
Research on Cloud-Based Mass Log Data 
Management Mechanism 

 
Fengying Yang  

School of Information Engineering, Huanghuai University, Zhumadian, China 
Email: yfyinghh@yeah.net  

 
Huichao Liu and Zhanping Zhao 

School of Information Engineering, Huanghuai University, Zhumadian, China 
 Email: yfyinghh@yeah.net  

 
 
 

Abstract—In this paper, we study the file management 
mechanism of large-scale cloud-based log data. With the 
rise of big data, there are more and more the Hadoop-based 
applications. Log analysis is an important part of network 
security management, but the existing network log analysis 
system can’t deal with huge amounts of log data, or only use 
offline mode which with a longer response delay. Therefore, 
building the online Hadoop-based log processing system is 
necessary. However, how to effectively manage vast 
amounts of log data have become the key problems of such 
system. To this end, this paper puts forward a new 
hierarchical file archiving (HFA) mechanism which can 
realize the hierarchical and sorted storage of massive 
amounts of log data. In addition, some feasible methods for 
the mechanism are also proposed. Through the HFA 
mechanism, the traditional log analysis mode and Hadoop-
based offline analysis mode can be combined to achieve the 
online Hadoop-based log analysis system, which have good 
scalability that can effectively store and handle the massive 
log data, and faster response speed for user request to meet 
the requirements of online processing. The feasibility and 
effectiveness of the HFA mechanism have been verified by 
the experiment of a small log process system.  
 
Index Terms —Network security, Log analysis, Hadoop, File 
management, Hierarchical file archiving mechanism, Online 
system 
 

I.  INTRODUCTION 

With the rise of big data, the number of Hadoop-based 
application and research continues to increase [1-6], and 
the application areas also keep expanding [7-9]. 
Conventional log data processing models cannot deal with 
the massive amount of log data for large network systems, 
so Hadoop-based log analysis systems are emerged [10-
14]. However, almost all of the current Hadoop-based log 
analysis systems use offline processing mode, which 
means that the raw log data should be merged and clean in 
advance into the large data files which already have the 
clear structure and reasonable layout, and the analysis 
system only need to focus on business processes, and 
don’t need to care about the complex log file management 
issues. Moreover, the response time of log analysis to user 
request is also not strict. 

But in order to build online Hadoop-based log analysis 
system, the more complex situations will be faced [15]. 
On the one hand, the requirements of response time to 
process user requests in online log analysis system will be 
higher. The system must efficiently handle the various 
query and analysis requests in time or even in real-time. In 
addition, the response contents generated by system also 
should include the processing of the latest log data. On the 
other hand, log data are the stream data. Therefore, online 
log system must timely receive numerous log records 
from various log sources, and meanwhile, split the data 
stream into separated log file for appropriate size to store 
in the HDFS. For a large network system, the amount of 
log data that need to be store can be up to tens of TB or 
PB level [16]. If the size of log file is set too small, a large 
number of small files will be produced which could 
seriously impact the performance of Hadoop. Otherwise, 
if the size is too large, the update cycle of log file will be 
very long, that could result in the response for user request 
cannot contain the latest data. 

Based on the above analysis, the online Hadoop-based 
log analysis system must have the high performance and 
massive storage capacity. Moreover, it also must have a 
valid file organization and management mechanism with 
good scalability. On the one hand, the scale of small file 
should be controlled reasonably in order to reduce the 
impact on system performance [17]. On the other hand, 
some effective methods should be taken for organizing the 
historical log data to meet the needs of business process, 
and remaining the relatively stable for file system 
structure when increasing the amount of log data to ensure 
the stability of system performance. Therefore, build a 
good organization and management mechanism of the log 
data is the key for online Hadoop-based log analysis 
system. 

