
Figure 1. Fifty-three photos from Chinese trouble of freight car 
detection system. 
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Abstract—The component classification and potential fault 
region locating in the full-automatic inspection system of a 
freight train require a computer vision method with the 
ability of classifying quickly and locating precisely, 
addressing anti-nonlinear deformations, and being able to 
perform extensible learning. Inspired by these requirements, 
this paper specifically optimizes the three elements of a 
shape-matching model, including the scene map, the shape 
template, and the matching.  Our method uses a discrete-
point sampling map (DPSM) as an intermediate 
representation, to enhance the stability of the scene maps, 
uses the criterion function based on feature salience to select 
a better shape-template group, and matches hand-sketches 
with regions in DPSMs to reduce the difficulty of the 
matching calculation. Based on our optimized shape-
matching model, we set up a new procedure for component 
classifications and potential fault region locating in the full-
automatic inspection system for freight trains, which has 
been applied successfully on more than 10 parts of freight 
train cars in the railway for more than 2 years. The results 
of anti-noise testing in laboratory and daily operation at 
several inspecting stations show that our method has a 
strong ability to survive with nonlinear deformations, and 
has a good extensibility to be used with different parts, 
which meet application demands for the full-automatic 
inspection system. 
 
Index Terms—TFDS; shape matching, discrete-point 
sampling,  shape template, feature salience 

I.  INTRODUCTION 

The research in this paper is inspired by a series of 
bottleneck problems that occur when Chinese freight train 
car inspections are changed from half-automatic mode to 
full-automatic mode. Currently, most freight car 
inspections are half-automatic with a substantial manual 
portion. The “Trouble of Freight Car Detection System” 
[1]-[2] （ TFDS, official name ） that is equipped in 

Chinese railways uses five cameras to take 53 part photos 
(sized 1400 × 1024) from the two sides and bottom of  
one freight car, where faults might emerge. Among these 
photos, two cameras from each side take 7 photos each, 
and three cameras from the bottom side take 13 photos 
each, as Fig. 1 shows. When these photos are taken, the 
freight train is running normally, and the size, distance, 
angle, and shooting time for each part’s photos are 
relatively unified. There will be 2000-3000 photos that 
are taken from one freight train according to the number 
of cars that it drives. All of these photos will be examined, 
and fault judgments will be made in 10 minutes by 4 
freight train surveyors in a detecting office. If any fault is 
found, then the surveyors are to report it without delay. If 
the fault is severe enough to endanger the running safety 
of the freight train, then the freight train should be 
stopped, and outdoor surveyors will be sent for further 
detection to confirm the fault and to handle it. Full-
automatic inspection attempts to use computer vision 
partly or completely instead of the work of the four 
freight train surveyors, to reduce their labor intensity, 
improve the detection quality and efficiency, and better 
ensure the security and celerity of the railway transport. 

 
 Figure 2. The basic procedure of inspection on freight cars 
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Regardless of whether the half-automatic inspection 
with manual work or full-automatic inspection with 
computer vision is used, their basic procedures are the 
same one shown in Fig. 2. For different components, one 
part might correspond to different fault regions and types, 
and the component type in the current parts photo should 
be recognized first. Next, one or more potential fault 
regions are located, and a fault judgment will be 
performed with these potential fault regions. The 
bottleneck problems mentioned above are the component 
classification and the locating of potential fault regions, 
which can be divided into the following three aspects: 

A. Classifying Precisely and Locating Quickly 
Because the railway transportation in China is 

developing very quickly, many different ages and types 
of freight cars, with different component types, run at the 
same time. New components with new fault regions and 
types are used every year. Before freight train surveyors 
in offices were using TFDS to detect faults manually, 
they were outside surveyors who have been inspecting 
and repairing all types of freight car faults for more than 
five years. These surveyors were very familiar with all 
the potential fault regions in every type of freight car and 
its components. As a result, component classification and 
the locating of potential fault regions in the current parts 
photos can be accomplished quickly and precisely with a 
single glance at the photo, which ensures that thousands 
of photos can be inspected in 10 minutes. Fig. 3 shows 
five types of components in the wheel parts; it can been 
observed that different types of components might 
correspond to different locations and that there could be 
different numbers of potential fault regions, while the 
faults and their judgment methods could be the same. If 
computer vision can classify components quickly and can 
locate potential fault regions as precisely as human do, 
then the accuracy of fault detection will improve greatly 
with a decrease of the missing recognition rate and the 
false acceptance rate. 

