

Hardware/Software Partitioning Algorithm Based
on Genetic Algorithm

Guoshuai Li

Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi’an, China
Email. lgsman1@163.com

Jinfu Feng, Junhua Hu, Cong Wang and Duo Qi

Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi’an, China
Email. wcsfjf@163.com, wcshjh9231@163.com, chenwang6666@126.com, wcsqd5267@163.com

Abstract—To solve the hardware/software(HW/SW)
partitioning problem on the system that contains only one
CPU, a new algorithm based on GA is studied. Firstly, the
concept of hardware orientation is put forward, and then
used to create the initial colony of GA and in mutation
process, which reduces the randomicity of initial colony and
the blindness of search. Secondly in the process of GA,
crossover and mutation probability become more and more
small, this not only ensures a big search space in the early,
but also keeps the good solution later. Experimental
statistics show that the efficiency of the proposed algorithm
outperforms the algorithms in comparison by up to 23% in
large-scale problem. What’s more, it can obtain better
solution. In conclusion, the proposed algorithm has higher
efficiency and appears to be a better solution under specific
conditions.

Index Terms—hardware/software partitioning, hardware
orientation, genetic algorithm

I. INTRODUCTION

HW/SW partitioning technology is a crucial step in
SOC HW/SW co-design and embedded systems’
realization. The function of it is to decide which
components of the system should be realized through
hardware and which ones through software, and finally
provide the best scheme for system while satisfying
design constraints. Clearly, this step has dramatic impact
on the cost and performance of the whole system.

Most formulations of HW/SW partitioning problem
have been proved NP-hard[1], so exact algorithms tend to
be quite slow for large input, hence for large partitioning
problem, heuristic methods are generally applied to
explore the search space in order to get the nearly optimal
solutions, although they cannot guarantee the optimum
solution, they comprise the majority of the research and
some significant research has been done such as Genetic
Algorithm(GA)[2][3], Particle Swarm Optimization(PSO)
[4][5], Tabu Search(TS)[6][7], Ant Algorithm(AA)[8][9],
Simulated Annealing(SA)[10] as well as some improved
schemes.

GA is one of the most widely used random search
techniques. It aims to obtain near-optimal partitioning by

imitating the process of biological evolution. This
technique has been used for HW/SW partitioning in many
studies. Paper[11] expounded basic application of GA in
HW/SW partitioning where some implementation
methods such as coding, fitness function, selection of
individuals, crossover, mutation and convergence rule
were discussed in detail. Paper[12] partitioned the system
into hardware and software components using GA where
an enhanced resource constrained scheduling algorithm
was used to determine system performance, as a result,
execution time and power consumption were reduced
greatly. Paper[13] proposed an Advanced Non-
Dominated Sorting Genetic Algorithm (ANSGA), by
introducing a removing method for building non-
dominated sets (NDS) and an elitism preserving strategy
for generating NDS and new sets, it not only reduced
computational burden but also obtained global
convergence. Paper[14] used the idea of two levels of
implementation methodology, the first level provided
initial solution for GA which run in the second level,
results indicated that this method can improve throughput
and efficiency with only a small amount of increased
design space. In addition, [15][16][17] improved GA
algorithm in different aspect and obtained better solution
too.

To improve partitioning quality and algorithm
efficiency, we propose a new partitioning algorithm
based on GA. In this paper, the concept of hardware
orientation is put forward and used in the process of
producing initial colony and mutating, as a result, it not
only avoided the blindness of creating initial colony
through random method but also controlled the direction
of mutation. Furthermore, we design an adaptive method
for crossover/mutation probability. Experimental results
demonstrate superiority of proposed approach over
existing algorithms in comparison in terms of efficiency
and solution quality.

This paper is organized as follows. In section 2 we
introduce HW/SW partitioning problem, as well as
provide the objective function in this paper. In section 3,
we propose the concept of hardware orientation and its
calculation. In section 4, we describe the detail of
proposed hybrid algorithm based on GA. In section 5, we

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1309

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.6.1309-1315

show experimental results and analysis, and then compare
proposed algorithm based on GA with existing algorithms.
Finally, section 6 draws conclusions of our work and
makes prediction for future work.

