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Abstract — In many real-world applications, human-
generated data like images are often associated with several 
semantic topics simultaneously, called multi-label data, 
which poses a great challenge for classification in such 
scenarios. Since the topics are always not independent, it is 
very useful to respect the correlations among different 
topics for performing better classification on multi-label 
data. Hence, in this paper, we propose a novel method 
named Hypergraph Orthonormalized Partial Least Squares 
(HOPLS) for multi-label classification. It is fundamentally 
based on partial least squares with orthogonal constraints. 
Our approach takes into account the high-order relations 
among multiple labels through constructing a hypergraph, 
thus providing more discriminant information for training a 
promising multi-label classification model. Specifically, we 
consider such complex label relations via enforcing a 
regularization term on the objective function to control the 
model complexity and balance its contribution. 
Furthermore, we show that the optimal solution can be 
readily derived from solving a generalized eigenvalue 
problem. Experiments were carried out on several multi-
label data sets to demonstrate the superiority of the 
proposed method. 
 
Index Terms—Partial least squares; Orthogonal constraints; 
High-order relations; Regularization; Multi-label learning 
 

I. INTRODUCTION 

Multi-label learning has gained increasing popularity 
from both the academia and the industry in recent years 
[1, 2, 3, 4]. It focuses on the data each of which is 
associated with more than one label. Such problems are 
omnipresent in many real-world applications, such as 
image annotation, video indexing and music style 
categorization [5, 6]. For example, an image might 
contain ‘road’ and ‘house’ at the same time since a road 
has a high probability to appear surrounding a house. For 
a video clip on Youtube, it might has several annotations, 
e.g., ‘comedy’, ‘American’ and ‘humor’. In modern 
music information retrieval systems, the contents of the 
music refer to various styles, e.g., ‘urban’, ‘country’, 
‘jazz’ and ‘pop’. It can be easily observed from the above 

examples that there exist positive relations among the 
semantic topics, which can be explored to better address 
the multi-label problems. 

In practice, multi-label data often reside in a high-
dimensional space, where some noises or redundancy 
would affect the classification performance [23]. 
Therefore, it is of vital importance to learn a low-
dimensional subspace which preserves the primary 
energy or components of the original data. In this work, 
we study extracting a latent subspace shared by all labels 
for multi-label classification. This is different from 
conventional methods, which construct the binary 
classifier for each label and neglect the label relations. In 
the low-dimensional data space, the performance of 
multi-label classification is expected to be significantly 
improved. Essentially, this problem can be called 
dimensionality reduction or feature extraction [26], which 
is a classical problem in machine learning and data 
mining. Thus, traditional unsupervised methods can be 
directly employed for multi-label problems, since none of 
the label information is required in this fashion, such as 
Principal Component Analysis (PCA) [7]. An obvious 
drawback is they fail to employ the label information, 
which plays a critical role in deriving a well-structured 
subspace. For supervised methods, we can achieve 
feature extraction on multi-label data from the 
perspective of maximizing the correlation or the 
covariance between the features and the labels, such as 
Canonical Correlation Analysis (CCA) [8] and Partial 
Least Squares (PLS) [9, 25] in this paper, we concentrate 
on a variant of PLS, named Orthonormalized Partial 
Least Squares (OPLS) [10], which imposes the 
orthogonal constraints onto the projected vectors. 
However, none of them have probed into the intrinsic 
relationships among the multiple labels, thus not 
capturing the decoupled effects from label relations. 

To address this issue, we propose to encode the high-
order label relations by a hyper-graph [11] to capture the 
correlated discriminant information for a better preserved 
structure in the projected data space. Hence, we present a 
novel method called Hyper-graph Orthonormalized 
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Partial Least Squares (HOPLS) for multi-label 
classification. In particular, each data point is treated as a 
vertex, and each label indicates a hyper-edge including 
all data points sharing a common label. With this method, 
the projection from the high-dimensional data space into 
a low-dimensional space is guided by the high-order 
relations among multiple labels, thus achieving improved 
multi-label classification performances. We formulate 
this model as a generalized eigenvalue problem, which 
can be readily solved. As a consequence, the extracted 
subspace is spanned by the eigenvectors corresponding to 
the leading eigenvalues from solving the eigenvalue 
decomposition problem. Since we take into account the 
complex label relations of multiple labels, as a result, the 
low-dimensional data space is able to characterize the 
discriminating power and approach the intrinsic data 
structure. 

