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Abstract—Feature selection has been widely discussed as an 
important preprocessing step in data mining applications 
since it reduces a model's complexity. In this paper, 
limitations of several representative reduction methods are 
analyzed firstly, and then by distinguishing consistent 
objects form inconsistent objects, decision inclusion degree 
and its probability distribution function as a new measure 
are presented for both inconsistent and consistent simplified 
decision systems. New definitions of distribution reduct and 
maximum distribution reduct for simplified decision 
systems are proposed. Many important propositions, 
properties, and conclusions for reduct are drawn. By using 
radix sorting and hash techniques, a heuristic distribution 
reduct algorithm for feature selection is constructed. Finally, 
compared with other feature selection algorithms on six UCI 
datasets, the proposed approach is effective and suitable for 
both consistent and inconsistent decision systems. 
 
Index Terms—feature selection, rough set, decision system, 
decision inclusion degree, distribution reduct 

I.  INTRODUCTION 

Rough set theory, originated by Pawlak [1] in 1980s, is 
a powerful mathematical tool to deal with inexact, 
uncertain, and vague knowledge in information systems 
[2-5]. It has been widely used for feature selection 
because it is completely data-driven and does not require 
any auxiliary information [6]. The selection of relevant 
and significant features is an important problem 
particularly for data sets with large number of features [7-
9]. But those irrelevant features can deplete the storage 
space, deteriorate the computational performance, and 
even decrease the generalization power of the induced 
patterns [2, 3, 6, 7]. It is, thus, desirable to search for a 
feature subset that has the same predictive capability as 
that of the original feature set. 

In the last two decades, as an important successful 
application of rough set models in a variety of problems 
such as artificial intelligence, machine learning, data 
mining, and so on, feature selection or attribute reduction 
in information systems has been drawing wide attention 
[2, 3, 10]. There are many techniques for feature selection 

developed in rough set theory [2-12]. These types of 
feature selection have been proposed in the analysis of 
information systems, each of which aimed at some basic 
real-world requirements. Unfortunately, it has been 
proved that finding all reducts or finding an optimal 
reduct (a reduct with the least number of attributes) is an 
NP-complete problem [13]. Many researchers devote 
themselves to finding an efficient reduct by optimization 
techniques [2-20]. A distribution reduct [21] was a subset 
of the feature set that preserved the degree to which every 
object belonged to each decision class. Kryszkiewicz [22] 
described two methods of knowledge reduction for 
inconsistent decision systems, namely assignment 
reduction and distribution reduction. In an inconsistent 
decision system, assignment reduction maintains 
unchanged with the possible decisions for arbitrary object. 
In comparison, distribution is characterized by preserving 
the class membership distribution and is a more complete 
knowledge reduction for all objects in an inconsistent 
decision system. In other words, the distribution 
reduction preserves not only all of the deterministic 
information but also the non-deterministic information of 
an inconsistent decision system. Yao and Zhao [23] 
thought that the partition based on the membership 
distribution vector was more complex, which allowed the 
distribution reduction to preserve the quality of the 
decisions. However, it can be a concern that the 
distribution reduction has strict requirements, and the 
decision rules derived from distribution reduction are 
usually less compact and more complicated. For this 
reason, the maximum distribution reduction in [24] 
proposed by Zhang et al. remains unchanged with the 
maximum decision classes for all of the objects in a 
decision system, which is a good compromise between 
the compactness of derived rules and the capability of 
preserving information with respect to decisions. Mi et al. 
[25] introduced β-reduct on the basis of variable precision 
rough set model. This type of reduct preserved the sum of 
objects in the β lower approximations of all decision 
classes. Wu et al. [26] proposed the concepts of β lower 
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distribution reduct and β upper distribution reduct. Ye et 
al. [27] presented an algorithm for finding a maximum 
distribution reduct of an inconsistent decision system. Liu 
et al. [28] introduce a new type of reducts called the λ-
Fuzzy-Reduct. However, some of these current 
algorithms for feature selection have still their own some 
limitations. Based on the mutual information, Miao and 
Hu [29] constructed a heuristic algorithm costing time 
complexity O(|C||U|2) + O(|U|3). Hence, the main 
disadvantage of these methods is much time-space cost. 
Xu et al. [30] designed a new and relatively reasonable 
formula for an efficient reduction algorithm, whose worst 
time complexity was cut down to Max(O(|C||U|), 
O(|C2|U/C|)). Liu et al. [31] presented a hash-based 
algorithm to calculating positive region, and its time 
complexity decreased to O(|U|), and a reduction 
algorithm with twice-hash was presented, whose time 
complexity was O(|C|2|U/C|). So far its efficiency is 
fortunate. However, because of various factors such as 
noise in the data, lack of critical knowledge, compact 
representation, and prediction capability, most of decision 
systems are inconsistent. Inconsistent decision system is a 
common information system in realistic decision analysis 
problems, as well as is the focus of study in information 
systems reduction processing [32]. Discernible matrix 
that was used for seeking core attribute set of inconsistent 
decision system in [33] is defective [34]. It may not 
obtain the right attribute set. Moreover, when several 
reductions are achieved, their advantages and 
disadvantages of every reduction cannot be compared in 
actual applications. Algorithms in [35] used for seeking 
core attribute set with discernible matrix for incompatible 
decision system are also defective. Distribution reduction 
of both consistent and inconsistent decision systems were 
defined in [33], and their equivalent forms were discussed 
there. But there was no further study for these two kinds 
of knowledge reduction methods. Qin et al. [36] proved 
conditional information entropy reduction in [34] and 
distribution reduction in [37] were equivalent, and they 
cannot only ensure decision-making ability of invariant 
consistent decision rules, but also can guarantee decision-
making ability of invariant inconsistent decision rules. 
Although the heuristic approaches above can avoid the 
exponential computation in exhaustive methods, they still 
suffer from intensive computation of either discernibility 
functions or partitions of universe. Therefore, it is 
necessary to propose an effective heuristic feature 
selection algorithm in inconsistent decision systems with 
less time-space complexity. This paper focuses on 
creating such a solution. 