II. PROBLEM DESCRIPTION

HW/SW partitioning is one of the most crucial steps in
the design of embedded systems that typically consist of
hardware and software components. Before partitioning,
it’s necessary to identify the construction of
implementation platform. This paper discusses platform
with single CPU, that is to say, the system consist of one
CPU and FPGA or other reconfigurable logic module.
The assignment of HW/SW partitioning is to map tasks to
either CPU or hardware components while satisfying
design constraints.

2v

1v 3v

4v
9v

8v
7v

5v
6v

10v

11v

12v

iv
ist iht

Figure1. The DAG model of system.

We now formalize the problem as follows. Tasks of
system which will be partitioned are given in the form of
DAG(directed acyclic graph) just as is shown in Fig 1,

(),G V E= [18]. { }1 2, , , nV v v v= denotes the set

of nodes, while iv denotes the i th task node, E indicates

the set of edges, ijc denotes communication cost

between iv and jv , ist and iht are execution time of task

through software and hardware respectively, iss and ihs

denote area cost of iv through software and hardware,

sS , hS and C represent software area constraint,
hardware area constraint and communication constraint
respectively, cos tT is execution time which is defined to
be the sum of processing time of all tasks. Assume that
communication cost between two adjacent nodes that are
all carried out through hardware or software can be
overlooked, thus the objective function (1) can be
formulated as the following minimization problem using
the method in paper[18].

n denotes the number of nodes, ix denotes how iv is

realized where 1(0)i ix x= = means iv is realized

through hardware(software), iss and ihs are area cost of

iv realized through software and hardware respectively,

the sum of all the iss should be less than sS , and so is

ihs to hS .

()()()
()()

()

()

cos 1

1

1

1

min 1

. . 1

1
s h

n
t ih i is i

n
is i s

n
ih i h

n
ik i ik i

k V k V

T t x t x

s t s x S

s x S

c x c x C
Î Î

ì = + -ï
ï
ï - £
ïï
í £ï
ï æ öï ç ÷+ - £ï ç ÷ï è øî

å
å
å

å å å

 (1)

III. CALCULATION OF HARDWARE ORIENTATION

In this paper, hardware orientation is defined as
superiority of implementation of one task through
hardware over software, it is characterized by three
metrics which are Area, Time and Communication.

A. Area-Hardware Orientation

()1 ,
1 ,

cons sum
iorien

cons sum

A B B S S
S

S S

ì - + <ï= í
³ïî

 (2)

Because the requirement of typesetting, in (2) we use
A to replace () ()max max miniS S S S- - , B to

replace cons sumS S . iS denotes additional area of ihs

than iss , while maxS and minS indicate respectively the

maximum and minimum value of iS , sumS is total area
cost when the whole of the nodes are realized through
hardware. In addition, consS denotes area constraint.

B. Time-Hardware Orientation

()

()

1min

1max 1min

2min

2max 2min

,

1 ,

is ih is
is ih

iorien
ih is ih

is ih

t t t T
t t

T T
T

t t t T
t t

T T

ì - -ï >
ï -ï= í

- -ï
- £ï

-ïî

 (3)

Here ist and iht denote time cost of iv realized
through software and hardware respectively, while

()is ih ist t t- and ()ih is iht t t- are performance ratio,

1maxT , 1minT , 2maxT and 2minT are the maximum and
minimum value of performance ratio.

C. Communication-Hardware Orientation

()1isrorien sr hr ijjC D Dt t cé ù= - ´ +ë û´å (4)

()1isworien sw hw ijj DC Dt t cé ù= - ´ +ë û´å (5)

1310 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

()1ihrorien hr sr ijj DC Dt t cé ù= - ´ +ë û´å (6)

()1ihworien hw sw ijj DC Dt t cé ù= - ´ +ë û´å (7)

isrorien isworien
orien

ihrorien ihworie
i

n

C C
C C

C +
=

+
 (8)

srt , swt , hrt and hwt are reading and writing delay of

hardware and software, iorien iorienD S T= ´ .
Consequently, the synthesized factor of hardware

orientation can be described as following.

iorien iorien iorien
iorien

iorien iorien iorien

S T CZ
S T C

a b h+ +
=

+ +
 (9)

1a b h+ + = , 0a > , 0b > , 0h > .