B. Robustness to All Kinds of Interference 
The relative unified shooting conditions of the TFDS 

guarantees that there will be no large geometric 
transformations (e.g., translation, rotation, scaling) with 
the components in the photos. However, after running in 
the open for a long time, factors such as noise, all types 
of spots, strong reflected light, articulations and 
occlusions make the details of the photos from the same 
component of the same part different from one another, 
and no identical photos can be found, although they retain 
a general similarity. The trained surveyors have strong 
adaptability to such nonlinear deformations, which are 
much more challenging for computer vision than for 
geometric transformations [3]. Fig. 4 shows several 
common nonlinear deformations types applied to wheel 
parts. 

C. Easy to Extend 
Humans have an excellent capacity for extensible 

learning. If there is a new component with a new 
potential fault region, then the surveyors can quickly 
master it within a short training time. While for a 
computer vision system that has been operated in the field, 
such a change could mean that the system should be 
ended and sent back to its developer for updates and re-
debugging before operating it again, which poses an 
obstacle to popularizing a full-automatic inspection 
system for freight trains. In fact, most of the faults in a 
new potential fault region that correspond to a new 
component are old and detectable faults. If the method for 
component classification and potential fault region 
locating can be extended to be compatible with a new 
component type and a new potential fault region, then the 
fault can be judged by the available judging program. 
Thus, the method of components classification and 
potential fault region locating in a full-automatic 
inspection system of a freight train should also be good at 
extensible learning, to quickly adapt to a freight train’s 
component upgrading. 

    
                  (a)                                           (b)                                         (c)                                        (d)                                            (e)               

Figure 3. The component’s type and its corresponding potential fault regions. Among which there are square frames with potential fault regions; the 
red lines are salient hand-sketches that will be discussed later. (a) Wheel component I; (b) wheel component II; (c) wheel component III; (d) wheel 

component IV; (e) wheel component V. 

      

(a)                                          (b)                                          (c)                                          (d)                                             (e)   

Figure 4. Several common interference  happen to wheel parts. (a) Abundant stains; (b) insufficient illumination; (c) blazing; (d) foreign body shelter; (f) 
part shelter.         
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In summary, component classification and potential 
fault region locating in the full-automatic inspection 
system of a freight train require a computer vision 
method with the ability of classifying quickly and 
locating precisely, addressing anti-nonlinear deformations, 
and being able to perform extensible learning. Inspired by 
these requirements, this paper specifically optimizes the 
three elements of a shape-matching [4]-[5] model, 
including the scene map, the shape template, and the 
matching. Based on our optimized shape-matching model, 
we set up a new procedure for component classifications 
and potential fault region locating in a full-automatic 
inspection system for freight trains, which has been 
applied successfully on more than 10 parts of freight train 
cars in the railway for more than 2 years. The 
experiments using random noise and salt noise added to 
wheel parts repeatedly prove that our method has a robust 
ability to address anti-nonlinear deformations. In addition, 
our shape-template drawing and learning method is 
simple and convenient and can be adjusted by various 
detecting offices according to the actual situation of the 
passing freight cars. Thus, our method has an excellent 
capability for extensible learning.  

This paper is organized as follows. Section II presents 
related studies. Section III introduces our optimization of 
a shape-matching model. Section IV describes the results 
of our experiments. Section V offers our discussion and 
conclusions. 

II. RELATED STUDIES 

Shape matching, which uses object regions or 
boundary information to retrieve and locate an object, is 
in best agreement with how the human eye recognizes 
and distinguishes objects. Thus, this problem has been 
widely studied by many scholars in the fields of image 
processing and computer vision for a long time. There are 
mainly two categories of shape matching: edge-based 
methods [6] and region-based methods [3]. Edge 
matching traditionally requires explicit edge 
correspondence, while edge detection is a difficult 
classification decision that is also sensitive to noise and 
illumination changes. Region matching gives edge 
matching with no need for point-to-point edge 
correspondence and is more robust to local-shape 
distortions and occlusions. However, many important 
shape details are absent, and it is difficult to extract a 
shape reliably and to represent or match shapes precisely 
when complex shapes are present. Because regions have 
closed boundaries, they do not adapt easily when 
matching open image curves. 