It is worthwhile to highlight the main contributions of 
this work as follows. 

 A novel method is proposed for multi-label 
classification, i.e., Hypergraph Orthonormalized 
Partial Least Squares (HOPLS). This approach 
makes use of a hypergraph to encode the high-order 
label relations to guide the projection, so that the 
obtained low-dimensional data space characterizes a 
well preserved structure approaching the intrinsic 
one. Meanwhile, thanks to the supervised 
information, the derived data subspace has more 
discriminating power, leading to improved multi-
label classification performances. 

 We show this established model can be 
mathematically formulated as a generalized 
eigenvalue problem, which can be easily solved by 
eigenvalue decomposition technique. Thus, a set of 
eigenvectors corresponding to the leading 
eigenvalues span a subspace in the low-dimensional 
data space, where the multi-label classification are 
performed. 

 To examine the performance of the proposed 
method, we conducted some interesting experiments 
on several real-world multi-label data collections. 
Results have demonstrated that our approach 
outperforms some competing alternatives. 

The remainder of this work is structured as follows. 
Section II reviews some related works. We introduce the 
proposed Hypergraph guided Orthonormalized Partial 
Least Squares method in Section III. Experimental results 
are reported in Section IV with rigorous analysis. Finally, 
the concluding remarks are provided in Section 5. 

II. RELATED WORKS 

In this section, we give a brief review on recent works 
related to our method. Multi-label learning has gained 
increasing attention in the last decade, due to its 
widespread applications in many areas, e.g., image 
annotation, video retrieval and webpage categorization. A 
latest comprehensive review on multi-label learning 
algorithms can be referred to [12]. In these applications, 
the dimensionality of multi-label data is often very high, 
which is computationally expensive. Therefore, it is very 

meaningful to reduce the dimension of multi-label data 
prior to further processing them. 

Heuristically, we can directly employ unsupervised 
methods in single-label learning, e.g., PCA[7]. Besides, 
we can use matrix factorization methods to obtain the 
low-dimensional representations, such as manifold kernel 
concept factorization [13] and discriminant orthogonal 
nonnegative matrix factorization [14]. But it is a common 
fact that the dimensionality reduction can be better 
performed while guided by supervised information, such 
as pairwise constraints or labels themselves. This poses a 
challenge for multi-label data since several labels might 
be associated with each data point. If we treat each label 
set as an individual, the number of label combinations is 
always too huge to handle and the label correlations are 
neglected as well. To this end, a number of methods have 
emerged to address this issue for regression and 
classification [8, 15, 16, 17, 18]. Among these methods, 
Partial Least Squares (PLS) [9] and Canonical 
Correlation Analysis (CCA) [8] are two representative 
ones, which are used for finding the relationships 
between two sets of variables. 

Partial least squares maximizes the covariance along 
the maximum direction while canonical correlation 
analysis finds the directions of maximum correlation [10]. 
Specifically, PLS is shown to be useful when the number 
of observed variables is much larger than that of 
observations. Generally, PLS maximizes the covariance 
between different sets of variables to obtain orthogonal 
score vectors or components. Orthornormalized PLS 
(OPLS) is one of its variants to be studied in this work. 
Essentially, there exists a close connection between PLS 
and CCA in discrimination and the equivalence relation 
between OPLS and CCA has been proved [10]. Both of 
them can be naturally applied to multi-label data, in the 
sense that the label set with multiple dimensions caters to 
a set of multi-dimensional variables for CCA and PLS. 
They can be also performed in reproducing kernel Hilbert 
space by using kernel tricks [19]. Besides, some 
researchers attempt to extend the Linear Discriminant 
Analysis (LDA) to multi-label scenario by considering 
the label relations in the between-class and within-class 
scatter matrices [20]. In addition, some works try to 
maximize the dependence between the data features and 
the labels through using Hilbert-Schmidt Independence 
Criterion (HSIC) for multi-label dimensionality reduction 
[20]. Nevertheless, the label correlations still remain 
unclear thus requiring further explorations. 

