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Abstract—Simultaneous sparse coding (SSC) has shown 
great potential in image denoising, because it exploits 
dependencies of patches in nature images. However, 
imposing joint sparsity might neglect the sight difference 
between patches. In this paper, we propose an image 
denoising algorithm based on robust simultaneous sparse 
coding (RSSC). In our algorithm, the sparse coefficient 
matrix is decomposed into two parts. One coefficient matrix 
is imposed on the joint sparse regularizer which exploits 
self-similarities of image patches while the other matrix is 
imposed by the elementwise sparse regularizer which 
considers the subtle differences between patches. 
Experiments on the benchmark data show the superior 
performance over the state-of-art algorithms. 
 
Index Terms—Image denoising, robust simultaneous sparse 
coding, regularization, accelerated proximal gradient (APG) 

I.  INTRODUCTION 

In recent years, affordable hardware has made it 
possible for digital cameras to capture images of very 
high resolution. However, images are often corrupted by 
noise during the procedures of both image acquisition and 
transmission. An efficient denoising algorithm becomes 
very important to the performance of image processing 
techniques. Hence, denoising of images remains one of 
the most fundamental tasks of image processing. As 
follows, for an origin image N∈x R  and its degraded 
image y  the problem of denoising can mathematically 
be defined as the following observation model:  

 i i iy x η= +  (1) 

where ix  is the original pixel intensity of the iy  pixel 
observed as after being corrupted by zero mean 
independent identically distributed additive noise iη  . 

recently,Many proposed denoising methods are based on 
image patches. Decomposing the origin image into 
overlapping patches, the data model can be written as 

 i i i= +y x η  (2) 

where ix  is the original image patch intensities with the 

-th pixel at its center written in a vectorized format and 

iy  is the observed patch corrupted by a noise vector iη . 
Denoising an image is thus solving the inverse problem to 
estimate pixel intensities ix . 

In the past several decades, image denoising has been 
extensively studied and many algorithms [1] [2] [12] [13] 
have been proposed, leading to state-of-the-art 
performances. Of these various approaches, Non-Local 
Means (NLM) algorithm [1] recently proposed by Buades 
et al. assumes that the noise is zero-mean and 
uncorrelated across locations. Thanks to the presence of 
repeating structures in a given image, performing a 
weighted averaging of pixels with similar neighborhoods 
can suppress the noise. Inspired by the idea of NLM, 
Dabov et al. [2] proposed an effective algorithm named 
BM3D. BM3D performs denoising by utilizing similar 
patches across the image in the transform domain rather 
than in the origin image space. 

Recently, using redundant representations and sparsity 
for denoising of signals have drawn a lot of research 
attention [3] [4] [14]. In [3], Elad and Aharon applied the 
K-SVD algorithm to learn the optimal over-completed 
dictionaries for the observed noisy image. Each image 
patch can be sparsely represented by the learned 
dictionary and denoising is carried out by coding each 
patch as a linear combination of only a few atoms in the 
dictionary. Mairal et al. [4] extended the K-SVD 
algorithm to the color image denoising. 

However, in [3] [4], image patches are sparsely 
represented independently, which ignores self-similarities Corresponding author: Jiangming Kan, Email: kanjm@bjfu.edu.cn,
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in natural images as NLM did. Mairal et al. [5] argued 
exploiting similarities can improve the denoising 
performance. And he grouped image patches into a few 
groups and argued patches in the same group have similar 
sparse decomposition. And the simultaneous sparse 
coding (SSC) is applied to learn the sparse representation 
matrix. Experiments show the superior performance over 
the K-SVD algorithm. Dong et al. [6] propose a new 
denoising algorithm based on clustering-based sparse 
representation (CSR), which incorporates the dictionary 
learning and structural clustering into a unified 
variational framework. 

