 
optimization problems regardless of the domain of 
application. This type of algorithms is mainly inspired by 
the way in which, according to Darwin [1], the adaptation 
of species to the environment is accomplished by nature. 
Nonetheless, other sources of inspiration from nature, 
such as the behaviors of ant colonies [2] or swarms [3], 
have also motivated the development of different EAs. 
Reciprocally, besides the inspiration of algorithms 
through the observation of nature, the study of such 
algorithms could provide us with a better understanding 
of nature. 

EAs commonly search for the best solutions by 
maintaining a population of individuals (solutions) that 
evolves from one generation to the next. The evolution 
consists of selecting a set of individuals from the 
population and applying, to some subsets of it, 
recombination operators that create new solutions. A 

huge number of methods conforming to this framework 
have been developed. Therefore, the choice of the 
appropriate alternative for a particular application results 
in an important matter, as it may determine whether the 
problem is solved efficiently or, even, if the best solution 
is found at all. 

Mathematically, optimization is the minimization or 
maximization of a given function. Hence, optimization 
problems can be formulated as, 
 

)(maxarg* xfx
x

= , (1)
 

where R: →Sf  is called the objective function or 
fitness function, Sxxx n ∈= ),,( 1 …  represents a possible 

solution of the problem and S  is called the search space. 
The optimum *x  is not necessarily unique. We will 
assume that S  is an n -dimensional discrete search 
space.  

This paper is devoted to study a relatively new class of 
EAs: Estimation of distribution algorithms (EDAs) [4]. 
Based on the same principles of natural selection and 
evolution of populations, EDAs use explicit probability 
distributions to lead the search to promising areas of the 
search space instead of applying genetic operators of 
crossover and mutation used in genetic algorithms [5]. 
Throughout the paper, we will try to shed light on 
different open issues regarding EDAs. The final 
motivation is essentially to achieve a deeper 
understanding of this type of algorithms and their 
relationship with the optimization problems. To this end, 
novel methodological approaches and analyses have been 
conducted. The basic questions that have guided the 
elaboration of this work can be summarized as follows. 

Firstly, the learning of probabilistic models to extract 
the relevant information that the selected individuals can 
contain about the problem is a fundamental step of the 
algorithm. Regarding this issue, we wonder how the 
search and the behavior of the EDA is influenced by the 
accuracy of the learning method. 

Secondly, one of the most interesting properties of 
EDAs is their ability to capture and explicitly represent 
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interactions among the variables of the problems by 
means of the probabilistic models. Thus, investigating the 
relationship between the interactions of the problem 
variables and the structure of the probabilistic model is a 
question that arises naturally. Following this idea, we also 
wonder how the topology that these interactions provide 
determines the difficulty of the problem. More generally, 
the question of what makes a problem difficult for EDAs 
is an open question of undoubted interest.  

Thirdly, a utopian goal is to know the limits of 
effectiveness of any search algorithm. Among other 
things, this type of knowledge would allow us to select 
the most adequate algorithm depending on the problem at 
hand. Coming back to more affordable issues, we wonder 
where the learning limits of EDAs are. We want to better 
understand when and why the learning step is not able to 
extract from the population the needed information to 
reach the optimum. 

Fourthly, another fundamental issue regarding EDAs 
that we consider of special interest is to better understand 
how the probability of the optimum evolves during the 
generations. This is an essential characteristic of the 
algorithm which reflects how the problem is being solved. 
And finally, a more general issue that we keep in mind is 
the relationship that emerges between an EDA and the 
space of optimization problems. Regarding this issue, we 
consider the possibility of creating taxonomies of 
problems according to the different behaviors that an 
EDA can exhibit. 

This introductory part will treat, as directly and briefly 
as possible, the theoretical background related with the 
paper. Thus, only Bayesian networks and EDAs are 
formally presented. Further details of any topic or 
scientific discipline related with the aforementioned 
elements, but not directly used throughout the paper, can 
be consulted in different works that will be cited in the 
appropriate places. In turn, the specific theoretical 
background that the different chapters could need, will be 
introduced in the corresponding points.  