Hypergraph is employed to address this point in recent 
works for multi-label classification [21, 11]. In particular, 
a hypergraph is able to capture high-order relations 
among different categories in multi-label data. Each 
vertext represents an instance and each hyperedge 
includes all instances sharing the same label. Empirical 
studies have shown the effectiveness of hypergraph in 
revealing the intrinsic label relations, which inspires us to 
impose the hypergraph regularization onto 
orthonormalized partial least squares. Details are narrated 
in the following section. 
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III. Our Methods 

In this section, we introduce the proposed Hypergraph 
Orthonormalized Partial Least Squares (HOPLS) 
algorithm for multi-label classification. We begin with 
the problem formulation. 

A. Problem Formulation 
Given a set of training multi-label data 

points{ }1,..., nx x , each of which is stacked in the 

column of a data matrix m nX ×∈ . In other words, 
these data points reside on am-dimensional Euclidean 
space. Each data point might be associated with more 
than one labels and the maximum number of the labels is 
c . Thus, the corresponding label matrix can be denoted 

by c nY ×∈ ,which is an indicator matrix, 
where 1kiY =  holds if ix belongs to the thk − class 

kc , otherwise 1kiY = − . In this work, both the data 
matrix and the label matrix are assumed to be centered, 
such that the cumulative column-wise sum in the data 
space is zero. Note that throughout this paper I  is the 

identity matrix and †A denotes the pseudo-inverse of the 
matrix A . 

Our goal is to learn a projection matrix 
m dW ×∈ from the training data and the label matrix. 

By using this projection matrix, the original high-
dimensional data points can be mapped onto a 
ddimensional data space, which suffices to d m . In 
this way, the unseen data (e.g., out-of-sample problem) 
can be projected onto a much lower-dimensional data 
space via this transformation matrix W , such that the 
most prominent components are preserved for 
discrimination, thus benefitting multi-label classification. 

B. Hypergraph 
Hypergraph [6] is a generalization of traditional graph 

and yet it has some nice merits, namely the high-order 
relations among different objects can be captured for 
further analysis. 

Mathematically, we define a hypergraph 
( ),G v ε= where v  is the vertex set containing the 

data points each of which acts as a vertex, andε denotes 
the set of the hyperedges. Each hyperedge includes all 
samples sharing the same label, i.e., each label has an 
affiliated hyperedge e . Suppose that each hyperedge is 
assigned a weight ( )ew and the number of vertices in 

e  is denoted by ( )eδ , i.e., the degree of a hyperedge. 
Thus, the degree in a conventional simple graph remain 2. 
The degree ( )vd of a vertex v  is 

( ) ( )∑
∈∈

=
εeev

ewvd
,   

(1) 

The vertex-edge incidence matrix
V EJ ×∈ is defined 

as
 

( ) 1,
,

0
if v e

J v e
othervise

∈⎧
= ⎨
⎩

  (2) 

As a result, we obtain 
( ) ( ) ( )evJeWvd

e
,∑

∈

=
ε   (3) 

( ) ( )∑
∈

=
ve

evJe ,δ
  (4)

 

The diagonal matrix forms for 
( )vd , ( )eδ and ( )ew are respectively eD , vD and hW . 

The Laplacian matrix from a traditional graph has been 
widely used to learn from graphs [11, 24]. It is clear that 
graph Laplacian is the discrete analog of the Laplace-
Beltrami operator on compact Riemannian manifolds, 
which reflect the intrinsic structure of the data. In this 
work, we utilize a commonly used Clique Expansion 
algorithm to construct our hypergraph Laplacian. 

Note that we add a subscript to the above notations for 
discrimination in clique expansion. Thus, the edge weight 

( , )cw u v of cG is defined by 

, ,
( , ) ( ),c

u v e e
w u v w e

ε∈ ∈

= ∑
  (5)

 

whose matrix form can be written as 
T

cW HWH=
  (6)

 

We define 

( , ) ( , ),c c
v

D u u w u v=∑
  (7)

 

then the combinatorial Laplacian Lc is shown as 

c c cL D W= −
  (8)

 

Usually, we make use of its normalized version, i.e., 
1 2 1 2

n c c cL D L D− −=
  (9)

 

In clique expansion, the similarity between two data 
points is positively proportional to the weights of their 
common labels, thus capturing the intrinsic relationship 
among different classes. This motivates us to enforce 
hypergraph as a regularizer to orthonormalized partial 
least squares in the following part. 