However, there is a key problem that similar patches 
corrupted by noises might not share the same structure 
and imposing joint sparse regularizer as done in [5] may 
degrade the denoising performance [7] [8]. To overcome 
this problem, in this paper, we propose our image 
denoising algorithm based on robust simultaneous sparse 
coding (RSSC). As shown in Fig.1, in our algorithm, the 
sparse coefficient matrix A  is decomposed into two 
parts P , Q . A joint sparse regularizer is imposed on P , 
corresponding to the shared structure while an 
elementwise sparse regularizer is imposed on Q  which 
corresponds to the non-shared features. The joint-sparsity 
exploits the similarities between patches while the 
elementwise sparsity considers the differences of patches. 
Experiments with images corrupted by synthetic noise 
show that the proposed method outperforms the state of 
the art algorithms in image denoising. 

 
The rest of this paper is organized as follows. In Sec.2, 

our new image denoising algorithm is described in detail. 
Experimental results and comparison with other state-of-
the-art approaches are presented in Sec.3. Our work is 
summarized in Sec.4. 

II. ROBUST SPARSE REPRESENTATION MODEL 

A. Image Denoising Model 
Various image restoration tasks based on sparse coding 

can be formulated into the following minimization 
problem: 

 
2

2 1
arg min

i
i i i iγ= − +

α
α y Dα α    (3) 

where i iy = R x  denotes an degraded image patch of 

size n n⋅  extracted at location i , iR  is the matrix 

extracting patch iy  from y  at location i  and 
n K×∈D R  is a fixed dictionary and K  is its size, 
K

i ∈α R  is the reconstruction coefficients, γ  is the 

penalty to control the sparsity of iα . After determining 

sparse coefficients iα  , we estimate the original image 
x  by solving the following over-determined system:  

 
22

2 2x
arg min ij ij

ij

λ= − + −∑x y x R x Dα  (4) 

This above quadratic equation has a straightforward 
solution:  

 

1

T T
ij ij ij ij

ij ij
λ λ

−
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑x I R R y R Dα (5) 

A major drawback of (3) is that image patches are 
sparsely represented independently and dependencies 
between patches are ignored. The self-similarities among 
patches can be used to improve learned sparse models [5]. 
The basic idea is to group a set of similar 
patches [ ]1 2, , , n m

m
×= ∈Y y y y R  and imposing a 

grouped-sparsity regularizer on the matrix 
[ ]1 2, ..., m=A α α α  and (3) is reformulated as follows:  

 
2

,A

1arg min
2 F p q

λ= − +A Y DA A  (6) 

where m  is the number of similar patches and 
,p q

⋅  is 

the pseudo-matrix norm defined as 

 
,

1

n pi
p q q

i=
= ∑A α  (7) 

where [ ]1,...,i
i imα α=α  denotes the i -th row of matrix 

A . In this paper, we choose the pair ( p , q ) with the 
values (1, 2). From (6), we can see that simultaneous 
sparse coding encourages similar patches to be 
represented by the same atoms and this can exploit the 
dependencies between patches. 

However, due to image patches corrupted by noise, 
similar patches may not fall into a single shared structure 
[7] and block 12  regularization might perform worse 

than simple separate elementwise 11  regularization. 
Therefore, to deal with this problem, we propose our 
image denoising model based on robust sparse coding 
(RSC) as follows:  

 
( ) 2

,

1 21,2 1,1

1, arg min -
2 F

λ λ

= +

+ +

P Q
P Q Y D P Q

P Q
 (8) 

Figure 1. Illustration of sparsity vs. joint sparsity vs. robust joint 
sparsity: color squares represent nonzero values in the coefficient 

matrix. 
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where P  is a group sparse component which reflects the 
same structure shared by similar patches and Q  is an 
elementwise component which reflects the difference 
between patches. That is, we decompose the coefficient 
matrix into two components and impose different 
regularizer on them. This exploits the similarities 
between patches while considering their differences. 

B. Optimization Algorithm 
In this section, we show how to solve the robust image 

denoising model in (8) efficiently. Denote 

 
( ) ( )

( )

2

1 21,2 1,1

1F ,
2

G ,

F

λ λ

= − +

= +

P Q Y D P Q

P Q P Q
 (9) 

where ( )F ,P Q  is the empirical loss function and 

( )G ,P Q  is the regularization term. Obviously, the 
object function in Problem (8) is a composite model, 
which is consist of a differential term ( )F ,P Q  and a 

non-differential term ( )G ,P Q . And it can easily be 

proved ( )F ,P Q  is jointly convex and ( )G ,P Q  is also 
convex with respect to all their variables. Therefore, the 
global solution can be obtained. We propose a method 
based on the accelerated proximal gradient ( )APG  
methods [9] [10] to solve the optimization problem. 