The remainder of this paper is structured as follows. In 
Section II, some basic concepts are recalled. In Section 
III, some concepts, properties and propositions about 
decision inclusion degree and probability distribution 
function are presented for both inconsistent and 
consistent simplified decision systems. An effective 
heuristic distribution reduct algorithm for feature 
selection is put forward in Section IV. Section V gives the 
applications and experimental evaluations. Finally, the 
conclusions are described in Section VI. 

II.  PRELIMINARIES 

In this section, we review briefly some notions and 
results related to information systems and decision 
systems in rough sets. Detailed description of concepts 
can be found in [1, 2, 5, 10]. 

The notion of information system (IS) has been 
studied by many authors as a simple knowledge 
representation method. Formally, an information 
system is a quadruple IS = (U, A, V, f), where U is a 
finite nonempty set of objects indicating a given 
universe; A is a finite nonempty set of features; V is 
the union of feature domains such that a A aV V∈= U  for 
Va denoting the value domain of feature a; f : U × A → 
V is an information function which associates a unique 
value of each feature with every object belonging to U, 
such that for any a∈A and u∈U, f(u, a)∈Va. Also, IS 
= (U, A, V, f) can be written more simply as IS = (U, A). 

With every subset P ⊆ A, there is an associated 
indistinguishable relation IND(P) as follows:  

IND(P) = {(u, v)∈U × U | ∀ a∈P, f(u, a) = f(v, a)}. 
It can be easily shown that IND(P) is an equivalence 

relation on the set U and ( ) ({ }) .a PIND P IND a∈= I  
For P⊆A, the equivalence relation IND(P) partitions 
U into some equivalence classes given by U/IND(P) = 
{[u]P | u∈U}, for simplicity, U/IND(P) will be replaced 
by U/P, where [u]P denotes the equivalence class (block) 
determined by u with respect to P, i.e., [u]P = {v∈U | (u, 
v)∈IND(P)}. Each [u]P is viewed as an information 
granule consisting of indistinguishable elements. 

We define a partial order on all partition sets of U. Let 
P and Q be two equivalence relations of U, U/P = {P1, 
P2, …, Pm} and U/Q = {Q1, Q2, …, Qn} be partitions of 
the finite set U. Then, we define that the partition U/P is 
finer than the partition U/Q (or the partition U/Q is 
coarser than the partition U/P), denoted by P p Q (or 
Qf P), between partitions by Pp Q⇔ ∀Pi∈U/P, ∃Qj

∈U/Q → Pi⊆Qj. If Pp Q and PfQ, then we say that P 
= Q. If Pp Q and P ≠ Q, then we say that U/Q is strictly 
coarser than U/P (or U/P is strictly finer than U/Q) and 
write Pp Q (or Qf P).  

An information system IS = (U, A) is also called a 
decision system (DS) if A = CUD, and CID = Ø, where 
C is the finite set of condition features and D is the finite 
set of decision features. Obviously, the previous 
properties derived hold for DS = (U, A = CUD, V, f). The 
quadruple DS = (U, A = CUD, V, f) is usually denoted by 
a triple (U, C, D) for short, that is, DS = (U, C, D). 