Geometric transformations (e.g., translation, rotation, 
scaling) and nonlinear deformations (noise, articulation 
and occlusions) are the main problems that make shape 
matching difficult. Currently, many studies focus on how 
to improve the invariant ability of shape templates with 
geometric transformations, while there is less research on 
nonlinear deformations. Deformable template [7] 
achieves invariance to location, rotation, and moderate 
scale changes by a parameterized transformation that is 
applied to the prototype to deform it; this technique is 

widely used in the representation and recognition of 
handwritten digits [8], vehicle segmentation and 
classification [9], and object tracking [10]. Wang [3] 
proposed a novel shape descriptor by computing the 
height functions of the sample points of a given contour, 
which is not only invariant to geometric transformations 
but also insensitive to nonlinear deformations because of 
noise and occlusion. Ferrari [11] used grouped edge 
fragments as intermediate representations. These grouped 
curves have more specificity and fewer potential matches 
than individual edge fragments yet are still relatively easy 
to match, and they occur often enough to survive 
occlusions and detection failures. Wang [6] avoids point-
to-point edge correspondence by matching shapes in an 
over-segmentation map, which leads the system to be 
robust to small shape variations and spatial shifts. 

Unlike edge matching between edges or region 
matching between regions, in this paper, out shape 
template is a hand-sketch and our matching is conducted 
between the hand-sketch and a region in a discrete-point 
sampling map (DPSM) [12]-[13] that is obtained by 
sparse sampling [14], which brings robust and efficiency 
to the classification and locating while sacrificing a small 
amount of accuracy of the locating. Traditionally, sparse 
sampling in shape matching is performed with a shape 
template, which reduces the search space but also 
decreases the overall accuracy of the shape description 
and adds a risk of aliasing [6]. Our sparse sampling is 
conducted on scene maps, and the DPSM using this 
approach corresponds more to the intuitive impression of 
an initial image in human brains, which can automatically 
accentuate the basic information and reject the abundant 
details such as noise, texture and uneven illumination 
conditions. Matching between a hand-sketch and a region 
combines the advantages of local edge representations 
and global region robustness and has sufficient shape 
description accuracy for classification, which not only 
can be robust to small shape variations and spatial shifts 
but also can have strong toleration for nonlinear 
deformations. 

To improve the accuracy of the classification, the 
feature saliency [15]-[16] of each shape template should 
be measured, and the more discriminative shape template 
should be selected. The terminology ‘more 
discriminative’ in this paper includes two meanings. First, 
the system should tolerate the geometric differences of 
objects from the same category, and at the same time, the 
system should allow for discriminating objects that are 
from different shape classes. If there are multiple objects 
to be classified, then each category requires a shape 
template that has a strong discriminative ability. The 
feature salience of this series of shape templates should 
be measured, and then, a better template group for 
classification can be found. Feature salience can be 
divided into two categories, structural salience and 
probabilistic salience [17]. Taking intra- and inter-cluster 
distances as measurements, structural salience selects 
features by a criterion function with small intra-cluster 
distances and larger inter-cluster distances. Probabilistic 
salience selects a salience feature that has a minimal 
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judgment error statistically, using the minimum 
classification error criterion. Learning based on structural 
salience can be easily conducted with a small number of 
samples, while the correcting rate of classification is less 
than probabilistic salience. Probabilistic salience can 
make a better correcting rate of classification with a large 
number of learning samples in every class. In this paper, 
we define a criterion function that is based on structural 
salience and that has values from 0 to 1, which makes 
salience measurement values from different shape 
templates clear compared. With our method, the shape 
templates that have a better discriminating ability can be 
selected simply and efficiently, which can satisfy the 
demand for extensible learning. 