In the APG  method [9] [10], at every iteration k , we 
need optimize the following problem:  

       ( ) ( ) ( ), ,,
, argminT , G ,k k

k

k k
L

= +
P QP Q

P Q P Q P Q  (10) 

where 

       ( ) ( ) ( )

( )

,
, ,

2 2

T ,1T , T , ,
2

T ,
,

2 2

k k
k

k k k
L

k k kk k
F F

L L

∂
= + −

∂

∂
+ − + − + −

∂

P Q

P Q
P Q P Q P P

P

P Q
P P Q Q Q Q

Q

 (11) 

L  is the Lipschitz constant of 
( )T ,∂
∂
P Q
P

 and 

( )T ,∂
∂
P Q
Q

. And the initial 0 100L L= =  and is 

updated 1k kL Lτ −=  given τ > 1. The composite object 
function in Problem (8) has two nonsmooth functions. 
However, because they are separable, Problem (10) can 
be solved efficiently as the following two separate 
problems:  

       

2
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1,2

1 2
1,1

1 1 F
2

1 1 F
2

k k

k kF

k k

k k

L L

L L

λ

λ

+

+

⎛ ⎞
= − − ∇ +⎜ ⎟

⎝ ⎠

⎛ ⎞
= − − ∇ +⎜ ⎟

⎝ ⎠

P

Q
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where F∇P  and F∇Q  is the partial derivatives of 

( )F ,P Q  with respect to P  and Q  at ( ),k kP Q .The 

above problems admit closed form solutions:  

       
( )

( )
( )

( )

1 1

1 2

max 0,1 , 1:

sign max 0,1

i ik k
ik

k

k k k

k
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+
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 (13) 

Where
1 Fk k

KL
= − ∇PU P , Q

1V Q Fk k

kL
= − ∇ . 

In [11], it has been proved the APG  method achieves 

an 2

1Ο
k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 residual from the optimal solution after k  

iterations. Finally, the algorithm for solving Problem (8) 
is given in Algorithm1. 

 
Algorithm 1 Optimization for Problem (8) 

 
- Input: D  and Y . 
- Output: Optimal solution ( )* *,P Q . 

(1).Set 
1 0= =0P P , 1 0= =0Q Q , 0 0t = , 1 1t = , 1k = ,

0 100L L= = , 1.05η = , 1 0.3λ = , 2 0.01λ = . 
(2). while not converged do 
(3). Compute the proximal points: 

( )
1

11k
k k k k
v k

t
t

−
−−

= + −P P P P ; 

( )
1

11k
k k k k
v k

t
t

−
−−

= + −Q Q Q Q ; 

(4). Calculate the gradient F∇P , F∇Q ; 

(5). Calculate 1k+P , 1k+Q  via (13); 

(6).If 1 1, , ,
F Tk k k k

kL+ + >
P Q P Q ,update 1k kL Lτ −= and go 

to Step 5; 
(7). Stepsize update: 

( )2

1
1 4 1

2

k
k

t
t +

+ +
=  

(8). end while 
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III. IMAGE DENOISING EXPERIMENTS 

We have implemented the proposed RSSC denoising 
algorithm under MATLAB. In all experiments, the block-
size 64n = , the penalties on sparsity 1 2,λ λ  are set as 
0.5, 0.01 respectively. The dictionary is trained on 
patches from nature images and is shown in Fig 2. And 
the size of the dictionary 256K = . 

 
We first compare the proposed RSSC denoising 

algorithm and two leading methods for removing additive 
white Gaussian noise: K-SVD [3], BM3D [2]. The 
denoising results of all benchmark schemes are generated 
from the source codes or executables released by their 
authors. The PSNR performance of three competing 
denoising algorithms are reported in Table 1 (the highest 
PSNR value is in Italic). 