C.Orthonormalized PLS with hypergraph regularization 
Different from CCA that maximizes the correlation of 

two sets of variables in the transformed space, 
Orthonormalized PLS (OPLS) attempts to find the 
principal directions of maximum variance with 
orthogonality constraints. Formally, OPLS computes the 
orthogonal score vectors for X  by solving 

max ( ),

. . ,

T T T
rw

T T

T W XY YX W

s t W XX W I=   (10) 
Algorithm 1 Hypergraph Orthonormalized Partial Least 
Squares (HOPLS)

 Input: 
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A collection of training data 

points 1, ,
m n

nx x X ×⎡ ⎤ = ∈⎣ ⎦  the label matrix 

c nY ×∈ the constant parameters 0, >λa  
Output: 

The projection matrix m dW ×∈ . 
1: Initialize the weights ( )ew for the hyperedges. 
2: Compute the normalized graph Laplacian 
matrix nL for the hypergraph using Clique Expansion as 
shown in (9). 
3: Compute the matrix nS I L= − . 
4: Optimize the objective function in (11) by solving the 
generalized eigenvalue problem in (13). 
5: Construct the projection matrix W  by the 
eigenvectors corresponding to the top d eigenvalues. 
where W  is a projection matrix for learning a low-
dimensional data representation. Inspired by the success 
of hypergraph in multi-label learning [11], we impose it 
onto the objective function in (10) as a regularization 
term, thus additionally capturing the high-order relations 
among different labels. Now, we can readily formulate 
the proposed HOPLS algorithm as 

max [ ( ) ],

. . ,

T T T
rw

T T

T W X Y Y S X W

s t W XX W I

α+

=  (11) 

Where nS I L= − captures the high-order label 

relationships and 0>a is a tradeoff parameter for 
balancing the contribution of the hypergraph regularizer 
to the objective function. Thus, the proposed method is 
able to maximize the relation between the data points and 
the corresponding labels as well as to respect the high-

order relations among different class labels. Note that the 

matrix TS Y Y aS
∧

= + is symmetric and semi-definite 

positive. If we assume S
∧

is full-rank, then it is a well-
defined matrix having the inverse. 

Observing the objective function in (11), we find it is a 
generalized eigenvalue problem given by 

( )T T TX Y Y aS X w XX wη+ =  (12) 

Where η is the eigenvalue variable and w is the 
corresponding eigenvector. Therefore, the optimal 
projection matrix W can be derived from solving this 
eigen-decomposition problem. The eigenvectors 
corresponding to the topdeigenvectors spans the row 
space of W . 

Furthermore, it is commonly believed that 
regularization is a popular technique to penalize the 
complexity of a learning model and regularized CCA is 
shown to have natural statistical interpretations [10]. 
Hence, we can directly show the regularized HOPLS by 

adding a regularization term to TXX , leading to the 
following formulation: 

( ) ( ) ,T T TX Y Y aS X w X X I wη λ+ = +  (13) 

Where λ  is positive constant to avoid overfitting and 
also control the model complexity. 

In summary, the complete procedures of our approach 
is structured clearly in Algorithm 1. 
Moreover, we provide the whole framework of our 
proposed HOPLS method using MLKNN as the classifier 
in Fig.2.