Hadoop platform also provides some mechanisms and 
tools for the processing of small files, such as HAR, 
SequenceFile and CombineFileInputFormat et al. But they 
all have some limitations. In addition, the literatures [18-
21] have introduced some solutions for some kinds of 
specific application environment (such as WebGIS, 
Bluesky courseware delivery system and the Chinese font 
engineering). These works solve the problem of small file 
by adding a small file processing module above the 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1371

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.6.1371-1377



original HDFS file system. The design idea of the small 
file processing module is to archive some related small 
files into one large file firstly, and then create an index file 
for these small files for quick access. 

In this paper, a hierarchical file archiving mechanism is 
proposed for the log data management based on the 
characteristic of online log analysis system, and some 
feasible methods of this mechanism are also present. The 
basic idea of hierarchical file archiving mechanism is to 
save the log data into different files which have different 
levels that are consistent with the access frequency of the 
log data. The data with higher access frequency will be 
saved in a relatively smaller file; otherwise, the larger file 
will store the data which has less access frequency. 
Thereby, this will form a pyramid and inverted pyramid 
hierarchy for log files and data storage structure 
respectively. The hierarchical file archiving mechanism 
can effectively solve the problem of small files through 
reducing the file size and maintaining reasonable file 
number to organize the global data space. The system 
which using this mechanism can maintain the good 
scalability, and improve the system performance and user 
experience. 

Organization of the rest of this paper is as follows. The 
Hadoop environment is briefly reviewed in Section II. In 
Section III, the hierarchical file archiving mechanism and 
some feasible methods are proposed. The implement 
architecture of the mechanism is introduced in section IV. 
In Section V, a simple experiment for the mechanism is 
taken, and the results are given. Finally, the work is 
concluded in Section VI. 

II. HADOOP FILE SYSTEM 

The Hadoop is a framework that allows for the 
distributed processing of large data sets across clusters of 
computers using simple programming models [14]. It is 
designed to scale up from single servers to thousands of 
machines, each offering local computation and storage. 
Hadoop is designed to detect and handle failures at the 
application layer, so delivering a highly-available service 
on top of a cluster of computers. Hadoop includes many 
important modules, but the basis of which are HDFS 
(Hadoop Distributed File System), which is a distributed 
file system that provides high-throughput access to 
application data, and MapReduce, which is a system for 
parallel processing of large data sets. 

A. Read and Write Operation of HDFS 
Hadoop Distributed File System (HDFS) is the default 

and widely used file system of the Hadoop platform. The 
main operation supported by HDFS are read, write and 
append, while the alter operation is not provided. 

The procedure to read a file is indicated in Fig. 1, 
which include two main steps: 

1) Client sends the read command to NameNode. If the 
file is not existence, error information will be returned. 
Otherwise, the blocks corresponding to the file and its 
position in DataNode will be sent to Client. 

2) After receive the position information of the blocks, 
Client will connect to different Datanode, and get the data 
in parallel. 

 
Fig. 2 shows the procedure of the write operation, in 

which four steps are included: 
1) Client sends the write file command. NameNode 

checks the file to see if the file exists. If it is, the error 
information will be return directly. Otherwise, NameNode 
will send a useful DataNode node list to Client. 

2) Client splits the file into some blocks, and sends 
each block concurrently to different DataNode. When the 
sending complete, Client send message to NameNode and 
DataNode. 

3) When receiving the message from Client, 
NameNode send a confirmation message to DataNode. 

4) After receiving the confirmation messages from 
NameNode and Client, DataNode submits the write 
operation, and completes the file storage process. 

 
B. Hadoop File Merging Mechanism 

Hadoop also offers several file merging solutions for 
the problem of small file process. They are Hadoop 
Archive, Sequence file, CombineFileInputFormat and 
Append operation [17, 22]. 

Hadoop Archive or HAR is a new file system above the 
Hadoop file system, and also an efficient archiving tool 
that can package a number of small files into a HAR file 
and store it in some whole HDFS blocks. HAR 
mechanism can save the storage of HDFS, reduce the 
usage of memory in NameNode, and support the 
transparent access for those small files. Creating a HAR 
file is actually to run a Mapreduce job on a Hadoop 
cluster. In addition, once a HAR file is created, it cannot 
be changed. It must be re-created when add or remove the 
contents of the HAR file.  