IV. ALGORITHM

In recent years, research based on GA for solving
multi-objective optimization problem makes good
progress[19][20][21]. Here we mainly consider the
following aspects, creation of initial colony, selection of
individuals, crossover and mutation.

(1) Coding. In a number of related articles, there are
two familiar coding method for GA, the binary and the
decimal, by contrast, the binary-biased genetic algorithms
have higher searching efficiency, less time- consumption
for convergence, wider selecting domain of crossover and
mutation probability and stronger robustness of optimized
value than decimal-biased genetic algorithms[22]. What’s
more, considering that the state of the node here includes
hardware realization and software realization, we choose
binary as coding mechanism.

1 2(, , ,)nX x x x= denotes a partitioning plan,

1 i n£ £ .
(2) We make reciprocal of objective function

() cos1 tF X T= as fitness function in this paper.
3. Creation of initial colony. In this paper, we create

initial colony on the base of hardware orientation, the
bigger the hardware orientation is, the higher the
probability that the node is initialized to hardware
realization will be, and vice versa. Concretely, we first
generate a random number ()0,1ir Î , if i iorienr Z< , iv
will be initialized to hardware realization, otherwise to
software realization. In addition, Hamming distance

() 1, ni j i j
k kkH X X X X== -å is adopted for the

difference among individuals and (), 4i jH X X > ,
iX and jX denote partitioning plans which are called

individuals here. Repeat the operation above until we
have XN individuals.

(4) Selection of individuals. In order to prevent the
precociousness phenomenon from happening, the
proposed algorithm selects individuals adaptively
according to the change of fitness, consequently,
selection probability of ix can be defined using the
method mentioned in paper[23].

() ()' '
1

n
i i iip f x f x== å (10)

() () ()()max

max

/
max min'

/

g g

i i g g

f f e e
f x af x

e e
- -

= +
+

 (11)

()if x expresses fitness value of ix , while maxf

denotes the maximal value of ()if x in current colony

and minf indicates the minimal one, g indicates the

number of iterations while maxg indicates its maximal

value, a denotes the weight of ()if x in ()'
if x , it is

a constant that is greater than zero and 0.75a = in this
paper.

According to this selection strategy, selection
probability of individuals with big fitness value can
reduce greatly at the beginning of algorithm, this is
beneficial for global searching, as the processing of
algorithm, selection probability of individuals with big
fitness value gradually grow bigger, this is beneficial for
the convergence of algorithm.

(5) Crossover and mutation. In this process, some
individuals(2XN) are selected for crossover using two-
point crossover method[18]. The selection of crossover
probability cP and mutation probability mP will
influence the whole process of genetic algorithm. In other
words, the bigger the difference of colony and fitness of
individual are, smaller cP and mP can help to protect
individuals that have bigger fitness, meanwhile, the
convergence speed can be improved too. The smaller the
difference of colony and fitness of individual are, bigger

cP and mP can not only help to produce excellent
individuals but also prevent algorithm from entering local
optimum. Experiments have shown that adaptive change
of cP and mP can improve algorithm performance than
fixed value[24]. Thus we put forward an adaptive method
for crossover and mutation probability.

max
1

max

2

max(,)
, min(,)

, min(,)

i j
c i j avg

avgc

c i j avg

f f f
p f f f

f fP
p f f f

ì -
ï >ï -= í
ï

£ïî

(12)