If there are serious geometrical transformations with 
objects of interest, such as rotation, scaling and 
translation, it is difficult to find point-to-point edge 
correspondences. Thus, some complex algorithms, such 
as dynamic programming [3], binary search tree structure 
of weak classifiers [5], and generic probabilistic 
algorithms based on random sampling [4] are used to 
improve the accuracy of the matching. For shapes that 
have small distortions and spatial shifts, the difficulty of 
finding high quality point-to-point shape correspondences 
decreases, which makes shape matching easier. For 
example, Chamfer matching [17] and Hausdorff-distance 
[18] matching compute edge correspondences that are 
purely based on the Euclidean distance between the edge 
points. However, these approaches are that they rely on 
the completeness and accuracy of edge detection, which 
cannot be guaranteed for factors such as unknown objects 
that occur, occlusions, movement, background changes 
and noise interference. The method proposed in this paper 
is based on a DPSM. If there is a region in a specific map 
that could contain a specific shape template (or a hand-
sketch), then the initial image could contain this shape 
template with a high probability, and the similarity 
calculated by the density is higher, which greatly 
accelerates the process of classification and locating, 
while accommodating to some of the nonlinear 
deformations. 

In conclusion, there are three main factors that should 
be considered with a shape-matching model: the stability 
of the scene maps, the discrimination of the shape 
templates, and the difficulty of matching. Our method 
uses the DPSM from sparse sampling as an intermediate 
representation, to enhance the stability of the scene maps, 
uses the criterion function based on feature salience to 
select a better shape-template group, and matches hand-
sketches with regions in DPSMs to reduce the difficulty 
of the matching calculation.  Our method can be used 
broadly in applications where there are abundant 
nonlinear deformations but small geometrical 
transformations, such as all kinds of automatic assembly 
line inspection, machine part detection, and vehicle-type 
classification. 

III. OPTIMIZATION METHODS 

A. Sparse Sampling  
The discrete-point sampling model is defined in [13]  

as Fig.5 and formula (1), (2) shows. 
1 1 1( )
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R r r r
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here are three parameters in the discrete-point sampling 
model: the sampling radius r, the external circle radius R, 
and the Weber-Fechner ration ξ. The sampling radius r 
has an effect on three factors: the density of the discrete 
points in a DPSM, the map’s ability to describe the 
detailed information that is contained in the initial gray 
images, and the difficulty of subsequent matching or 
grouping based on the map. When we increase the 
sampling radius r, the discrete-point sampling map will 
become sparser and will have less detailed information 
and sampling time, and it will become more difficult to 
match or grouping. The external circle radius R 
determines how strongly the curvilinear structures can be 
enhanced in a DPSM, with an effect on its sampling time 
and its ability to suppress interference from noise and 
texture. The larger its value is, the farther away from the 
real edge is the discrete points that are generated and the 
more salient is the curvilinear structure that is gathered by 
these points, which is more beneficial for curve shape 
matching and curvilinear structure detection. Meanwhile, 
formula (1) can be perceived as a mean filter, and the 
external radius R can be perceived as the window’s size. 
The larger its value, the better is its inhibiting ability 
toward interfering noise and textures, and the larger the 
amount of time that is needed for calculating the discrete 
points. The sampling time grows linearly with the 
external circle radius R, while the number of sampling 
points does not, which means that the effect of filtering is 
enhanced. Taking all of these factors into account, 
including the salient level of the curvilinear structures, 
the difficulty of the shape matching, and its sampling 
time, we use r=2 and R=15 in this paper for calculating a 
DPSM, in which the subsequent shape matching is 
mainly conducted. The Weber-Fechner ratio ξ affects the 
describing ability of the details in an initial image by a 
DPSM and its inhibiting ability toward interfering noise 
and textures. These two abilities restrict each other. The 
larger the value of ξ  is, the weaker its ability is for 
describing the details in the initial images with a better 
inhibition ability. In practice, there is no need to select a 
Weber-Fechner ratio ξ that corresponds to the human 

 
Figure 5. Diagram of the discrete-point sampling model 
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eyes exactly. If the entire photograph is too dark to 
identify the details, then ξ can be decreased to increase 
the detailed information, which is contrary to the 
physiological properties of the human eye. If the 
photograph has too many details and contains a 
substantial amount of noise, then ξ can be increased to 
reduce unnecessary information. By experimentation, we 
choose ξ=0.05 for all of the subsequent applications in 
this paper, which corresponds to the human eye in a 
circumstance that has a very high or very low brightness. 