Sequence file consists of a series of binary Key/Value 
pairs. Hence the large numbers of small files can be 
merged into one large sequence file by setting the file 
name to the Key, and save the contents of the small file to 
the Value. 

 
Figure 1.  Read operation of HDFS.  

 

 
Figure 2.  Write operation of HDFS. 

1372 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



CombineFileInputFormat is a new format of 
Inputformat, used to combine multiple small files into a 
single split when running a Mapreduce job. In addition, 
the store locations of these small files are also taken into 
account for using. 

The HDFS append operation has been redesigned and 
implemented in Hadoop 1.0 to fix some defects existed in 
previous versions. The new HDFS append operation is 
more complex for involving many interactions between 
Client, Namenode and Datanode. From the Client 
perspective, appending new data to an existed file need to 
call the append operation of DistributedFileSystem firstly, 
which will return an FSDataOutputStream stream object, 
namely out. Then the function out.write() should be called 
to append data to the file. Finally, the function out.close() 
should be executed to close the file. 

C. Existed Small Files Handling Systems 
Hadoop platform is designed for large data processing, 

and there is no universal system-level solution for the 
problem of small files so far. However, the small file 
problem is existed widely in many application fields, and 
some solutions have been proposed in some works. 
Literature [18] utilizes the data dependencies feature in 
WebGIS system to merge the small files which stored in 
adjacent location into one large file, and then creates an 
index file for these small files for quick access. Literature 
[19] proposed an HDFS small file storage solution base on 
the characteristics of Bluesky system. First, the files that 
belong to the same courseware will be archive into a large 
file in order to improve the storage efficiency of small 
files in HDFS. Second, the two-level pre-fetching 
mechanisms are proposed to enhance the reading 
efficiency of small files, which includes both the index 
file pre-fetching and data file pre-fetching. When using 
index file pre-fetching to access a file, the index file 
corresponding to the block which contains the small files 
will be loaded into memory firstly, so that the Client no 
longer need to interact with NameNode when access the 
other files. When using data file pre-fetching, all the files 
concern to the same courseware will be loaded into 
memory, so the access speed will be significantly 
improved when access the other files. 

These works attempt to add a small file processing 
module base on the original HDFS to process the small 
files. Firstly, the module merges many small files which 
have some relevance into a large file. And then an index 
file is created for these small files for quick access. The 
mergence can not only increase the storage efficiency, but 
also improve the speed of application processing. 

III. HIERARCHICAL FILE ARCHIVING MECHANISM  

A. File Management Requirements 
If the file stored in HDFS is not closed, the existence of 

the file cannot be observed by Client. But the user 
response in online log analysis system requires the 
processing of latest log information. This makes the 
online log analysis system must cut the log stream in time 
when receiving log data, and form separate log files which 

contains the received small amount of log information in 
short time. This approach can significantly reduce the data 
update cycle, and improve the real-time effect of log 
analysis. The timeliness of the response is undoubted a 
very important indicator for an online log analysis system, 
but it also will produce a large number of small files. 

Too many small files would seriously affect the 
performance of Hadoop. Hadoop is designed to handle the 
large files, and the file storage unit is block which default 
size is 64M. If the size of file is less than the default size 
of block, the file will still take up a separate block for 
storage. Therefore, Excessive number of small files will 
significantly reduce the system storage efficiency. In 
addition, the metadata information of each file is stored in 
Namenode and resides in memory. If the number of small 
files is too many, the file namespace and memory cost 
will be very large in NameNode, and the processing cost 
for each request will be very time consuming. The 
Hadoop may also be crash due to the memory limitations 
in some case. If the problem of small file cannot be solved 
effectively, to build the online log analysis system is 
pointless. 