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1311

© 2014 ACADEMY PUBLISHER

max
1

max

2

,

,

m avg
avgm

m avg

f fp f f
f fP
p f f

ì -
>ïï -= í

ï
£ïî

 (13)

avgf denotes average fitness of all the current

individuals, while f denotes fitness of individual

waiting for mutation, if and jf are fitness of

individuals that are waiting for cross, 1cp , 2cp , 1mp and

2mp are constants. If the individual fitness is smaller

than avgf , bigger cP and mP should be selected for

promoting melioration of its fitness, whereas, smaller cP

and mP should be selected for preserving the individual.
Considering that individuals with bigger fitness should
have smaller crossover probability, thus cP uses

min(,)i jf f as boundary.
(6) Termination criterion. For the sake of ending GA

at appropriate time, the proposed algorithm uses dynamic
termination criterion. Concretely, we define the largest
number of iterations maxGene and the minimum

evolution rate min 4%GeneImproRat = , if the
evolution rate in three successive colonies is not larger
than minGeneImproRat or , GA will terminate.

The pseudo code of GA is as shown in Table1.

TABLE I.
GA PROCESS

Input:

Task graph G and constraints sS , hS , C .

Output:

The HW/SW partitioning result 1 2(, , ,)nX x x x= and runtime.

1. begin

2. Calculate the comprehensive factor of hardware orientation iorienZ and set termination criterion.

3. Create initial colony on basis of iorienZ , make 0g = ,
min

0GeneImproRatN = . //
minGeneImproRatN denotes the successive

generations that evolution rate is smaller than minGeneImproRat .

4. Calculate fitness of individuals in ()0P and average fitness.

5. Perform the operation between 6 and 21 again and again before meeting termination criterion.

6. Calculate selection probability ip for every individual in ()P g .

7. for(0; ; 2Xk k N k k= < = +)

8. {

9. Select two individuals on basis of ip .

10. Create a random number 0 1u< < .

11. if(mu P<)

12. Perform mutation operation for selected individuals, if 0.9iorienZ > , no matter what state of the node is, the state is set to 1,

otherwise, perform the routine mutation operation, the result is put into next colony.

13. elseif(m cu P P< +)

14. Perform crossover operation and put the result into next colony.
15. else
16. put the individuals into next colony without change.
17. }//end for

18. 1g g= + , calculate the fitness of individuals in ()P g and the average fitness.

19. if(mincurGeneImproRat GeneImproRat£)

20.
min min

1GeneImproRat GeneImproRatN N= + .

21. end if

22. Output GAX which has the biggest fitness value in ()P g and runtime.

23.end

1312 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

V. EXPERIMENT AND ANALYSIS

Creation of test set. For testing, we firstly create
randomly several DAGs that have specified number of
nodes and average branches, then let every node
associated with one function whose cost(hardware area,
software area, communication cost and runtime etal) is
used to simulate task cost. Eventually, we get 6 DAGs
with 30, 60, 90, 120, 200, 400 nodes respectively.
Experimental environment: (1) Pentium(R) Dual-Core
2.5GHz CPU, 2G internal storage. (2) Windows XP
operating system. 3. Programming environment is Matlab
R2007a.

To verify the effectiveness of proposed algorithm, we
choose GA[12]and ANSGA[13] as comparison. Also, in
order to make a fair comparison, all related parameters in
our experiment are set on the same benchmark, initial
crossover probability is set to 0.8 while initial mutation
probability to 0.13.

Table3 shows partitioning results of three algorithms,
it can be observed that, (1) Proposed algorithm has higher
convergence speed, because hardware orientation can

reduce randomicity of initial colony and affect search
direction, to sum up, these two aspects reduce the number
of iterations. What’s more, selection strategy is also
helpful to improve search speed. (2) On small-scale
problem when the number of nodes is less than 60,
proposed algorithm has lower efficiency than ANSGA,
because the calculation of hardware orientation costs a
long time. However, with the addition of scale, when the
number of nodes is more than 90, the proposed algorithm
can not only obtain better solution but also improve
operating efficiency of nearly 23%. What’s more, the
larger the scale is, the bigger the improvement will be.
The reason is that ANSGA must array the colony,
construct non-dominated set and new groups in every
iteration and this will cost much time. (3) Compared with
the other two algorithms, GA has the shortest runtime,
whereas it only obtains solution with lowest quality,
because basic GA has great dependence on initial
solution, a good initial solution could result in a good
final solution, while a bad one will affect the quality of
final solution.