B. Shape Matching  
Shape matching will be conducted with hand-sketches 

in DPSMs from sparse sampling, and similarities are 
calculated among them by density estimations [33]. The 
introduction of prior shape information helps to detect 
objects in the presence of strong occlusions and, at the 
same time, helps to reject undesired contours, while it has 
a stronger immunity to noise and blurring. Meanwhile, 
DPSMs are quite fit for performing density estimation 
with hand-sketches. If there is a belt-shaped region that 
has clustered discrete points in the map can contain a 
hand-sketched shape, this shape is more likely to exist in 
its initial image. We define a similarity operator for 
performing density estimation with hand-sketches in 
DPSMs, as formula (4) shows. 

1

( )
M

k
k

S p
N
M M

λ == =
∑

   (4) 

In formula (4), M is the total number of points in a 
hand-sketch,   pk is the present point in the hand-sketch, 
and N is the total number of points in the hand-sketch that 
have responses with the belt-shaped region in the DPSM. 
The response is defined by the density function S, as 
follows: 

81 ( ) 1 ( ) 2
( )

0
k k

k

I p or C p
S p

else
= ≥⎧= ⎨

⎩
      (5) 

where I(Pk)=1 means that there is a pixel that 
corresponds to pk in the DPSM, and C8(pk)≥2 means that 

there are two pixels that are located at 8 connected 
directions around the position that corresponds to pk. 
Both of these two situations can be considered to have 
corresponding points with pk in the  DPSM.  

By this definition, our method avoids the requirement 
of explicit point to point correspondence by edge 
matching and has a strong immunity to small 
deformations and noise. To prove this concept, we add 
random noise and salt noise at different levels in Fig. 3 (a) 
and test our shape-matching method by recording the 
similarity λ. The effects of random noise and salt noise 
with DPSMs are shown in Fig. 6 (b)-(j). Only when the 
noise-signal ratio is decreased to less than 15 dB from 
these two types of noise will the shape matching fail, 
which means that our shape matching method has a 
strong anti-noise ability. 

In this paper, a hand-sketch’s data are stored as follows: 
the absolute coordinate of the starting point (4 Bytes) + 
the extended direction of the starting point (2 Byte) + the 
extended lengths of the starting point (2 Byte) + the 
relative coordinates of the sequence of the hand-sketch 
(4Byte × (M-1), where M is the total number of points in 
the hand-sketch). When a hand-sketch is drawn, its 
starting point must be selected carefully because its 
extended direction and the extended length is a necessary 
matching requirement, then a large number of unrelated 
areas can be excluded and the matching speed improves 
significantly. 

By setting up the corresponding relationship between 
the shape-matching position and the potential fault region 
position, the potential fault region of one category of 
component is also located, and the results of matching 
and locating are shown in Fig. 3.   

C. Template Optimization 
As mentioned above, the difficulty of shape matching 

is decreased in DPSMs, while a higher discrimination of 
the shape template is required. Different hand-sketch’s 
feature salience should be measured, to allow a group of 
better hand-sketches to be selected for matching. Every 
hand-sketch can be perceived as an observer that 

                  (a)                                           (b)                                         (c)                                        (d)                                            (e)               

(f)                                          (g)                                          (h)                                          (i)                                             (j)   
Figure  6. Shape matching test with different lever of noise. (a) Initial image (1400×1024); (b) no noise added, λ=0.970827; (c) random noise 22 dB, λ= 
0.935170; (d) random noise 18 dB, λ= 0.760130; (e) random noise 15 dB, λ=0.350081; (f) random noise 14 dB, matching failed; (g) salt noise 21 dB, λ= 

0.857374; (h) salt noise 18 dB, λ= 0.816856; (i) salt noise 15 dB, λ= 0.670989; (j) salt noise 14 dB, matching failed.   
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determines a matching feature t. In this section, the 
method of hand-sketch selection based on the matching 
feature t’s structural salience will be set up. 
1. Structural salience measurement for bi-object 
classification with one template’s matching features 

If there are two types of objects, called iω  and jω , 
and the goal of the template’s matching feature t is to 
distinguish them, then a structural salience measurement 

t
ijS  for iω  and jω  with feature t is defined in formula 

(6), as follows: 
2

2 2

( )