The rest of this paper is organized as follows. 
Estimation of distribution algorithms are introduced in 
section II. Section III presents Bayesian networks. 
Section IV discusses the parameters of the EDAs. At last, 
the summary is given in section V. 

II.  ESTIMATION OF DISTRIBUTION ALGORITHMS 

Estimation of distribution algorithms [4][6] are a 
population-based optimization paradigm in the field of 
evolutionary computation [7]. Initially, a random sample 
of solutions is generated. These solutions are evaluated 
using the objective function, and a subset of candidate 
solutions is selected based on this evaluation. Hence, 
solutions with better function values have a higher chance 
of being selected. Then, a probabilistic model from the 
selected set is built and a new population is sampled from 
that model. The process is iterated until the optimum has 
been found or another termination criterion is fulfilled. 
The general scheme of the EDA approach is shown in 
Figure 1. 

EDAs arise, in part, as an alternative to genetic 
algorithms [5]. Instead of exchanging information 
between individuals through genetic operators, EDAs use 
machine learning methods to extract relevant features of 
the search space through the selected individuals of the 
population. The replacement of crossover and mutation 
operators by probabilistic models can bring some benefits. 
For example, EDAs reduce the number of parameters 
involved and hence, the tune of the algorithm could 
become simpler depending on the scenario of application. 
Nevertheless, the most important benefit could be that the 
structural component of the probabilistic model can 
provide explicit information about the interactions among 
the variables used to codify the problem solutions. 

 

 
Figure 1. The general scheme of estimation of distribution algorithms. 

With the aim of finding the optimal solution *x  and 
solving Problem in (1), EDAs use explicit probability 
distributions. At each iteration, the algorithm manages a 
probability distribution )( xXp =  of the random variable 
X  taking values from the search space S . Thus, each of 

the possible problem solutions has an associated 
probability of being sampled which varies during the 
optimization process. The probability values assigned to 
the solutions are the main source in determining which 
one will be returned by the algorithm. Consequently, 
given a problem, the main goal is to get higher 
probability values for the highest quality solutions 
throughout an iterative process. 

In the last decade, EDAs have acquired special 
relevance. Proof of this popularity is the development of 
new and more complex EDAs [8][9], the applications for 
these EDAs in different domains such as engineering [10], 
biomedical informatics or robotics [11] and the works 
which study fundamental issues in order to better 
understand how these algorithms perform [12]. 

Although there is a wide variety of EDA 
implementations, as an example, we present below the 
pseudocode of the univariate marginal distribution 
algorithm (UMDA), the tree-based estimation of 
distribution algorithm (Tree- EDA) and the estimation of 
Bayesian networks algorithm (EBNA). These algorithms 
will be considered in subsequent sections of the paper. 

A.  Univariate Marginal Distribution Algorithm 
The univariate marginal distribution algorithm was 

introduced in [13]. This algorithm assumes that all the 
variables are independent. That is, the value of variable 
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iX  does not depend on the state of any other variable. 
Then, )(xp  can be factorized as follows: 

 

 ∏
=

=
n

i
ixpxp

1

)()(  (2)

 
Figure 2 shows the steps of the UMDA. This algorithm 

has been successfully applied to different problems such 
as feature subset selection [14], learning of Bayesian 
networks from data [15], optimization of a composite 
video processing system [16], or to solve some linear and 
combinatorial problems using Laplace correction [17].  

Theoretical results derived from the UMDA [4] expose 
its relationship with GAs, particularly with GAs that use 
uniform crossover. [18] have investigated some of the 
issues that explain the success of UMDA in the 
optimization of a wide class of functions. Other 
theoretical results have been obtained for UMDA in [19]. 

 

 
Figure 2. Pseudocode for UMDA. 

B.  Tree-based Estimation of Distribution Algorithms 
Tree-based estimation of distribution algorithms [20] 

use factorizations that can be expressed by means of trees 
or forests. In particular, we will focus on the 
implementation. The pseudocode of this algorithm is 
shown in Figure 3 and will be called Tree-EDA. 
Although other methods can also be employed, the 
factorization is constructed using the algorithm 
introduced in [21] that calculates the maximum weight 
spanning tree from the matrix of mutual information 
between pairs of variables. Additionally, a threshold for 
the mutual information values is used when calculating 
the maximum weight spanning tree in order to allow 
disconnected components in the structural model. 

