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Abstract—A piecewise-linear bandagp reference (BGR) with 
high power supply rejection ratio (PSRR) and low 
temperature coefficient is designed for analogue and mixed 
signal systems in this paper. By adopting LDO regulator, 
the designed high PSRR piecewise-linear BGR achieves well 
performances and has a simple architecture. Simulation 
results show that the PSRR of the designed piecewise-linear 
BGR with LDO regulator at 10Hz, 1kHz and 100kHz 
achieves, respectively, -110.42dB, -109.18dB and -64.51dB. 
Compared to the designed BGR without LDO regulator, the 
PSRR of the designed high PSRR piecewise-linear BGR 
with LDO regulator has the improvements of about 35dB, 
36.9dB and 29.28dB at 10Hz, 1kHz and 100kHz respectively. 
The designed piecewise-linear BGR with LDO regulator 
generates an output voltage of 0.68V with 1.65ppm/ºC 
temperature coefficient in the range from -50 ºC to 125 ºC. 
The deviation of the output voltage is within 98.23μV when 
the power supply voltage VDD changes from 1.2V to 7V. 
 
Index Terms—bandgap reference (BGR), piecewise-linear, 
LDO regulator, power supply rejection ratio (PSRR) 
 

I.  INTRODUCTION 

Bandgap reference (BGR) is a very important block for 
many analogue and mixed signal electronic devices such 
as data converters, DC-DC converters, DRAMs, linear 
regulators and so on. The BGR should be independent of 
fluctuations of power supply voltage and temperature, 
and also be implemented without modification of 
fabrication process. In modern CMOS technology, the 
output voltage of BGR is usually a weighted sum of the 
forward-bias emitter-base voltage of diode-connected 
parasitic vertical PNP transistor and the thermal voltage 
[1]. Conventional BGR has a large temperature 
coefficient over the whole temperature range and cannot 
meet the requirements of high precision circuits. To 
improve the temperature performance of BGR, many 
temperature compensation techniques have been reported, 
such as correlated double sampling technique [2], 
curvature correction [3-6] and so on. Recently, demands 
for low-voltage BGR circuits have increased enormously 
because they are widely used in portable electronic 
applications. Simultaneously, the most significant noise 

injected to the output of BGR circuit is the supply noise 
regarding to the other noise. On the other hand, a high 
power supply rejection ratio (PSRR) BGR is desired to 
achieve high performance analogue and mixed signal 
systems, particularly in wireless communications. 
Therefore, a BGR structure, which has high PSRR over 
broad frequency range, should be chosen to reject the 
supply noise coupled from the high-speed digital circuit 
on the chip. 

In the recent past, many approaches have be developed 
to improve the PSRR of BGR, such as supply 
independent current source technique [7], pre-regulator 
technique [8-11], subtractor technique [12], pseudo 
floating voltage source technique [13], cascode current-
mode technique [14], self-cascode current mirror 
technique [15], low dropout (LDO) regulator technique 
[16], voltage follower technique with PMOS as input 
transistor [17] and so on. In general, these reported BGR 
with PSRR enhancement have achieved well performance. 
However, to further improve the performance of BGR, 
the high PSRR BGR structure must still be analyzed and 
discussed. 

In this paper, a high PSRR CMOS BGR with less than 
1V output voltage is designed and analyzed. Employing 
an improved piecewise-linear temperature compensation 
technique and a LDO regulator, the designed BGR 
achieves a high PSRR performance over a wide 
frequency range and a well temperature characteristic 
over a wide temperature range. The analysis and design 
of piecewise-linear BGR without LDO regulator will be 
given in Section II. Section III will discuss the high 
PSRR piecewise-linear BGR with LDO regulator. 
Simulation results are described in Section IV. Finally, 
conclusions are given in Section V. 

II.  ANALYSIS AND DESIGN OF PIECEWISE-LINEAR BGR 

The designed BGR is shown in Fig.1, which consists 
of a start-up circuit and a core circuit of BGR. There are 
two possible equilibrium points in the core circuit of 
BGR, so a start-up circuit is necessary. Ms1~Ms5 form the 
start-up circuits, as shown in Fig.1 (b). The core circuit of 
piecewise-linear BGR will provide a sub-1V bandgap 
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Figure 1. Designed BGR (a) core circuit of BGR, (b) start-up circuit 
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Figure 2. Operation of designed BGR 

voltage VREF and has a good temperature characteristic. 
At the same time, all MOS transistors adopt the long 
channel transistor so that the channel-length modulation 
effect is negligibly small in this paper. 