Using the file merge methods provided by Hadoop to 
solve the small file problem is not a feasible idea. On the 
one hand, these files merge methods have some 
drawbacks which could result the merge cost or file access 
cost is too high. On the other hand, the primitive merge 
idea of these methods is also not suitable for the 
application features of online log analysis system. In 
which the distribution of log data is too concentrated will 
also produce some serious system performance issues. In 
the online log system, not all businesses are required of all 
data sets. Instead, only a few operations need to 
manipulate large data sets. Large number of operations is 
focus on the current or recent data. The longer of the 
historical data, the access frequency of the log data will be 
lower. If the data is too centralized, each business will 
involve a lot of useless data processing, which is bound to 
improve the system processing performance. 

Therefore, the appropriate file management mode must 
be selected to solve the problem of small file by 
organizing the system data effectively, and make the 
system not only has better scalability, but also have better 
performance to meet the needs of user response time. 

B. The Ideas of Hierarchical Archiving  
Hierarchical file archiving mechanism is proposed 

based on the application characteristics of online log 
analysis system. This mechanism need to firstly set the 
different archiving levels in accordance with certain 
archiving criteria. When the lower-level file reaches the 
archiving standard, the mechanism will be started to 
merge the lower-level files into one upper-level file, and 
empty the old files meanwhile. When after a certain time, 
the lower-level files could reach the archiving standards 
again, and the archiving program will also be started. The 
similar methods will be used to archive the upper-level 
files to more high-level file when the file archiving 
standards is arrived. So after the cycle of step by step, the 
finished system file structure and storage structure will 
form a pyramid and inverted pyramid structure, shown in 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1373

© 2014 ACADEMY PUBLISHER



Figure 3. Log analysis system splits log stream by the 
first-level file standard, and forms the bottom-level log 
file. Within the file structure of the system, the higher of 
the level, the less of the files number, and vice versa, 
thereby a positive pyramid structure is formed. However, 
in the storage structure, the lower level, the less amount of 
stored data, so an inverted pyramid structure is formed. 

 
A good file archiving mechanism should have the 

following characteristics: 
1) File merging frequency must be low. If the file 

merges too often, it will increase the burden of the system 
undoubtedly. 

2) Average file merge cost should be small. This 
requires reducing the bigger cost merge operation as far as 
possible. 

3) File system should have good scalability. Files 
number in the system should remain relatively stable, 
could not have a greater change with the increase of the 
amount of log data. 

4) File structure should meet the needs of application. 
The partitions of file should fit the application needs of 
the data set, and minimize the chance of cross-file 
operations. 

C. Hierarchical File Archiving Mechanism 
Since the log data structure is relatively simple, just 

consisted by the text log record, so the log file has better 
divisibility. Therefore, the mergence or reorganization for 
log files has greater flexibility, which only needs to keep 
the integrality of the log record. For different application 
needs, it can be specified by different hierarchical 
archiving standards, such as archiving by content 
attributes, by file size, by files number, by time attribute 
of log data, by comprehensive multiple factors and so on. 

1) Archiving by files size  
First of all, the standards of file size should be set for 

different levels of the archiving mechanism. Log system 
splits log stream and forms log file according to the first-
level archive file size. When the data size of lower-level 
file is greater than or equal to the higher-level file size 
standard, then the system will start archiving process and 
merge the lower-level files into a upper-level file. For 
example, setting the first-level file size is 64MB, the file 
size of the second and third level is 1GB and 1TB 
respectively. When the number of first-level file reaches 
16 (16 * 64MB = 1GB), the system starts the archiving 
program to form a second-level file. When the number of 

1GB file reaches 1024, they will be merged into the third-
level file. 

Hierarchical archiving by the file size has the 
advantage that it can translate the large data process in log 
analysis system into a series of sub-operation. When 
processing a query, the system can be firstly carried out 
the sub-operations on lower-level file. Because the small 
data size of lower-level file, the system can complete and 
return the response in a shorter time. While the user to 
process the returned results, the system could start a new 
search for higher-level file. This enables the user 
processing and system processing in parallel. Furthermore, 
if the user has found the result of the needed, the 
subsequent sub-operations should be abort. Using this file 
organization model can not only ensure that the system 
can respond faster, but also to process all log data 
gradually. 