 

 
Figure 3. Pseudocode for Tree-EDA. 

C.  EDAs based on Bayesian Networks 
Throughout the paper, we pay special attention to 

EDAs that learn Bayesian networks. There are different 
implementations of this type of EDAs. The best known 
algorithms could be the following, such as learning 
factorized distribution algorithm (LFDA), Bayesian 
optimization algorithm (BOA) or estimation of Bayesian 
networks algorithm (EBNA). We mainly focus on the 
EBNA implementation whose pseudocode is presented in 
Figure 4. 

 

 
Figure 4. Pseudocode for EBNA 

In order to better understand how EDAs based on 
Bayesian networks perform, the characteristics of the 
learned probabilistic models are a rich source of 
information which has been studied in several works [22-
25]. A straightforward form of analysis is through the 
explicit dependences between the variables they capture. 
Thus, it has been shown how different parameters of the 
algorithm influence the accuracy of the structural models 
[24], how the dependencies of the probabilistic models 
change during the search and, how the networks learned 
can provide information about the problem structure [23]. 
Moreover, the structural component of the model can be 
used to introduce available information of the structural 
characteristics of the problem [26]. 

III.  BAYESIAN NETWORKS 

All the algorithms considered throughout the paper use 
factorizations that can be encoded by means of Bayesian 
networks . Bayesian networks, also called belief networks, 
are a class of probabilistic graphical model. This type of 
models have become a very popular paradigm to 
efficiently deal with probability distributions in modeling 
uncertain knowledge. One of the most important sources 
of the development of Bayesian networks was the field of 
expert systems. In addition, over the last few years, 
Bayesian networks have received considerable attention 
from the machine learning community. As a result of this 
interest, many publications and tutorials have appeared. 
Thus, besides expert systems, the applications of 
Bayesian networks include classification problems, 
optimization or bioinformatics. 

As any other probabilistic graphical model, Bayesian 
networks are the result of combining probability and 
graph theory. The graphical component of the model 
encodes a list of conditional independences [27-28] 
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associated to the probability distribution. Let 
),,( 1 nXXX …=  be an n -dimensional discrete random 

variable. A Bayesian network is a graphical 
representation of the factorization of the joint probability 
distribution for X , )( xXp = , where ),( 1 nxxx …=  
denotes an assignment of the variable X . More 
specifically, a Bayesian network can be defined as a pair 

),( ss θ  where s  is a directed acyclic graph (model 

structure) and sθ  is the set of parameters associated to 
the structure (model parameters). The structure s  
determines the set of conditional (in)dependences among 
the random variables of X . According to the structure s , 
the joint probability distribution )(xp  can be factorized 
by means of marginal and conditional probability 
functions. Specifically, the probability distribution 
factorizes according to the graph as, 

 

 ∏
=

=
n

i
ii paxpxp

1

)|()(  (3)

 
where ipa  denotes a value of the variables iPa , the 

parent set of iX  in the graph s . 
The local probability distributions of the factorization 

are those induced by the terms of the product that appears 
in (3). We assume that these local distributions depend on 
the parameters ),,( 1 ns θθθ …= . Equation (3) can be 
rewritten specifying the parameters: 

 

 ∏
=

=
n

i
iiis paxpxp

1

),|()|( θθ  (4)

 
Assuming that the variable iX  has ir  possible values, 

the local distribution ),|( i
j

ii paxp θ  is an unrestricted 
discrete distribution: 

 
 ijki

j
i

k
i paxp θθ =),|(  (5)

 
where iq

ii papa ,,1 …  denote the iq  possible values of 
the parent set iPa . The parameter ijkθ  represents the 

probability of variable iX  being in its th-k  value, 
knowing that the set of its parents’ variables is in its 

th-j  value. Therefore, the local parameters are given by 
ii q

j
r
kijki 11))(( === θθ . 