TABLE II.
EXPERIMENTAL RESULTS

Number of nodes hS sS C Algorithm cos tT Cost of time

30 2850 1409 591
GA

ANSGA
Our algorithm

5897
5692
5685

81
847
896

60 5909 2943 1356
GA

ANSGA
Our algorithm

11904
10859
10813

240
8263
8379

90 8684 4308 2014
GA

ANSGA
Our algorithm

17730
16728
16347

1158
57573
49413

120 11611 5770 2637
GA

ANSGA
Our algorithm

22493
21022
19844

1372
114437
95108

200 17192 9416 3783
GA

ANSGA
Our algorithm

37441
34739
33053

1836
280347
224318

400 28154 15681 6539
GA

ANSGA
Our algorithm

75620
70209
66681

2925
674301
510302

To intuitively show experimental results, we let the

three algorithms run 30 times respectively for the 6
DAGs, then calculate average value of the results for
each DAG, finally we obtain the comparison between
proposed algorithm and the other two algorithms on
partitioning results and runtime, as is shown in Fig 3 and
Fig 4.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of task nodes

O
p
ti
m

iz
e
 p

e
rc

e
n
ta

g
e
 o

f
re

s
u
lt

%

compared with ANSGA

compared with GA

Figure 3 Optimize percentage of partitioning result

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1313

© 2014 ACADEMY PUBLISHER

0 50 100 150 200 250 300 350 400
-10

-5

0

5

10

15

20

25

30

Number of task nodes

O
p
ti
m

iz
e
 p

e
rc

e
n
ta

g
e
 o

f
ru

n
ti
m

e

%

compared with ANSGA

Figure4. Optimize percentage of runtime

Assume that there are 400 task nodes. We obtain initial
solution using random method and hardware orientation
respectively, the simulation results of ANSGA are shown
in Fig 5, as can be seen, initial solution coming from
hardware orientation has faster convergence rate and
bring on better solution. Fig 6 shows simulation results of
ANSGA and our algorithm, it intuitively illustrates the
advantage of proposed algorithm on large-scale problem.

0 50 100 150 200 250 300 350 400
7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8
x 10

4

Iterations

T
c
o
s
t

Random method

Hardware orientation

Figure 5 Simulation results of ANSGA with diffident initial solution

0 50 100 150 200 250 300 350 400
6.5

7

7.5

8

8.5

9

9.5

10
x 10

4

Iterations

T
c
o
s
t

ANSGA

our algorithm

Figure6. Simulation results of proposed algorithm and ANSGA

VI. CONCLUSIONS

Based on GA, we present a simple but very efficient
algorithm for solving HW/SW partitioning problem in
this article. Compared with the other two algorithms, time
complexity of proposed algorithm includes additional
time for calculating hardware orientation except for
calculating genetic operation and fitness. However, the
application of hardware orientation reduces the number of

iterations and it only need calculated once, as a result, the
proposed algorithm can obtain higher efficiency
especially on large-scale problem.

The value of crossover and mutation probability is
larger than classical GA in this paper, this may induce
blindness of search, but the use of hardware orientation
and adaptive method prevent its occurrence. Furthermore,
they increase the probability of introducing new
chromosome which can increase GA’s ability of local
search to some extent.

In order to simplify the problem, the proposed
objective function doesn’t take into account power cost
which may impact partitioning accuracy, our on-going
work will improve the objective function.

REFERENCES

[1] Arato P, Mann ZA, Orban A. Algorithmic aspects of
hardware/software partitioning, ACM Trans Des Autom
Electron Syst. 2005. 10(1): pp. 136-156. doi:
10.1145/1044111.1044119.

[2] Glover F, Kelly JP, Laguna M.: Genetic algorithms and
tabu search: hybrids for optimization, Computers and
Operations Rsearch. 1995. 22(1): pp. 111-134. doi:
10.1016/0305-0548(93)E0023-M.