Achieving by file size can guarantee that the file size in 
every level is constant. For the predictable data size, the 
maximum amount of files needed to maintain by system 
can be easily calculated. Therefore, the scalability of the 
file system is very good, and the maximum number of 
files changed very little as the data size increasing. With 
this mechanism, the archiving opportunity of system 
performing is uncertain. When the log flow is large, the 
period to formation equal size file will be short, and the 
times for file archiving will be more. And vice versa, the 
chance of archiving file will be decreased when the data 
flow is small. But because of the network log flow has its 
periodicity, and the amount of log data files with different 
level is different, the higher-level file will have the 
smaller effect by the changing of data flow. 

2) Archiving by number of files  
Firstly, the desired levels and the number of files 

standard for each archiving level need to be set. When the 
number of current-level files accumulates to the archiving 
standards for next-level files, system will start the file 
archiving operations to form a higher-level file. Assume 
that the number of files for every archiving level is set to 
400, when the number of files reaches 400 for each level, 
the lower-level file will be archived into an upper-level 
file. 

Archive by the number of files has the similar effect 
with the archiving by file size. The system processes each 
file step by step, which can ensure the response speed, and 
improve the user experience. 

However, there are some differences between the two 
methods: archiving by the number of files can ensure the 
regularity of archived files within the same time interval. 
But it cannot guarantee the uniformity of size of each 
merged file. When the log flow enlarges, the size of the 
log file archived within the interval will be very large. On 
the contrary, the size of the file may be smaller. But this 
effect mainly occurred in the low-level file, the more 
upper-level file the smaller of the influence on it. 

3) Archiving by log time  
The frequencies of use of log data will become less with 

its time growing. Users are always taking more interested 
in current or recent log data, even though the historical 
data also is valuable. Therefore, we can make different 

 
less

more

more

less  
Figure 3.  File and storage structure. 

1374 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



archiving time standards according to different application 
environments. Equidistant time standards are one of the 
feasible methods, such as one week, two weeks, three 
weeks, etc. Non-equidistant time standard is another good 
choice, such as one day, one week, one month, one 
quarter and more than one year and so on. In the latter for 
instance, system archives the accumulated data within one 
day to form a daily log file. The weekly archived data was 
formed by merging the log data accumulated in a week. 
And so on, log files within different time periods can be 
created. 

Time is an important attribution for the log query. 
Therefore, the data within some time interval is more 
suitable for some application. Archiving by time could 
allow the system to process user request confined to the 
specific data set, rather than the all of the data, which can 
significantly improve system performance. 

4) Archiving by log priority 
The log messages generated by various kind of network 

equipment are all have the priority tag, typically which are 
debug, informational, notice, warning, critical, alert, 
emergency and so on. Log message with different priority 
represents different important level which could result in 
the different probability of being requested or processed in 
practice. Using this method, the log messages with same 
priority will archive into the same log file. Therefore, 
when processing the user requests, only the interested 
datasets need to access, which can reduce the amount of 
log data, and in favor of improving the process efficiency. 

5) Archiving by comprehensive strategies 
Two or more strategies can be used together to form a 

more careful and reasonable file archiving mechanism. 
For example, the log message priority and time can be 
combined to form a new archiving method which first to 
merge log messages with different priority into different 
log files. Then achieve each log file by different level time 
standard. The log time and file size method also can be 
combined, the low-level file can be archived with file size 
standard, and the formed high-level log file can be 
processed by time standard. 

The general principle of selecting multiple strategies is 
beneficial to show the advantages of each strategy, and 
overcome their disadvantages. Comprehensive strategies 
can not to undermine the scalability of the log storage 
system, and should be helpful to improve system 
performance. 

D. Solving the Archiving Singularity 
Archiving singularity refers to the lower-level 

archiving operation triggers on a series of upper-level 
archiving operations in the archiving process. In this case, 
the archiving operation would rise like the dominoes 
extension. Concentrated archiving operation will 
undoubtedly bring greater impact on system performance, 
while resulting in major changes of the file structure. This 
could deviate from the original design of hierarchical 
archiving mechanism. 