A.  Bayesian Network Learning 
In order to obtain a Bayesian network which allows us 

to represent and manage the uncertain knowledge of a 
specific domain, it is necessary to set both the structure 
and the parameters. The structure and conditional 
probabilities necessary for characterizing the Bayesian 
network can be provided either externally by experts, by 

automatic learning from datasets or by mixing both of 
these. We focus on the second approach. Moreover, when 
the model is automatically learned, it can provide us with 
insights into the interactions between the variables of the 
domain. 

The learning task can be separated into two subtasks: 
structural learning and parameter learning. Although 
there are different strategies to learn the structure of a 
Bayesian network, we focus on the so-called 
score+search approach. This type of techniques deals 
with the structure learning as an optimization problem. 
Therefore, learning a Bayesian network can be 
enunciated as follows. Given a data set D  with N  cases, 

},,{ 1 NxxD …= , searching the structure *s  such that, 
 

),(maxarg* Dsgs
nSs∈

=  (6)
 
where ),( Dsg  is the score or metric which measures 

the goodness of any given structure s with respect to the 
data set D , and nS  is the set of all possible directed 
acyclic graphs with n nodes. Some of the most relevant 
and used heuristic techniques such as greedy search, 
simulated annealing, genetic algorithms, estimation of 
distribution algorithms or ant colony optimization have 
been applied to this task. 

One of the desirable properties of a metric or score is 
the decomposability in presence of complete data sets. 
These metrics can be decomposed in sub-metrics 
associated to each node iX  and its parents iPa  in the 
graph s . Formally, any decomposable metric can be 
expressed as: 

 

∑
=

=
n

i
iiD PaXgDsg

1
),(),(  (7)

 
where the function Dg  is the sub-metric. Due to the 

decomposability, the local search methods are 
computationally more efficient because after adding an 
arc, we only need to evaluate the family of nodes affected 
by this change. 

Although different learning methods are considered 
throughout the paper, a specific search algorithm will be 
generally used. It is Algorithm B [29]. This is a greedy 
search algorithm and the pseudocode is presented in 
Figure 5, where A  is a data structure that stores the 
information needed to manage the addition of the 
candidate arcs. Basically, Algorithm B starts with an 
arcless structure and, at each step, adds the arc which 
improves the score the most. The algorithm finishes when 
there is no arc whose addition improves the score. 
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Figure 5. Pseudocode for Algorith B 

Regarding the implementation of the score ),( Dsg , 
different alternatives can be considered. Among the most 
used families of scores we can find marginal likelihood, 
penalized log-likelihood or information theory based 
scores. In the current section we will use the Bayesian 
Information Criterion score (BIC) [30] based on 
penalized maximum likelihood. This metric is obtained as 
follows. Given a dataset },,{ 1 NxxD …= , we might 
calculate for any Bayesian network structure s  the 

maximum likelihood estimate s

^
θ  for the parameters sθ  

and the associated maximized log likelihood: 
 

 

∑∑∑
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where ijkN  denotes the number of cases in D  in 

which the variable iX  has the value k
ix  and iPa  has its 

th-j  value. Since the maximum likelihood estimate for 

ijkθ  is given by 
ij

ijk

N
N

=
^
θ  where ∑ =

= ir

k ijkij NN
1

, we 

obtain: 
 

 ∑∑∑
= = =

=
n

i

q

j

r

k ij

ijk
ijk

i i

N
N

NsDp
1 1 1

^
log),|(log θ (9)

 
The log-likelihood function is not used to guide the 

search process due to two main problems. Firstly, the log-
likelihood is a monotonous increasing function with 
respect to the complexity of the model structure. 
Therefore, the use of this score to evaluate the quality of 
the structures during the search could lead us towards 
complete Bayesian networks. Secondly, as the number of 
parameters for each node increases, the error in the 
parameter estimation also increases. In order to overcome 
these difficulties, a penalty term is added to the log-
likelihood. A general formula of the penalized log-
likelihood is given by: 

 

)()(log
1 1 1

SdimNh
N
N

N
n

i

q

j

r

k ij

ijk
ijk

i i
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= = =

 (10)

 
where )(Sdim  is the dimension (number of 

parameters needed to specify the model) of the Bayesian 
network with a structure s, i.e. )1()( −= ii rqSdim . 