Theorem 1. Let DS = (U, C, D) be a decision system 
with P, Q⊆CUD. If Q⊆P, then Pp Q. 
Proof. Suppose U/P = {P1, P2, …, Pm}, U/Q = {Q1, 
Q2, …, Qn}, for any Pi = [x]P∈U/P, since Q⊆P, then one 
has that Pi = [x]P = {y | f(x, a) = f(y, a), ∀ a∈P}⊆Qj = 

[x]Q = {y | f(x, a) = f(y, a), ∀ a∈Q}. Hence, since each Pi 
selected randomly, then Pp Q holds. This completes the 
proof. 
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Let DS = (U, C, D) be a decision system with P⊆C. 
For any xi, xj∈U, xi and xj conflict with each other from P 
to D if and only if f (xi, a) = f(xj, a) for any a∈P, and f (xi, 
d) ≠ f(xj, d), where d∈D. An instance x∈U is a 
consistent instance in the DS if and only if there does not 
exist an instance y∈U, which conflicts with x∈U. Hence, 
we have the conclusion that the DS is a consistent 
decision system if and only if each instance x∈U is a 
consistent instance.  

Let DS = (U, C, D) be a decision system with X⊆U a 
subset of universe, attribute subsets P, Q⊆CUD, then 
P(X) =U {[x]P|[x]P⊆X} is called P-lower approximation 
of X. The P-positive region of Q is denoted by 

POSP(Q) = U {P(X ) | X∈U/Q}. 
Let DS = (U, C, D) be a decision system with any 

attribute subsets P⊆CUD, to make a∈P, and a in P is 
dispensable for D, if POSP(D) = POSP–{a}(D). Otherwise 
a is necessary. Then, P is independent relative to D, if 
every element in P is indispensable for D. 

Let DS = (U, C, D) be a decision system. The elements 
in POSC(D) are regarded as the objects of consistent set, 
and the elements in U – POSC(D) are regarded as the 
objects of inconsistent set [20].  

Let DS = (U, C, D) be a decision system with U/(CUD) 
= 1 2{[ ] ,[ ] , ,[ ] } ,C D C D n C DU U U′ ′ ′

U U UK  where U = {U1, U2, …, 
Um}, n ≤ m, and U′i∈U, then U′ = {U′1U U′2 U …U U′n}. 
Then (U′, C, D) is called a simplified decision system 
(SDS). It is obvious that by virtue of this technology of 
simplicity lots of redundancy information is deleted, and 
then the space complexity of the DS is decreased [5]. 

Theorem 2. Let SDS = (U′, C, D) be a simplified 
decision system. If there exists IND(C)⊆ IND(D), then 
the SDS is referred to as a consistent simplified decision 
system (CSDS). Otherwise, the SDS is referred to as an 
inconsistent simplified decision system (ISDS). 

Proof. It is straightforward. 
Theorem 3. Let SDS = (U′, C, D) be a simplified 

decision system. If POSC(D) = U′, then we say that the S 
is consistent, otherwise the S is inconsistent. 

Proof. It can be derived directly from the definition of 
positive region and Theorem 2. 

Let DS = (U, C, D) be a decision system with P, 
Q⊂CU D, U/P = {X1, X2, …, Xn}, U/Q = {Y1, Y2, …, 
Ym}, then the conditional information entropy of 
knowledge Q with reference to P in [39] is denoted by 

1 1

| | | || |( | ) log .
| | | | | |

n m
j i j ii

i j i i

Y X Y XXH Q P
U X X= =

= −∑ ∑
I I  

III.  DECISION INCLUSION DEGREE 

A.  Limitations of Representative Reduction Methods 
Firstly, it is known that matrix theory is the core 

content in advanced algebra. Many of ideas and methods 
in matrix theory have greatly enriched algebraic theory of 
mathematics. With deepening of people researching in 
science, application of matrix theory becomes wider. 
However, in classical reduction methods, core attribute 

set can be found by discernible matrix method, and then 
matrix elements containing core attributes are deleted 
from discernible matrix. Then, matrix elements free of 
core attributes with disjunctive form are turned into 
conjunctive form expression. At last, one makes 
reduction in this expression, and then it becomes a 
disjunctive normal form. But the process of transforming 
conjunctive normal form into disjunctive normal form is 
very complicated, and it always causes that the time 
complexity of discernible matrix method does 
exponential growth with the increase of system size. Each 
of disjunctive normal form with core attribute set is 
reduction of decision systems, such that all reducts can be 
obtained. However, it is unnecessary to compute all 
reductions in practical problems because people usually 
only concern about how to find minimum reduction. 
Therefore, it is concluded that matrix methods in classical 
rough set theory cannot search the minimum or 
suboptimal reduction effectively.  