The time delay mechanism can be taken to resolve the 
archiving singularity problem. One way is to set the delay 

interval for continuous archiving operation, and the 
successive archiving operations must be conducted 
outside the specified delay interval. This separates the 
archiving operation artificially. Delay interval should 
reference the average interval of each archiving level, it is 
best to set the number coprime with all archiving levels. 
Another method is to set the system to perform high-level 
archiving in spare time. The probability of upper-level 
archiving is already very low, so perform the archiving 
mechanism when the system is idle can avoid the 
archiving singularity problem effectively. 

IV. THE IMPLEMENT ARCHITECTURE 

In order to apply this mechanism better in practice, this 
section discusses the implementation architecture of the 
hierarchical file archiving mechanism in detail. Fig. 4 
shows the simple deployment architecture of the Hadoop-
based log analysis system. There are three major 
characters in this architecture: log source, log server and 
Hadoop cluster. The range of log source is very wide, 
which could be the computers (such as workstation, 
application server et al.), network devices (such as router, 
switcher, firewall and many others) and so on. During the 
running of the log source, some events may be occurred. 
The log process on log source captures the event and 
forms the log message. Then, these log messages will be 
sent to log server in the form of stream. The number of 
these log messages from different log source will be very 
huge. So, the log server should put them into different 
queue. Then, these log messages will be do some 
pretreatment, such as format conversion, removing the 
useless field, adding some default fields and so on. Then 
the log will be saving to a local log buffer file. When the 
local log file reaches the predefined conditions, they will 
be sent to the Hadoop cluster, saved into the DataNode 
and indexed in NameNode.  

 
Obviously, the log server occupies the core position in 

the whole system. We should understand how log server 
works. Fig. 4 indicates the process procedure of log 

 

Figure 4.  The deployment architecture of log system. 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1375

© 2014 ACADEMY PUBLISHER



information within the log server. In order to store a log 
message to the cloud system, there are seven steps that 
need to be performed. 

Step1: log server uses some threads to receive the log 
message, and put them in the appropriate queue. 

Step2: log server does some pretreatment, such as 
discarding the useless or repeated log information, adding 
or removing some fields and so on. Finally, the log 
information also should be classified. 

Step3: log server stores the classification data into the 
local log buffer file, which according to bottom level of 
the hierarchical file archiving mechanism. 

Step4: log server checks the size of the saved log 
buffer file. If the file meets the predefined size, then the 
flow continues, otherwise, the flow will go to step 6. 

Step5: merges the saved local log files into a single 
log file, and save it to Hadoop cluster, and then delete all 
the local log buffer files. 

Step6: check the conditions of the hierarchical file 
archiving mechanism. If the conditions are met, step 7 
will be taken to perform the hierarchical file archiving 
mechanism; otherwise, step 8 will be performed. 

Setep7: run the MapReduce programs on the Hadoop 
cluster. Archive the low-level log file to the upper-level 
log file, and then delete namespace of the low-level files 
in Namenode. 

Step8: check whether the exit condition is met. If so, 
the flow will be exited. Otherwise, the flow will be go to 
setep1, and start the next loop.  

 

V. EXPERIMENTAL ANALYSIS 

In order to verify the feasibility of proposed 
hierarchical file archiving mechanism, here take a simple 
experiment, in which the 1T log data was processed to 

compare the processing performance in a hierarchical and 
non-hierarchical system. Hierarchical mechanism used the 
method of archiving by file size, and the archiving 
standards for level 1 to level 4 were set to 64MB, 1GB, 
16GB and 256GB. The amount of log data allocated for 
each level are 1GB, 15GB, 240GB and 768GB. The 
hardware platform contains 4 servers, one acts as the 
NameNode, the remaining 3 servers are the DataNode. 
The data processing time in hierarchical and non-
hierarchical case are shown in Table I and Table II.  