)(Nh  is a non-negative penalization function. The 
Jeffreys- Schwarz criterion, which is usually called BIC 

[30], takes into account NNh log
2
1)( = . Thus, the BIC 

score can be written as follows: 
 

∑∏∏
== =

−−=
n

i
ii

N

w

n

i
iiiw rqNpaxp

DsBIC

11 1

^

, )1(log
2
1),|(log

),(

θ (11)

 
On the other hand, parameter learning is the numerical 

assessment of the parameters Sθ  that specify the 
conditional and marginal probability distributions of the 
factorization given by s . Although this task can be done 
by means of different approaches such as the Bayesian 
model averaging or the maximum a posteriori criterion 
[31], we use the maximum likelihood estimation. 
Specifically, once the structure has been learned, the 
parameters of the Bayesian network are calculated by 
using the Laplace correction as follows: 

 

iij

ijk
ijk

rN
N

+
+

=
1^

θ
 

(12)

 

B.  Simulation 
Once a Bayesian network is obtained, this model is 

able to provide us with specific probabilistic information 
of interest. Usually, the information that the practitioner 
wants to know is the probability of a certain event in the 
light of particular observations or evidence. The 
probabilities of interest are not usually stored in the 
Bayesian network at hand, they need to be computed. 
This process is known as probabilistic inference and, in 
the general case, it is an NP-complete problem [32]. 

Simulation (also called stochastic sampling) of 
Bayesian networks can be considered as an alternative to 
the exact inference. The simulation of any probabilistic 
graphical model consists of obtaining a sample from the 
probability distribution for X  that the model encodes. 
Then, the marginal or conditional probabilities of interest 
can be estimated from the sample. 

For our purposes regarding EDAs, the objective of the 
simulation of Bayesian networks is to obtain a dataset 
(new population) in which the probabilistic relationships 
between the random variables of the model are 
underlying. Particularly, in order to sample the Bayesian 
network, we consider a forward sampling method. A 
variable is sampled once all its parents have been 
sampled. This method is known as probabilistic logic 
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sampling (PLS). Figure 6 shows a pseudocode of this 
method. 

 

 
Figure 6. Pseudocode of the probabilistic logic sampling method. 

IV.  PARAMETERS OF THE EDAS 

We have set a configuration of the EDA parameters 
which is often used throughout the paper. Therefore, this 
standard configuration is introduced here to avoid 
unnecessary repetitions. 

According to the main scheme of the EDA, it works 
with populations of N  individuals. The initial 
population is generated according to a uniform 
distribution, and hence, all the solutions have the same 
probability of being sampled. Each iteration starts by 
selecting a subset of promising individuals from the 
population. In this step we use truncation selection with a 
threshold of 50%. Thus, the 2/N  individuals with the 
best fitness value are selected. The next step is to learn a 
probabilistic model from the subset of selected 
individuals. This is the only step where the algorithms 
that we will consider differ. Once the model is built, the 
new population can be generated. In order to do that, N 
new solutions are sampled from the probabilistic model 
and then they are added to the N  individuals of the 
current population. The N  best individuals, among the 

N2  available, constitute the new population. 
As previously commented, every EDA considered in 

the paper uses factorizations that can be encoded by 
means of Bayesian networks. Therefore, the same 
approaches can be used both to obtain the corresponding 
parameters and to sample the new solutions. As explained 
above, the parameters are estimated by maximum 
likelihood and the new population is generated by PLS 
(see Figure 6). 

V.  SUMMARY 

This paper has been devoted to increase our 
comprehension about EDAs. 