From Table 1, we can see that our RSSC outperforms 
the other two algorithms on all tested images except that 

BM3D achieves better performances on Barbara at the 
noise level 15,25nθ = . Especially, when images are 

corrupted by 35nθ =  level Gauss noise, our algorithm 
achieves the best results on all test images in the three 
ones. Therefore, we can conclude that RSSC outperforms 
the other two benchmark methods. 

The visual comparison of the denoising methods is 
shown in Figs. 3-8. Fig. 5 presents visual results of 
different methods for Peper image with the noise level 

25nθ = . We can observe that all methods can remove 
the noise effectively and our RSSC which exploits the 
similarities between patches and considering their 
differences provides an important improvement over the 
K-SVD method which considers each patch 
independently. The proposed method also outperforms 
over the BM3D method. 

Fig. 6 gives the results of our algorithm on the 
corrupted image House. We can see that our RSSC 
method shows better visually quality result. The K-SVD 
method generates many visually disturbing artifacts in the 
denoised image. The BM3D method loses many details 
compared our RSSC method. 

VI. CONCLUSION 

In this paper, we propose a robust image denoising 
algorithm based on the robust simultaneous sparse coding. 
We decompose the sparse coefficient matrix into two 
halves. Joint sparsity regularizer is imposed on one 
matrix and elementwise sparsity regularizer is imposed 
on another. This makes our algorithm exploit the 
dependencies between patches while considering the 
differences between them. Experiments on the benchmark 
data show the superior performance over the state-of-art 
algorithms. 

 

 

TABLE 1.  
QUANTITATIVE COMPARASION. THE GAUSS NOISE LEVEL ΘN=15, 25, 35 AND THE PSNR ARE CHOSEN AS THE PERFORMANCE MEASURE.  

BEST RESULTS ARE SHOWED IN ITALIC. 
θn Method House Peppers Barbara Boat Lena 

15 

KSVD 34.33 32.11 34.53 34.49 34.98 

BM3D 36.14 33.36 35.35 34.82 35.33 

RSSC 37.13 35.20 35.09 35.13 35.48 

25 

KSVD 32.08 29.71 30.38 30.29 30.35 

BM3D 32.03 30.14 30.68 29.82 30.03 

RSSC 32.30 30.31 30.59 30.43 30.77 

35 

KSVD 31.08 28.91 28.94 29.09 29.15 

BM3D 31.13 29.18 29.47 29.11 29.21 

RSSC 31.20 29.45 29.59 29.33 29.40 

 

 
Figure 2.The dictionary used in our denoising algorithm 
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(a)                                                      (b)                                                      (c) 

 
(d)                                                       (e) 

Figure 4. Denoising performance comparison for Boat image at Gauss noise level θn = 15.  
From the left to right, the original image, noising image, KSVD, BM3D, RSSC.  

 
(a)                                                     (b)                                                          (c) 

 
(d)                                                            (e) 

Figure 3. Denoising performance comparison for Barbara image at Gauss noise level θn = 15.  
From the left to right, the original image, noising image, KSVD, BM3D, RSSC. 
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(a)                                                       (b)                                                           (c) 

 
(d)                                                       (e) 

Figure 6. Denoising performance comparison for House image at Gauss noise level θn = 25.  
From the left to right, the original image, noising image, KSVD, BM3D, RSSC. 

 
(a)                                                      (b)                                                      (c) 

 
(d)                                                      (e) 

Figure 5. Denoising performance comparison for Peppers image at Gauss noise level θn = 25.  
From the left to right, the original image, noising image, KSVD, BM3D, RSSC. 
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(a)                                                            (b)                                                          (c) 

 
(d)                                                         (e) 

Figure 8. Denoising performance comparison for House image at Gauss noise level θn = 35.  
From the left to right, the original image, noising image, KSVD, BM3D, RSSC 

 
(a)                                                      (b)                                                        (c)   

 
(d)                                                      (e) 

Figure 7. Denoising performance comparison for Peppers image at Gauss noise level θn = 35.  
From the left to right, the original image, noising image, KSVD, BM3D, RSSC 
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