Secondly, in a decision system DS = (U, C, D), a 
reduct of the DS, named as a positive region reduct for 
convenience, is presented in [30, 38] as follows: for 
any P⊆C and D = {d}, if POSP(D) = POSC(D) and 
POSQ(D) ≠ POSC(D) for any Q ⊂ P, then P is a 
positive region reduct of the DS. That is, whether or not 
any condition attribute is redundant depends on whether 
or not the positive region is changed. Thus, these 
presented algorithms in [30, 38] only reflect whether or 
not the prediction of deterministic decision rules has 
change after reduction [5]. Therefore, if new inconsistent 
objects are added to the DS, it is not considered whether 
the probability distribution generated by the primary 
inconsistent objects is changed in their corresponding 
decision blocks. 

Thirdly, in a decision system DS = (U, C, D), a reduct 
of the DS, named as an information entropy reduct for 
convenience, is presented in [39] as follows: for any 
P⊆C and D = {d}, if H(D|P) = H(D|C) and H(D|Q) ≠ 
H(D|C) for any Q⊂P, then P is an information entropy 
reduct of the DS. That is, whether or not any condition 
attribute is redundant depends on whether or not the 
conditional information entropy value of decision system 
is changed. However, in practical application, there exist 
new added and primary inconsistent objects in decision 
blocks, hence, if their probability distribution is changed 
[5]. Thus, the main criterions of algorithms in [30, 38, 39] 
in evaluating decision ability only think about the change 
of certainty factor for all decision rules after reduction. 

B.  Decision Inclusion Degree and Probability 
Distribution Function 

Inclusion degree is a kind of soft computing method to 
deal with fuzzy and uncertain knowledge [40]. Data 
analysis based on inclusion degree is one of main 
application technologies in rough set theory, which is 
mainly used to analyze rough classification, attribute 
dependency, attribute significance, and so on. Uncertainty 
reasoning methods can be summed up in a special kind of 
inclusion degrees [20, 40]. Set X is a universe, A and B 
are two subsets of X. Degree of collection A included in 
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set B is D(B/A) which is called inclusion degree. In the 
meantime, knowledge acquisition from a large number of 
cases for some rules, and rules of the before and after 
parts relationship is also a kind of actually closed 
inclusion, so you can use inclusion degree theory to study 
uncertain rules. In decision systems, decision rules can be 
extracted. Certain rules can be extracted from consistent 
decision systems, but uncertain rules or possible rules 
only can be extracted from inconsistent decision systems.  

Theorem 4. Let SDS = (U′, C, D) be a simplified 
decision system with P, Q⊆C, U′/D = {D1, D2, …, Dm}. 
Then POSP(D) = POSQ(D) if and only if P(Di) = Q(Di), 
where i = 1, 2, …, m. 

Proof. Suppose that P(Di) ≠ Q(Di), i = 1, 2, …, m, if 
POSP(D) = POSQ(D), it follows from the definition of 
positive region that one has P(Di) = Q(Di). This yields a 
contradiction. Thus, POSP(D) = POSQ(D) ⇔  P(Di) ≠ 
Q(Di), where i = 1, 2, …, m. This completes the proof. 

In a simplified decision system SDS = (U′, C, D), 
suppose that D0 = U′ – POSC(D), it follows that CD0 = D0. 
That is, all inconsistent objects U′ – POSC(D) detached 
form the unattached set D0. Then, suppose that CDi ≠ Ø, 
one has another decision partition {CD0, CD1, CD2, …, 
CDm} of C on U, and then a new equivalent relation can 
be constructed, denoted by RD. Similar to [17], it follows 
that there exists U′/RD = {CD0, CD1, CD2, …, CDm}. It 
can be concluded that the presented decision partition 
U′/RD has not only detached consistent objects from 
different decision blocks in U, but also distinguished 
consistent objects from inconsistent objects. 

Definition 1. Let ISDS = (U′, C, D) be an inconsistent 
simplified decision system with P ⊆ C, U′/D = {D1, 
D2, …, Dm}, U′/RD = {CD0, CD1, CD2, …, CDm}, and 
∀ u∈U′. The decision inclusion degree is denoted by 
D(CDi/[u]P), is defined as 

| [ ] |( / [ ] ) ,
| [ ] |

i P
i P

P

CD uD CD u
u

=
I  

where i = 1, 2, …, m. 
Definition 2. Let ISDS = (U′, C, D) be an inconsistent 

simplified decision system with P ⊆ C, U′/D = {D1, 
D2, …, Dm}, U′/RD = {CD0, CD1, CD2, …, CDm}, and 
∀ u∈U′. The probability distribution function P with 
respect with u in U′ is denoted by μP(u), is defined as 

0 1| [ ] | | [ ] || [ ] |( ) ( , , ..., ).
| [ ] | | [ ] | | [ ] |

P m PP
P

P P P

CD u CD uCD uu
u u u

μ =
I II

From Definition 2, it can be obtained the following 
property immediately.  