[3] Jian Pan, Guohong Mao, Jinxiang Dong.: A Web-Based
Platform for Intelligent Instrument Design Using
Improved Genetic Algorithm, Journal of software, 2012.
7(10): pp. 2333-2340. doi:10.4304/jsw.7.10.2333-2340.

[4] Shaobo Zhong, Zhongshi He.: Application of Particle
Swarm Optimization Algorithm based on Classification
Strategies to Grid Task Scheduling, Journal of software,
2012. 7(1): pp. 118-124. doi:10.4304/jsw.7.1.118-124.

[5] Shih-An Li, Chen-Chien Hsu, Ching-Chang Wong, Chia-
Jun Yu.: Hardware/software co-design for particle swarm
optimization algorithm, Information Sciences. 2011. (181):
pp. 4582-4596. doi:10.1016/j.ins.2010.07.017.

[6] Jigang Wu, Srikanthan Thambipillai, Ting Lei.: Efficient
heuristic algorithms for path-based hardware/software
partitioning, Mathematical and Computer Modelling.
2010 (51): pp. 974-984. doi:10.1016/j.mcm.2009.08.029.

[7] Jigang Wu, Pu Wang, Siew-Kei Lam, Thambipillai
Srikanthan.: Efficient heuristic and tabu search for
hardware/software partitioning, The Journal of
Supercomputing. 2013. 66(1): pp. 118-134.
doi:10.1007/s11227-013-0888-9.

[8] Yu-don Zhang, Le-nan Wu, Geng Wei, Han-qian Wu,
Yong-liang Guo.: Hardware/software partition using
adaptive ant colony algorithm, Control and Decision.
2009. 24(9): pp. 1385-1389. doi:10.3321/j.issn:1001-
0920.2009.09.021.

[9] T. He, Y. Guo.: Power consumption optimization and
delay based on ant colony algorithm in network-on-chip,
Engineering Review. 2013. 33(3): pp. 219-225.

[10] Henkel J, Ernst R.: An approach to automated
hardware/software partitioning using a flexible granularity
that is driven by high-level estimation techniques, IEEE
Transactions on VLSI Systems, 2001. 9(2): pp. 273-289.
doi: 10.1109/92.924041.

[11] Yun Zheng, Guo-yong Huang.: System Level
Software/Hardware Partitioning by Genetic Algorithm,
Journal of Computer-Aided Design & Computer Graphics,
2002, 14(8): pp. 731-734.

[12] Madhura Purnaprajna, Marek Reformat, Witold Pedrycz .:
Genetic algorithms for hardware-software partitioning and
optimal resource allocation, Journal of Systems

1314 JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

Architecture, 2007(53): pp. 339-354. doi:
10.1016/j.sysarc.2006.10.012.

[13] Sheng-qin Luo, Xiao-xiao Ma, Yi Lu .: An Advanced
Non-Dominated Sorting Genetic Algorithm Based SOC
Hardware/Software Partitioning, ACTA ELECTRONICA
SINICA, 2009 (11):pp. 2595-2599. doi:
10.3321/j.issn:0372-2112.2009.11.043.

[14] Nithiyanantham Janakiraman, Palanisamy Nirmal Kumar.:
Multi-objective module partitioning design for dynamic
and partial reconfigurable system-on-chip using genetic
algorithm, Journal of Systems Architecture, 2014, 60(1):
pp.119-139. doi: 10.1016/j.sysarc.2013.10.001.

[15] Yan Kang, He Lu, Jing He.: A PSO-based Genetic
Algorithm for Scheduling of Tasks in a Heterogeneous
Distributed System, Journal of software, 2013, 8(6): pp.
1443-1450. doi:10.4304/jsw.8.6.1443-1450.

[16] Xiso-dong Guo, Ji-ren Liu, Hui Wen.: A method for
hardware/software partitioning using genetic algorithm,
Journal of Computer-Aided Design & Computer Graphics,
2001, 13(1): pp. 24-27. doi: 10.3321/j.issn:1003-
9775.2001.01.005.