1 ,0 1,0 1

b
i j

i j

m m
a

Ct
ijS e a bσ σ

⎛ ⎞−
⎜ ⎟−
⎜ ⎟+ +⎝ ⎠= − < < < <  (6) 

In formula (6), im  and jm  are the mean values that 

correspond to the template’s matching feature t, and 2
iσ  

and 2
jσ  are the variances of t. Formula (6) indicates that 

the larger the value between the class variances and the 
smaller the within-class variances, the larger the t

ijS , 
which means that the more salient the feature t is, the 
higher the ability is to distinguish iω  and jω . The role 
of the natural logarithm e in this formula (6) is to adjust 

t
ijS between 0 and 1, which makes it more convenient to 

compare features with different value ranges. The ‘a’ is a 
proportional adjustment coefficient, and the ‘b’ is an 
exponential adjustment coefficient, and with their 
cooperation, the different values of t

ijS  can be adjusted 
to be easily distinguished. C is a notably small constant to 
keep the denominator from being 0. By experiments we 
found that when a=0.3，b=0.7, the value discrimination 
of t

ijS is larger; thus, we use a=0.3 ， b=0.7, and 
C=0.0000001 in our method. 
2. Structural salience measurement for multiple object 
classifications with one template’s matching features  

If there are n categories of objects, and the goal of 
the template’s matching feature t is to distinguish iω  
from the other n-1 categories, then a structural salience  
measurement it

iS  for iω with feature t is defined as 
formula (7) shows:  

1

1 S ,
1

n
t t
i ij

j

S j i
n =

= ≠
− ∑   (7) 

Formula (7) indicates that the larger the it
iS , the more 

salient the feature t is, and the higher the ability is to 
distinguish iω  from the other n-1 categories. 

3. Salient feature group T for multiple objects  
If there are several templates, and all of the 

matching features 1 2,, , kt t t  can distinguish iω  from 
the other n-1 categories, then every structural salience 
measurement it

iS  with it  for iω  is calculated, and we 

take the feature that corresponds to max( )kt
i iS S=  to 

be the better feature for iω , which is written as it . If this 
method is used for every category of object to select a 
better matching feature, then a more salient feature group 
T for multiple objects can be obtained. Formula (8) 
shows this construct: 

{ }1 2, , nT t t t=    (8) 

4.Example of hand-sketch template optimization  

       
 (a)                         (b)                       (c)                     (d) 

Figure 7. Four hand-sketches of wheel component type I with the structural 
salience measurements. (a) Hand-sketch I, S1

t1=0.994; (b) hand-sketch  II, 
S1

t2=0.944; (c) hand-sketch III, S1
t3=0.765; (d) hand-sketch IV, S1

t4=0.860
It can be perceived that among these four hand-sketches, S1

t1from hand-
sketch I is the highest, and hand-sketch I can best distinguish wheel type I 
from the other wheel types in theory. All of these results are based on 1000 

wheel part images, with five types randomly taken from a TFDS station, 
with each type having 200 images. 

       
(a)                   (b)                  (c)                     (d)               (e) 

Figure 8. A salient hand-sketch group for the wheel part’s five component 
types. (a) Wheel component I’s hand-sketch, S1=0.994; (b) wheel 

component II’s hand-sketch, S2=0.881; (c) wheel component III’s hand-
sketch, S3=0.684; (d) wheel component IV’s hand-sketch, S4=0.626; (e) 
wheel component V’s hand-sketch, S5=0.486. The image database is the 

same as in Fig. 9. 
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The problem of component classifications and 
potential fault region locating with one TFDS image can 
be solved by shape matching that is based on hand-sketch 
templates, while the key point is how to improve these 
hand-sketch templates’ qualities, which make them 
perform better at distinguishing the present category of 
components from other categories. 

In this paper, we take the wheel component I in Fig. 3 
(a) as an example to illustrate our detailed method. For a 
special component type, more than one hand-sketch can 
be drawn, as Fig. 7 shows, and formula (7) is used to 
calculate the structural salience measurement   for this 
component type. The hand-sketch with the highest  it

iS  is 
chosen as the shape template, and the accuracy of the 
component classifications and potential fault region 
locating can be improved by this way. 