From Table I and Table II, it can be seen that, the total 
data processing time of the system with hierarchical file 
archiving mechanism is slightly more than the system 
with non-hierarchical mechanism for the same amount of 
log data. But the response time of system with 
hierarchical file archiving mechanism is in the large lead 
of the other system, which is a crucial indicator for the 
online log analysis system. In addition, since most user 
requests do not need to access the entire data set, so the 
processing time of hierarchical archiving data could far 
fewer than non-hierarchical data in practice. 

 

VI. CONCLUSION 
Aim at the application characteristics and needs of the 

online log analysis system, this paper analyzes the 
necessity of using the hierarchical file system to manage 
the log data, and proposes the hierarchical file archiving 
mechanism and some specific archiving methods. 
Furthermore, one or more suitable archiving methods can 
be selected to form the more complete solution in the 
practical application. Simulation experiments show that 
after taking the hierarchical file archiving mechanism, the 
system response time can be significantly shortened. 
Hierarchical archiving mechanism is also beneficial to the 
system for selecting the appropriate data sets to process, 
which can avoid useless data operate, and improve the 
processing speed and system performance. 

ACKNOWLEDGMENT 

This work was supported by Henan Province Science 
and Technology R&D Program (No.: 122102310474), 
Henan Province Basic and Frontier Technology Research 
Projects (No.: 122300410071) and Zhumadian Municipal 
Science and Technology Research Projects (No.: 11314). 

TABLE I.   
PROCESSING COSTS 

Item/data Non-
hierarchical Hierarchical 

File size 1T 64M 1G 16G 256G 
Data size 1T 1G 15G 240G 768G 
Files  
number  1 16 15 15 3 

Time 12760 63 547 4923 9716 

TABLE II.   
PERFORMANCE COMPARISON 

Item/data Non-hierarchical Hierarchical 
Total processing time 12760 15249 
First response time 12760 63 

 

Figure 5.  Log processing flow of log server 

1376 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



REFERENCES 
[1] T. A. Sang. “Log-based approach to make digital forensics 

easier on cloud computing,” Proc. of the 2013 3rd Inter. 
Conf. on Intelligent System Design and Engineering 
Applications, ISDEA2013, pp. 91-94, 2013. 

[2] D. Wang, J. Chen, W. B. Zhao. “A Task Scheduling 
Algorithm for Hadoop Platform,” Journal of Computers, 
vol. 8, no. 4 (2013), pp. 929-936, Apr 2013. 

[3] S. B. Ren, D. Muheto. “A Reactive Scheduling Strategy 
Applied On MapReduce OLAM Operators System,” 
Journal of Software, vol. 7, no. 11 (2012),pp. 2649-2656, 
Nov 2012. 

[4] S. Chen, N. An, L. Li, Y. W. Wu, W.M. Zheng, L. Sun. 
“Human dynamics revealed through log analytics in a 
cloud computing environment,” Lecture Notes in 
Computer Science , vol. 7923 LNCS, pp. 58-63, 2013. 

[5] J. H. Lee, M. W. Park, J. H. Eom, T. M. Chung. “Multi-
level intrusion detection system and log management in 
cloud computing,”  Inter. Conf. on Advanced 
Communication Technology, ICACT, pp. 552-555, 2011. 

[6] R. R. Bhandari, N. Mishra. “Encrypted IT auditing and log 
management on cloud computing,” Inter. Journal of 
Computer Science Issues, vol. 8, no. 55-1, pp. 302-305, 
Sep. 2011. 

[7] M. Cheng, H. P. Chen. “Weblog Mining Based on 
Hadoop,” Computer Engineering, vol. 37, no. 11, pp. 37-
39, 2011. 

[8] F. Y. Yang, H. C. Liu. “Research in HDFS based on 
Campus Network Environment,” Proc. of 2011 
International Conference on Image Analysis and Signal 
Processing. Wuhan, China, 2011, pp. 648-652  

[9] C. B. Huang, J. L. Wang, H. J. Deng, J. Chen. “Mining 
Web Logs with PLSA Based Prediction Model to Improve 
Web Caching Performance,” Journal of Computers, vol. 8, 
no. 5 (2013), pp. 1351-1356, May 2013. 