[17] Peng Liu, Ji-gang Wu, Yong-ji Wang.: Hybrid algorithms
for hardware/software partitioning and scheduling on
reconfigurable devices, Mathematical and Computer
Modelling, 2013, (58): pp. 409-420. doi:
10.1016/j.mcm.2012.11.001.

[18] An Liu, Jin-fu Feng, Xiao-long Liang, Xiao-tian Yang.:
Algorithm of hardware/Software partitioning based on
genetic particle swarm optimization, Journal of
Computer-Aided Design & Computer Graphic, 2010.
22(6): pp. 927-933,942.

[19] Yuan-yuan Cui, Xue-hong Qiu, Jian-xian Zhang, Rui
Zhou.: SoC hardware/software partitioning algorithm for
multi-performance index constraints, JOURNAL OF
XIDIAN UNIVERSITY, 2013, 40(5): pp. 92-98. doi:
10.3969/j.issn.1001-2400.2013.05.015.

[20] Pankaj Kumar Natha, Dilip Dattab.: Multi-objective
hardware–software partitioning of embedded systems: A
case study of JPEG encoder, Applied Soft Computing,
2014 (15): pp. 30-41. doi:org/10.1016/j.asoc.2013.10. 032.

[21] Madhura Purnaprajna, Marek Reformat, Witold Pedrycz.:
Hardware implementation of a novel genetic algorithm,
Journal of Systems Architecture, 2007 (53): pp. 339-354.
doi: 10.1016/j.sysarc.2006. 10.012.

[22] Jin Zhang, Dong-li Li, Ping Li. : Comparative study of
genetic algorithms encoding mechanism, Journal of China
University of Mining &Technology, 2002. 31(6): pp. 637-
640. doi: 10.3321/j.issn:1000-1964.2002.06. 023.

[23] Yong-gang Peng, Xiao-ping Luo, Wei Wei.: New fuzzy
adaptive simulated annealing genetic algorithm, Control
and Decision, 2009.24(6): pp. 843-848. doi:
10.3321/j,issn:1001-0920.2009.06008.

[24] Yun-xiao Zu, Jie Zhou.: Cognitive radio resource
allocation based on combined chaotic genetic algorithm,
Acta Phys.Sin, 2011. 60(7): pp. 1-8. doi: 10.7498/aps.
60.079501.

Guoshuai Li was born in ShanDong (China) on January 1986.
He received the B.E. and M.E. degrees from Aviation
University of Air Force, China, in 2008 and 2011 respectively,
and he is currently working toward the Ph.D. degree in School
of Aeronautics and Astronautics Engineering College, Air Force
Engineering University, China. His research interests mainly
focus on computer aided design, system analysis and storage
management system .

Jinfu Feng received the Ph.D. degrees from Nanjing University
of Science and Technology, China, in 1996. He is currently a
Professor and PhD Supervisor in the School of Aeronautics and
Astronautics Engineering College, Air Force Engineering
University, China. Her interests are in the areas of storage
management system, PIM/PSM technology and computer aided
design.

Junhua Hu received the Ph.D. degrees from Aeronautics and
Astronautics Engineering College, Air Force Engineering
University, China. He is currently a teacher in the School of
Aeronautics and Astronautics Engineering College, Air Force
Engineering University, China. Her interests are in the areas of
PIM/PSM technology and computer aided design.

Cong Wang received the S.E. and M.E. degree from Armed
Police Engineering University, China, in 2008 and 2011
respectively. He is currently working toward the Ph.D. degree in
School of Aeronautics and Astronautics Engineering College,
Air Force Engineering University, China. His research interests
mainly focus on reliability analysis, computer aided design and
system design.

Duo Qi received the B.E. and M.E. degrees from Aviation
University of Air Force, China, in 2010 and 2013 respectively,
and he is currently working toward the Ph.D. degree in School
of Aeronautics and Astronautics Engineering College, Air Force
Engineering University, China. His research interests mainly
focus on computer aided design, system analysis.

JOURNAL OF COMPUTERS, VOL. 9, NO. 6, JUNE 2014 1315

© 2014 ACADEMY PUBLISHER