We use the same method with every wheel’s type, and 
a salient hand-sketch group can be obtained, as Fig. 8 
shows. Based on this salient hand-sketch group, a shape-
template library is established, and the similarity λi of 
every hand-sketch is calculated with every testing image, 
using formula (4). The type of wheel component and its 
potential fault region in the present image are determined 
by the hand-sketch with the highest similarity λi.  

IV. EXPERIMENTS AND RESULTS 

In this section, we will compare our method with 
several classical template matching methods, and we will 
test its performances in classifying and locating, 
addressing noise. We will use four experiments, including 
matching comparison, classification test, anti-noise test 
and extensibility test. Our test environment utilizes an 
Intel Core i5-2540 2.60GHz CPU，4 GB RAM, and 

VC++2010. 
Fig. 9 shows the calculated results for the similarity λi 

using the five types of hand-sketches of the wheel 
components in Fig. 8. It can be perceived that these five 
types of hand-sketches have a strong discriminative 
ability, which can classify wheel components by directly 
comparing their similarity λi. 

Using the method proposed in section 3 of this paper, 
we conduct a classification test with 7382 wheel part 
images from 143 freight cars passing through a TFDS 
station on a single day. The matching area is restricted to 
a 256×128 region around the absolute coordinate of each 
hand-sketch’s starting point, which not only decreases 
significantly the computational complexities of 
generating DPSMs and shape matching but also provides 
some adaptation for geometric transformations from 
varying the speed, camera vibration and different 
shooting times. 

The test results are recorded in table II, where the total 
classification accuracy is 99.39%, and the average time 
for each image is no more than 40 ms, which means that 
25 frames per second can be achieved. From the analysis 
of table II, we can see that, with the five templates in Fig. 
10, the recall and accuracy rate of the components of 
types I, II, and III, which hold 90% of all of the types of 

TABLE II 
CLASSIFICATION RESULTS OF A WHEEL PART BASED ON OUR METHOD 

Detected 
Real Type I Type II Type III Type IV Type V Real Sum Recall (%) Proportion (%) 

Type I 5004 0 3 5 0 5012 99.84 68.01 
Type II 0 1398 0 0 1 1399 99.93 18.98 
Type III 0 0 216 0 0 216 100.00 2.93 
Type IV 0 1 0 226 2 229 98.69 3.11 
Type V 0 19 3 11 480 513 93.58 6.96 

Detected Sum 5004 1418 222 242 483 7369  100.00 
Accuracy (%) 100.00 98.59 97.30 93.39 99.38 99.39   

 
TABLE III 

CLASSIFICATION RESULTS WITH RANDOM NOISE AND SALT NOISE 

Noise 
Type 

Recall (%)_  Type
 

  Accuracy (%) 
 

SNR (dB) 

Type I Type II Type III Type IV Type V Total 
Accuracy (%) 

Random 
noise 

∞ 100.0_100.0 100.0_100.0 100.0_100.0 100.0_100.0 100.0_100.0 100.0 
26 99.5_98.5 100_99.5 99.0_99.5 98.0_97.5 97.0_98.0 98.7 
21 97.5_100 99.5_98.0 98.0_99.0 99.0_94.7 96.5_99.0 98.1 
18 94.5_99.5 97.5_96.5 97.0_96.5 98.5_91.6 94.5_98.4 96.4 
16 84.5_97.1 92.5_92.5 87.5_87.0 97.0_76.4 81.0_94.7 88.5 

Salt 
noise 

∞ 100.0_100.0 100.0_100.0 100.0_100.0 100.0_100.0 100.0_100.0 100.0 
22 99.0_100.0 99.5_98.5 99.0_99.5 100.97.1 97.5_100 99.0 
18 98.5_94.7 98.0_94.7 96.5_98.5 99.9_95.7 95.5_99.0 97.5 
16 94.0_99.5 93.5_92.1 93.0_92.5 98.5_91.6 93.0_96.9 94.4 
15 92.0_100.0 92.0_92.5 93.0_91.2 98.5_88.7 91.0_95.7 93.3 
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Figure 9. Similarity results on five types of hand-sketches. The image 

database is the same as in Fig. 7. 
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components, are above 99.8%, while the recall and 
accuracy rate of the components of types IV and V, 
which hold 10% of all of the types of components, are 
lower. In the future, the accuracy of these two 
components can be further improved by drawing 
supplementary distinguishable sketches of component 
types IV and V and calculating the combined similarity 
with one component’s two hand-sketch templates. 