The relationship between the structure that the 
interactions of the problem variables provide and the 
structural models learned by the algorithm has been a 
issue. In this regard, we have seen that the structures that 
the algorithm learns during the search provide valuable 
information about the interdependences among the 
variables of the problem. This fact has been observed in 
other related works and it is considered as a distinctive 
feature of EDAs compared with other types of 
evolutionary algorithms. However, it has also been 

noticed that introducing a learning method that obtains 
the best Bayesian networks at each generation does not 
necessarily improve the performance of the algorithm. 
Nevertheless, with enough population size, this type of 
algorithm is able to obtain structures that provide much 
more information about the problem than the approximate 
learning. 

When the algorithm is studied from the perspective of 
the probability of the optimum and the most probable 
solution, novel insights can be provided. The main 
elements of the algorithm that we have considered, which 
are the structural model and the population size, clearly 
influence the probability of the optimum and the most 
probable solution. Moreover, the patterns of behavior are 
constant in every optimization problem analyzed. For 
instance, using an adequate population size or an accurate 
structural model increases the probability of the optimum 
during the search in relation to the most probable solution, 
even in runs where the optimum is not reached. In 
addition, the function values of the most probable 
solution also reflect the influence of the population size 
and the structural model accuracy. The properties of the 
problem at hand, such as the multimodality, or even the 
difficulty that it entails for the algorithm, are reflected in 
this type of analysis. The experimental framework 
designed is not only useful to better understand EDAs but 
also to devise new improvements of the algorithm. 

As previously commented, the relationship between 
the structure of the problem and the structural models 
used by EDAs is a issue. In this regard, different 
adjectives such as benign, malign, strong or deceptive 
have been used to describe the interactions among the 
variables of the problem and then, study their effect both 
in EDAs and other evolutionary algorithms. Although 
some attempts to formalize this type of concepts have 
been presented, we clearly need to conduct more research 
in order to understand and specify all the aforementioned 
terms in the context of optimization by means of EDAs. 

Regarding the limits of effectiveness in EDAs, a more 
in-depth study should be carried out in order to increase 
the soundness of the conclusions. Thus, more accurate 
learning techniques, more sophisticated EDAs aided by 
niching or local searches, or even other approaches such 
as mixtures of evolutionary algorithms, should be tested 
under the same worst-case scenario. Then, analyzing the 
levels of problem difficulty that this type of algorithms 
successfully reaches, would be useful to better understand 
both the learning limits of EDAs and the limits of other 
search techniques. To complement the results obtained by 
using functions based on deceptive sub-functions, similar 
experiments could be conducted with other classes of 
functions such as Max-SAT or Ising. The role of the 
population in the limits of effectiveness of the algorithm 
was also discussed. We argue that a given population size 
can only contain useful information to solve problems to 
a certain degree of interaction among their variables. 
However, studies related with the information that the 
populations contain about the problem have hardly been 
considered. We believe that the formalization and study 
of this notion would be worthwhile. 
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The taxonomy of problems opens new research lines. 
First of all, some generalization such as the introduction 
of non-injective functions and general Bayesian networks 
could be developed. In addition, providing the needed 
definitions to deal with any type of selection scheme 
could also be considered. Other important extensions are 
related to the connection between the characteristics of 
the problems and the equivalence classes to which they 
belong. We have shown the connection of the classes 
with the neighborhood system induced by the Hamming 
distance for univariate EDAs. This connection can be 
studied for more complex probabilistic models. For 
example, preliminary results indicate that, if we add an 
arc to the univariate model, then it is possible to include 
functions with one and two local optima in the same class. 
This implies that some functions with two local optima 
can entail the same difficulty as functions with one local 
optimum (the global optimum). This agrees with that 
using higher order statistics could improve the chance of 
finding the global optimum. Moreover, we hypothesize 
that it is possible to discover new links with other 
problem characteristics or descriptors. For instance, we 
have very preliminary results regarding the additive 
decomposition of the functions and its relationship with 
the equivalence classes. In turn, the classes could also be 
tagged in terms of the difficulty of the problems they 
contain. In an ideal scenario, the information available 
about the problem at hand could be used to identify the 
class to which it belongs to and then try to advance, for 
example, whether for a given factorization the algorithm 
will reach the optimum. In fact, knowing if a determined 
factorization will converge to the optimum for a given 
function is one of the most important issues in EDAs. 
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