Property 1. Let ISDS = (U′, C, D) be an inconsistent 
simplified decision system with ∀ u, v∈U′. Then 

, [ ] ( ) ( ).P P Pu v u u vμ μ∀ ∈ ⇒ =  
Property 1 states that in an inconsistent simplified 

decision system ISDS = (U′, C, D), for any X∈U/C, the 
probability distribution function of each equivalence class 
X only need to be calculated. 

Let DS = (U, C, D) be a decision system and P⊆C. 
If U/P = {X1, X2, …, Xn}, D = {d}, U/D = {Y1, Y2, …, 
Ym}, and U/RD = {CY0, CY1, CY2, …, CYm}, then let 

H(RD|P) denote the conditional rough entropy of D 
with reference to P of DS in [17] as follows 

2
1 0

| || | | |( | ) log
| | | | | |

n m
j ii i

D
i j i j i

CY XX XH R P
U X CY X= =

= ∑ ∑
I

I
. 

Theorem 5. Let ISDS = (U′, C, D) be an inconsistent 
simplified decision system with P ⊆ C, U′/P = {X1, 
X2, …, Xn}, U′/C = {Y1, Y2, …, Yk}, U/D = {D1, D2, …, 
Dm}, U′/RD = {CD0, CD1, CD2, …, CDm}, and ∀ u∈U′. 

( | ) ( | ) ( ) ( ).D D P CH R P H R C u U u uμ μ′= ⇔ ∀ ∈ ⇒ =  
Proof. (⇒ ) Suppose that P⊆C, it follows from the 

above partial order that Cp P. Then, it can draw from 
Proposition 10 in [17] that H(RD|C) ≤ H(RD|P). For ∀ u
∈U′, when H(RD|P) = H(RD|C), assume that μP(u) = 
μC(u) is not true, then there exists u0 such that μP(u0) ≠ 
μC(u0). Thus one has that 

0 0 1 0 0| [ ] | | [ ] | | [ ] |( , ,..., )
| [ ] | | [ ] | | [ ] |

P P m P

P P P

CD u CD u CD u
u u u

≠
I I I  

0 0 1 0 0| [ ] | | [ ] | | [ ] |( , ,..., ).
| [ ] | | [ ] | | [ ] |

C C m C

C C C

CD u CD u CD u
u u u
I I I  

Hence, it can be obtained that [u0]P ≠ [u0]C. One has that 
[u0]C⊂ [u0]P from the above partial order. Assume that 
[u0]P = U {[ui]C | ui∈U′, i = 0, 1, 2, …, l, and 1 ≤ l ≤ |U′|}, 
for ∀ s ≠ t (s, t∈{0, 1, 2, …, l}), and [us]CI [ut]C = Ø. 
Then there exist at least s0, t0∈{0, 1, 2, …, l} and s0 ≠ t0 

such that 
0 0

( ) ( )C s C tu uμ μ≠ , otherwise μP(u0) = μC(u0) . 
Thus one has that  

0 0 0

0 0 0

0 1| [ ] | | [ ] | | [ ] |
( , ,..., )

| [ ] | | [ ] | | [ ] |
s C s C m s C

s C s C s C

CD u CD u CD u
u u u

≠
I I I  

0 0 0

0 0 0

0 1| [ ] | | [ ] | | [ ] |
( , ,..., ).

| [ ] | | [ ] | | [ ] |
t C t C m t C

t C t C t C

CD u CD u CD u
u u u
I I I  

It can be obtained from Proposition 8 in [17] that for 
∀ Xi, Xj∈U′/P, Xi ≠ Xj, ∀ CDk∈U′/RD, if XiUXj∈U′/C 

and | || |
| | | |

j ki k

i j

X CDX CD
X X

=
II  always holds, then 

H(RD|P) = H(RD|C). Thus, it is obvious from 

0 0
( ) ( )C s C tu uμ μ≠  that H(RD|P) > H(RD|C), which 

contradicts with the above hypothesis that H(RD|P) = 
H(RD|C). Therefore, it can be obtained that 

( ) ( ).P Cu U u uμ μ′∀ ∈ ⇒ =  (⇐ ) Suppose that P⊆C, if 

( ) ( )P Cu U u uμ μ′∀ ∈ ⇒ = , it follows from the above 
partial order that C p P, and then one has that [u]P = 
[u1]CU [u2]C U…U [ul]C, where u1, u2, …, ul∈U′, 1 ≤ l ≤ 
|U′|}, ∀ s ≠ t (s, t∈{0, 1, 2, …, l}), and [us]CI [ut]C = Ø. 
Thus, it can be obtained that μP(u1) = μP(u2) = … =μP(ul). 
It follows from Definition 4 in [17] that  