To further prove our method’s robustness to noise, we 
choose another five categories of components in the 
wheel parts, with 200 images each, which can be 
classified correctly without adding noise. Random noise 
and salt noise with different signal-to-noise ratios are 
placed into these images individually, and the anti-noise 
ability is checked by calculating the recall and accuracy 
rates. The test results in table III show that our method 
has a very strong anti-interference ability with random 
noise and salt noise, especially with salt noise, which 
means that our method can have excellent performance 
with many types of interference as shown in Fig. 4. Our 
field tests also have proven this conclusion. 

V. DISCUSSION AND CONCLUSIONS 

The whole automation of freight car fault detection 
requires computer vision for the ability to classify quickly 
and perform locating precisely, to address anti-nonlinear 
deformations and to accomplish extensible learning, 
similar to what human inspectors are capable of. 
Traditional methods mainly include region matching and 
edge matching. When regions have closed boundaries, 
they do not adapt easily when matching open-image 
curves. To avoid explicit edge correspondence, edge 
matching introduces complex methods, such as edge 
grouping or segmentation averaging, to adjust the 
possible corresponding areas into a more appropriate 
level and to perform distance calculations or dynamic 
searches. Many researchers focus on how to improve the 
robustness of a template with geometric transformations, 
while seldom analyzing and evaluating its separability. 
Extensible learning of a new category is not considered 
sufficiently, and research on nonlinear deformations is 
relatively non-satisfactory. 

In this paper, the three elements of a shape-matching 
model, including the scene map, the shape template, and 
the matching, are all optimized to solve the problems 
mentioned above. For scene maps, this paper establishes 
a sparse sampling operator that is based on the Weber-
Fechner law, which reflects how human eyes perceive 
brightness differences and change a gray image into a  
DPSM as an intermediate representation. In a DPSM, 
large-scale structural features are enhanced as belt-shaped 
regions, and details of noise and textures are inhibited. 
Compared with the typically used thresholding segment 
map and edge map, a DPSM corresponds more to 
the intuitive impression of an initial image in human 
brains, which can automatically accentuate the basic 
information and reject many details regarding noise, 
texture and uneven illumination. In essence, the sparse 
sampling in our method is a fixed grid sampling with a 
local scale parameter. The Weber-Fechner ratio ξ is the 

local scale parameter that improves the stability of a  
DPSM under different illumination and blurs conditions. 
Fixed grid sampling extracts both edges and their 
surroundings, which also enhances the stability of the 
intermediate representations.  

For a shape template, this paper selects the template 
that can best represent its pattern and that differs from 
other patterns by drawing contours in a learning sample’s 
DPSM. Our method calculates their feature salience to 
find better templates , which imitates the initiation and 
improving procedures in the human brain and improves 
the accuracy and efficiency of classifying multiple 
objects.  

For matching, our matching is between a hand-sketch 
and a region. A shape template is placed into a DPSM 
directly to obtain density estimation. If there is a region in 
the DPSM that contains the shape template, then the 
shape template is more likely to be in the initial image, 
and the calculated density estimation is higher. Our 
method increases the speed of classification and locating, 
improves the ability of addressing anti-nonlinear 
deformations, and is robust to small shape variations and 
spatial shifts. 

For such applications as TFDS, the same component’s 
edges in a large number of images are distributed in 
specific areas. These edges are not fixed, are not standard, 
might not be continuous, and are also with no many 
geometric transformations caused by scaling or rotation. 
By artificially selecting the parts that have salient 
separability in a learning sample’s DPSM, and drawing a 
component’s contours in these parts as hand-sketches, 
those hand-sketches can be projected into test sample’s  
DPSM. Our shape matching is a process of finding 
regions that might have a hand-sketch, which makes 
classification very quickly with enough locating precision. 
The results of anti-noise testing in laboratory and daily 
operation at several TFDS stations show that our method 
has a strong ability to survive with nonlinear 
deformations and has a good extensibility to be used with 
different parts, which meet application demands for 
TFDS stations. 
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