[10] J. G. Lou, Q. Fu, Y. Wang, J. Li. “Mining dependency in 
distributed systems through unstructured logs analysis,” 
Operating Systems Review (ACM), vol. 44, no. 1, pp. 91-
96, 2010. 

[11] M. Philippe, N. Syed et.al. “A monitoring and audit 
logging architecture for data location compliance in 
federated cloud infrastructures,” IEEE International 
Symposium on Parallel and Distributed Processing 
Workshops and Phd Forum, 2011, pp. 1510-1517. 

[12] W. Xu, L. Huang et.al. “Detecting large-scale system 
problems by mining console logs,” Proc., 27th 
International Conference on Machine Learning. Haifa, 
Israel, 2010, pp. 37-44.  

[13] H. Y. Yu, D. Sh. Wang. “Mass log data processing and 
mining based on Hadoop and cloud computing,” 
Proceedings of 2012 7th International Conference on 
Computer Science and Education, Melbourne, Australia, 
2012, pp. 197-202.  

[14] J. Therdphapiyanak, K. Piromsopa. “Applying Hadoop for 
Log Analysis toward Distributed IDS,” Proceedings of the 
7th International Conference on Ubiquitous Information 
Management and Communication, Kota Kinabalu, 
Malaysia, 2013. 

[15] W. Zhou, J. F. Zhan, D. Meng, Zh. H. Zhang. “Online 
Event Correlations Analysis in System Logs of Large-
Scale Cluster Systems,” Proceedings, International 
Conference on Network and Parallel Computing.  
Zhengzhou, China, 2010, LNCS6289, pp. 262-276. 

[16] C. J. Jiang. “The Function of Log Analysis in Network 
Security,” New Technology of Library and Information 
Service, vol.20, no. 12, pp. 58-60, 2004. 

[17] X. C. Dong “HDFS small file problems and  solutions”,  
http://dongxicheng.org/mapreduce/hdfs-small-files-
solution/. 

[18] W. B. Chen, X. J. Zhang, L. LI, J. Tang. “A distributed 
system of log analysis based on Hadoop,” Journal of 
Guangxi University (Natural Science Edition), no. S1, pp. 
339-342, 2011. 

[19] G. M. Hu, L. Zhou, L. X. KE. “Research on Hadoop-based 
Network Log Analysis System,” Computer Knowledge and 
Technology, no. 22, pp. 6163-6164+6185, 2010. 

[20] A. Q. Song. “Design and completment of Hadoop-based 
log analysis system,” Beijing: China University of 
Geosciences, 2012 

[21] The Apache Software Foundation, “HDFS 0.21 
Documentation,” 
http://hadoop.apache.org/hdfs/docs/r0.21.0/. 

[22] White T. Hadoop: The Definitive Guide, 2nd Edition. 
O'Reilly Media / Yahoo Press, 2010. 

 
 
 

Fengying Yang was born in 1978. She 
received the M.S. degree in computer 
technology from Wuhan University in 
2011. She is a lecturer at Huanghuai 
University, Zhumadian, China. Her 
research interests include cloud 
computing and computer network. 
 
 
 

 
 
 

Huichao Liu was born in 1982. He 
received the M.S. degree in computer 
technology from Wuhan University in 
2011. He is a lecturer at Huanghuai 
University, Zhumadian, China. His 
current research interests are cloud 
computing and intelligent computation. 
 
 
 

 
 
 

 
Zhanping Zhao was born in 1965. He 
received his Ph. D. degree in probability 
and mathematical statistics from Yunan 
University in 2008. He is a professor, 
master tutor in department of economic 
management of Huanghuai University, 
Zhumadian, China. His current research 
interests include bayesian inference and  
computer techenolog.  
 

 
 
 
 
 
 

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1377

© 2014 ACADEMY PUBLISHER