2
1 0

2
1 0

| [ ] || [ ] | | [ ] |log
| | | [ ] | | [ ] |

| [ ] || [ ] | | [ ] |log
| | | [ ] | | [ ] |

l m
j i Ci C i C

i j i C j i C

l m
j Bi C B

i j B j B

CD uu u
U u CD u

CD uu u
U u CD u

= =

= =

=

∑ ∑

∑ ∑

I

I

I

I
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1 2

2
0

2
0

| [ ] [ ] ... [ ] |
| |

| [ ] | | [ ] |log
| [ ] | | [ ] |

| [ ] || [ ] | | [ ] |log .
| | | [ ] | | [ ] |

C C l C

m
j B B

j B j B

m
j BB B

j B j B

u u u
U

CD u u
u CD u

CD uu u
U u CD u

=

=

=

=

∑

∑

U U U

I

I

I

I

 

Hence, one has that  

2
1 0

2
1 0

| || | | |( | ) log
| | | | | |

| || | | |log
| | | | | |

( | ),

k m
j ii i

D
i j i j i

n m
j ii i

i j i j i

D

CD YY YH R C
U Y CD Y

CD XX X
U X CD X

H R P

= =

= =

=

=

=

∑ ∑

∑ ∑

I

I

I

I

 

Thus, H(RD|P) = H(RD|C) holds. This completes the 
proof. 

Theorem 5 shows that in an inconsistent simplified 
decision system ISDS = (U′, C, D), the conditional 
rough entropy of D with reference to P⊆ C has the 
same discriminating capability as the probability 
distribution function P with respect with u in U′ when 
their equations hold. 

IV.  FEATURE SELECTION OF INCONSISTENT DECISION 
SYSTEMS 

A.  Decision Inclusion Degree-based Distribution 
Reduction 

Distribution reduction which is based on inclusion 
degree [40] can obtain all reducts of a decision system, 
and we can always use discernible matrix method to find 
core attribute set in both consistent and inconsistent 
decision system. Since core and reduction are the most 
important concepts of knowledge reduction in decision 
systems and the main goal of using discernible matrix is 
also for calculating core and reduction, but both time 
complexity and space complexity of existing methods on 
the basis of discernible matrix for core are not ideal. In 
order to overcome the limitations of these above methods 
which seek core and reduction through discernible matrix 
to improve operational efficiency, it is necessary to find a 
new heuristic method. Attribute significance based on 
positive region in classical rough set theory only makes a 
quantitative description for positive region cardinality, 
while attribute significance based on conditional 
information entropy only describes separation of objects 
belonging to different decision classes in equivalence 
classes of condition attribute subset without considering 
separation of consistent and inconsistent objects that have 
the same decision attribute values. Due to inconsistent 
objects in inconsistent decision systems, the existing 
methods based on positive region and conditional 
information entropy cannot equally express knowledge 
reduction [5, 17, 30, 39]. Then, if all inconsistent objects 
are separated from consistent objects, it is helpful to 
search for the minimum or suboptimal reduction.  

Definition 3. Let ISDS = (U′, C, D) be an inconsistent 
simplified decision system with P ⊆ C, U′/D = {D1, 
D2, …, Dm}, U′/RD = {CD0, CD1, CD2, …, CDm}. For 

∀ ui∈U′, 0 1( ) ( ( ), ( ),..., ( )),P P P
P i i i m iu CD u CD u CD uμ =  and 

0
( ) { | ( ) ( )},P P

P i h h i j ij m
u CD CD u Max CD uγ

≤ ≤
= =  where 

| [ ] |
( )

| [ ] |
j i PP

j i
i P

CD u
CD u

u
=

I , j= 1 ,2, …, m. Then 

(1) P is called a distribution set of the ISDS if μP(ui) = 
μC(ui) for i = 1, 2, …, |U′|. P is called a distribution reduct 
of the ISDS if and only if μP(ui) = μC(ui) for i = 1, 2, …, 
|U′|, and for ∀ P′⊂P, there exist uj∈U′ such that μP′(uj) 
≠ μC(uj). 
(2) P is called a maximum distribution set of the ISDS if 
γP(ui) = γC(ui) for i = 1, 2, …, |U′|. P is called a maximum 
distribution reduct of the ISDS if and only if γP(ui) = 
γC(ui) for i = 1, 2, …, |U′|, and for ∀ P′⊂P, there exist uj

∈U′ such that γP′(uj) ≠ γC(uj). 
Definition 3 states that in an inconsistent simplified 

decision system ISDS = (U′, C, D), if attribute subset 
P⊆C is a distribution reduct of an inconsistent decision 
system, then rules coming from P and C have the same 
reliability. Then, from Definition 3, it can be obtained the 
following property immediately.  