 

 

Fig.2 Framework of HOPLS using MLKNN as the classifier

IV. EXPERIMENTS 

We have conducted a number of experiments on 
several multi-label data sets to justify the proposed 
method as compared to the competitive alternatives. For 
all algorithms, we use MLKNN[4] as the base classifier 
to predict the possible label sets in a lower-dimensional 
data space. For each data set, they are randomly divided 
into two parts, leading to 70% as the training data and the 
rest as the test data. Parameter settings are as follows. We 
set the number of nearest neighbor for MLKNN to 10 as 

default. The number of projected components is set to the 
number of classes in the data set. The regularization 
parameters are searched from the grid 

{10 3:3}i i = −  and the best parameters are derived 
from cross-validation on the training data. The hyperedge 
weights of HOPLS are set as in [6]. Note that we tuned 
the tradeoff parameters in smaller bins, i.e., 
[ ]1:1.0:1.0 ，for better performance. To eliminate the 
bias, we repeat the experiments ten times, and report the 
averaged values. 
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A. Data Sets 
In this test, we collect four multi-label data sets to 

investigate the performance of our approach from various 
domains, including music (emotions), image (scene), 
gene expression (genbase) and text document (medical). 
They are available at 
http://mlkd.csd.auth.gr/multilabel.html. 

The music data emotions contains 593 songs, each of 
which has 72 features, and can be affiliated with 6 

different styles. The scene data consists of 2407 images 
and refers to six scenarios, where each image is 
represented as a 294 dimensional vector. The biology 
data genbase is composed of 662 instances that are 
associated with at most 27 labels. The medical data 
includes 978 documents with 1449 features, covering 45 
different topics. We summarize the statistics of these data 
in Table 1. 

TABLE I. 
SUMMARY OF STATISTICS OF THE DATA SETS. 

B. Performance Evaluation 
We make use of macro F1-score, precision and recall[3] 

as the evaluation criteria to examine the performance of 
the proposed HOPLS method and all the compared 

algorithms in the following. 
 Principal Component Analysis (PCA) [7]. 
 Locality Preserving Projection (LPP) [22]. 
 Canonical Correlation Analysis (CCA) [8]. 

TABLE II.  
 THE F1-SCOREON DIFFERENT COMPARISON METHODS 

 

TABLE III. 
THE PRECISIONON DIFFERENT COMPARISON METHODS 

 

TABLE IV 
 THE RECALLON DIFFERENT COMPARISON METHODS 

 Multi-label informed Latent Semantic Indexing 
(MLSI) [16]. 

 Multi-label Dimensionality reduction via 
Dependence Maximization (MDDM) [20]. 

 Orthonormalized Partial Least Squares (OPLS) [10]. 
Among the above methods, PCA and LPP are 

unsupervised methods while the rest are all supervised 
methods. Multi-label classification were conducted in the 
lower-dimensional data space derived from these 
approaches. 

C. Results and Analysis 
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Experimental results are reported in Table 2 to Table 4. 
The best performances on each data set are highlighted in 
boldface. To examine the classification performances 
with the varied size of training data, we depict the curves 
of the three evaluation metrics onemotionswith 
increasing ratios of training samples in Fig. 1. 

A number of interesting points can be observed from 
these results. 

 The proposed HOPLS algorithm systematically and 

consistently outperforms other competing methods. 
We attribute this to the fact that a hypergraph is 
utilized as a regularizer in HOPLS to encode the 
high-order relations among different labels, thus 
capturing the intrinsic label structure for more 
discriminating power of the model. This justifies our 
theoretical analysis. 
 

 
Fig.1: Multi-label classification performance with increasing ratios of training data onemotions. Results are averaged over five test runs. 

 Mostly supervised methods perform better than 
unsupervised methods (i.e., PCA and LPP), which 
confirm that projection under the guidance of label 
information will lead to a more discriminant low-
dimensional data space, thus improving the multi-
label classification performance. 

 With the increase of the training data points, the 
classification performance would be boosted 
gradually regardless of supervised or unsupervised 
methods. The reason for this is that more data points 
lead to a more robust and discriminating model for 
learning a betterstructured data space. 

V. CONCLUSION 

This paper presents a novel method for multi-label 
classification, i.e., Hypergraph Orthonormalized Partial 
Least Squares (HOPLS). Essentially, it is strongly 
motivated by the success of hypergraph to encode the 
high-order relations among different labels. In this work, 
we incorporate the intrinsic label information into the 
orthonormalized partial least squares, which has been 
shown to have satisfying performance on multi-label 
problems. To consider the complex label relations, we 
impose the hypergraph regularizer onto the objective 
function of OPLS, leading to a generalized eigenvalue 
problem. Empirical studies on some multi-label data sets 
have shown more promising performances by the 
proposed method in comparison with others. 
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