Property 2. Let CSDS = (U′, C, D) be a consistent 
simplified decision system. Since D0 = U′ – POSC(D) = 
Ø, one has that CD0 = Ø, then the probability distribution 
function P with respect with u in U′ degenerates into the 
general probability distribution function, and the 
conditional rough entropy degenerates into the 
conditional information entropy in [39]. 

Property 2 illustrates that the probability distribution 
function in consistent decision systems is a special 
instance of that in inconsistent decision systems. This 
means that the definition of probability distribution 
function in consistent decision systems is a consistent 
extension in inconsistent decision systems. It follows that 
the decision inclusion degree in an inconsistent decision 
system is suitable for measuring the uncertainty of both 
inconsistent and consistent decision systems. Therefore, 
the distribution reduct and the maximum distribution 
reduct are suitable for both inconsistent and consistent 
decision systems. In what follows, the inconsistent or 
consistent simplified decision systems can be unified into 
the simplified decision systems. 

Definition 4. Let SDS = (U′, C, D) be a simplified 
decision system with P⊆C. For ∀ a∈P and ∀ u∈U′, 
the significance measure of a in P with reference to D is 
denoted by SIGinner(a, P, D), defined as 

{ }{ | ( ) ( )}
( , , ) .

| |
P a Pinner u U u u

SIG a P D
U

μ μ−′∀ ∈ ≠
=

′  

Definition 5. Let SDS = (U′, C, D) be a simplified 
decision system with P⊆C. For ∀ a∈C – P and ∀ u∈
U′, the significance measure of a in P with reference to D 
is denoted by SIGouter(a, P, D), defined as 

{ }{ | ( ) ( )}
( , , ) .

| |
P a Pouter u U u u

SIG a P D
U

μ μ′∀ ∈ ≠
=

′
U  

According to Definitions 4 and 5, it can be obtained 
the following properties immediately. 
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Property 3. 0 ≤ SIGinner(a, P, D) ≤ 1. 
Property 4. 0 ≤ SIGouter(a, P, D) ≤ 1. 
Property 5. when P = C, SIGouter( , C, D) = 0. 
Property 6. ∀ a∈C – P is a dispensable attribute if 

and only if SIGouter(a, P, D) = 0. 
Definition 5 shows that the significance measure 

SIGouter(a, P, D) indicates the importance of attribute a 
added to P ⊆ C with reference to D in a simplified 
decision system SDS = (U′, C, D), offering the powerful 
reference to the decision. Furthermore, the bigger the 
significance measure of attribute is, the higher its position 
in the decision system is, otherwise the lower its position 
is. Thus, all the definitions above are used as heuristic 
information for feature selection algorithm to select a 
reduct from consistent or inconsistent data sets. It is 
known that the intersection of all attribute reducts is said 
to be indispensable and is called the core in a decision 
system. Each attribute in the core must be in every 
attribute reduction of the decision system. Then, the 
significance measures above can be used to find the core 
attributes. The following properties are of interest with 
this regard. 

Property 7. Let SDS = (U′, C, D) be a simplified 
decision system with P⊆C. ∀ a∈P is indispensable in 
P with reference to D if and only if SIGinner(a, P, D) > 0. 

Property 8. Let SDS = (U′, C, D) be a simplified 
decision system. For ∀ a∈C, if SIGinner(a, C, D) > 0, 
then a is a core attribute of the SDS, i.e., CORE = {a∈C | 
SIGinner(a, C, D) > 0}. 

Theorem 6. Let SDS = (U′, C, D) be a simplified 
decision system with P⊆C. P is a distribution reduct of 
C relative to D if μP(u) = μC(u) for ∀ u∈U′ and SIGinner(a, 
P, D) > 0 for ∀ a∈P. 

Proof. It can be derived directly from Definition 3 and 
Properties 6 and 7. 

B.  Feature Selection Algorithm of Inconsistent Decision 
Systems 

In the following, we focus on how to improve 
computational efficiency of a heuristic feature selection 
algorithm. Then we introduce the idea of radix sorting in 
[30] and hash in [31] to calculate equivalence blocks and 
positive region effectively. The main advantage of this 
approach stems from the fact that this framework is able 
to characterize the granulation structure using a 
granulation order. Thus, through the decomposition of 
SIGouter(a, P, D), it can be seen easily that every time to 
calculate any attribute a with the maximum of SIGouter(a, 
P, D) is in fact to calculate that with the maximum of 

{ } ( )P a uμ U
, because μP(u) is a constant when we calculate 

SIGouter(a, P, D). Therefore, we only need calculate 
{ } ( )P a uμ U

 except μP(u). Thus, the above policies will help 
to reduce the quantity of computation and the time-space 
of search. Formally, we can now construct a distribution 
reduct algorithm, also called an efficient feature selection 
algorithm based on decision inclusion degree (FSDID) 
for inconsistent decision systems as follows. 
Algorithm 1. FSDID 

Input: An inconsistent decision system IDS = (U, C, D), 
where C = {c1, c2, …, c|C|}, and D = {d} 

Output: reduct, a reduct of IDS 
(1) Let CORE = Ø, R = Ø 
(2) Calculate U/C, U/D and U/(CUD) incrementally to 

get U′ by radix sorting, and obtain POSC(D) and U′ – 
POSC(D) by hash, then get U′/RD 

(3) Calculate μC(u) and 
{ } ( )

iC c uμ −
 to get CORE = {ci∈C 

|SIGinner(a, C, D) > 0} for ∀ u∈U′ and i = 1, 2, …, 
|C|, then let R = CORE and go to (5) 

(4) Select ai with max{
{ } ( )

iP a uμ U
} by radix sorting to put 

ai into H, where ∀ ai∈C – R  
// Select ai with max{SIGouter(ai, P, D)} 
(4.1) If |H| ≠ 1, select ai∈H with min{|U/(PU {ai})|} 
(4.2) If the selected is not only, then select the front 
(4.3) R = RU {ai} 

(5) If μR(u) ≠ μC(u), then go to (4), else 
(5.1) Let R = R – CORE; 
(5.2) t = |R|; 
(5.3) For (i = 1; i ≤ t; i++) 

(5.3.1) ai∈R; 
(5.3.2) R = R – {ai}; 
(5.3.3) If ( ) ( )R CORE Cu uμ μ≠U

, then R = R∪{ai} 
(6) reduct = RUCORE 
(7) End 

Remark. The above steps for feature selection 
algorithm of distribution reduct should be of reference in 
obtaining the maximum distribution reduct in both 
inconsistent and consistent decision systems. It can be 
easily seen that Step 5 in FSDID algorithm ensures that 
the distribution reduct is complete, which can ensure that 
the final reduct will be obtained. By calculation and 
analysis, the total worst time complexity of FSDID 
algorithm is O(|C||U|) + O((|C| – 1)|U|) + O((|C| – 2)|U|) 
+ … + O(|U|) = O(|C|2|U|), which is below the time 
complexity of these methods in [22, 24, 27-29, 32, 33, 35, 
38, 39]. After comparison, it can be easily known that the 
algorithm proposed in this paper is effective and available. 
Furthermore, the worst space complexity of FSDID 
algorithm is O(|C||U|). 

V.  EXPERIMENTAL RESULTS 

In this section, we apply the proposed approach and 
other feature selection approaches in several data sets 
from the UCI Repository of machine learning databases, 
to evaluate the proposed approach. In the following, their 
advantages and disadvantages can be further found easily 
through comparing roundly the Algorithm 4 in [38] and 
the Algorithm CEBARKCC in [39] with the proposed 
FSDID algorithm, shortly denoted by Alg_a, Alg_b, and 
Alg_c, respectively. Here we choose six discrete 
databases from UCI datasets and use three algorithms 
above to do more experiments on PC (Inter(R) Pentium(R) 
D CPU 3.4 GHz, 2 GB memory, Windows XP). Then the 
comparison results of three feature selection algorithms 
are outlined in Table I. 
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TABLE I.   
COMPARISON RESULTS FOR DIFFERENT FEATURE SELECTION ALGORITHMS 

NO. Dataset Objects Attributes Consistent or not
Selected attributes 

Alg_a Alg_b Alg_c 
1 Liver-disorders 345 7 Yes 3 3 3 
2 Zoo 101 17 No 10 9 8 
3 Vehicle 946 20 Yes 4 4 4 
4 Mushroom 8124 23 Yes 5 4 3 
5 Voting-records 435 17 Yes 10 9 9 
6 Breast cancer-wisconsin 683 10 Yes 5 4 4 

 

VI.  CONCLUSIONS 

Dataset dimensionality is one of the primary 
impediments to data analysis areas. An important step 
prior to constructing a classifier for a very large data set 
is feature selection. In this regard, by distinguishing 
consistent objects form inconsistent objects, the decision 
inclusion degree, the probability distribution function, the 
distribution reduct and the maximum distribution reduct 
are presented for both inconsistent and consistent 
simplified decision systems. Furthermore, many 
important properties and propositions are discussed as 
well. An effective heuristic feature selection algorithm in 
inconsistent decision systems with less time-space 
complexity are put forward as a distribution reduct. The 
theoretical analyses show that the time complexity of this 
method is lower than that of existing representative 
feature selection methods. Meanwhile, the experiment 
results are consistent with our theoretical analysis. In sum, 
the proposed method is an effective means of feature 
selection for both inconsistent and consistent decision 
systems, especially large ones.  
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