For convenience, it is assumed that Wj, Lj and Ij are, 
respectively, channel-width, channel-length and drain 
current of transistor Mj in this paper, here j=1, 2, 3…. 
The core circuit of piecewise-linear BGR consists of 
transistors M1~M11, bipolar transistors Q1 and Q2, 
resistors R1~R4, and amplifiers A1 and A2. Amplifiers A1 
and A2 are entirely the same, and their dc gain Ad has that 
Ad>>1. Amplifier A1 forces the voltages VA and VB be 
equal, and amplifier A2 forces the voltages VB and VC be 
equal, i.e. VA=VB=VC=VEB1. Here, VA, VB, VC and VEB1 
are, respectively, the voltages of node A, node B, node C 
and emitter-base voltage of Q1. Transistors M1, M2 and 
M5 are entirely the same, and Q2 has an emitter area that 
is m times that of Q1. So, the drain currents of transistors 
M2 and M5 can be derived as 

2 5
1

1 lnkTI I m
q R

= =                  (1) 

where, k is Boltzmann’s constant, q is electronic charge, 
and T is absolute temperature. It is concluded that 
currents I2 and I5 are proportional to the absolute 
temperature T. Amplifier A2 force voltages VB and VC be 
equal, and transistors M3 and M4 are entirely the same. 
Therefore, the drain currents of M3 and M4, i.e. I3 and I4, 
can be derived as 

1
3 4

2

EBVI I
R

= =                                (2) 

VEB1 has a negative temperature coefficient, so it is 
concluded that currents I3 and I4 have a negative 
temperature coefficient. Transistors M2 and M6 have the 
same aspect ratio, and M3 and M9 have also the same 
aspect ratio. Therefore, it is concluded that I6=I2 and I3=I9. 

Transistorss M7 and M8 form the current-mirror pair, and 
transistor M8 has the aspect ratio that is α times that of 
transistor M7. By optimizing the value of parameter α, it 
can be achieved that I9=I8=αI2 under the condition of 
room temperature Tr. Therefore, the following expression 
can be derived as 
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   (3) 

M10 and M11 form current-mirror pair and have entirely 
the same aspect ratio. Therefore, the drain current INL of 
transistor M11 can be derived as 
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Figure 3. Designed high PSRR BGR with LDO regulator (a) start-up circuit, (b) supply-independent bias circuit, 
(c) LDO regulator, (d) core circuit of piecewise-linear BGR 
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So, the output voltage VREF of piecewise-linear BGR 
can be derived as             

1
3 4 4
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1( )( ln )EB
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4NL NLV R I=                                                             (8) 
According to (1) ~ (8), it is concluded that VPTAT, 

VCTAT and VNL are, respectively, the voltages with 
positive-temperature coefficient, negative-temperature 
coefficient and piecewise temperature coefficient, and 
their relations are shown in Fig.2. Equation (5) shows that 
the piecewise-linear BGR can achieve a low temperature 
coefficient bandgap reference voltage VREF by optimizing 
resistors R1~R4 and parameter α in theory. However, the 
operating supply voltage of piecewise-linear BGR, which 
is shown in Fig.1, is the power supply voltage VDD, and it 
cannot achieve high PSRR over a wide frequency range. 
Therefore, the piecewise-linear BGR cannot be 
effectively applied to analogue and mixed signal systems 
that have the requirement of high PSRR. Therefore, to 
further improve PSRR of BGR, a high PSRR piecewise-
linear BGR is designed by adopting LDO regulator in this 
paper, and will be analyzed in Section III.  

III. ANALYSIS AND DESIGN OF HIGH PSRR PIECEWISE-
LINEAR BGR 

Fig.3 shows the designed high PSRR piecewise-linear 
BGR, and all MOS transistors adopt the long channel 
transistor so that the channel-length modulation effect is 
negligibly small. The designed high PSRR piecewise-
linear BGR consist of a start-up circuit, a supply-
independent bias circuit, a LDO regulator and a core 
circuit of piecewise-linear BGR. The core circuit of 
piecewise-linear BGR is entirely the same as that 
designed in Section II, but whose operating supply 
voltage is the output voltage VREG of LDO regulator 
instead of power supply voltage VDD. Therefore, the 
designed high PSRR piecewise-linear BGR with LDO 
regulator can achieve an output voltage VREF with low 
temperature coefficient and high PSRR. The supply-
independent bias circuit produces supply-independent 
bias voltages, and will be discussed in Section III.A. 
Because there are two possible equilibrium points in the 
supply-independent bias circuit, a start-up circuit is 
necessary. MDS1~MDS4 form the start-up circuits, as 
shown in Fig.3 (a). The function of LDO regulator is to 
produce an internally regulated voltage VREG that is the 
operating supply voltage of core circuit of piecewise-
linear BGR instead of power supply voltage VDD. The 
analysis and design of LDO regulator will be given in 
Section III.B. 

A. Supply-Independent Bias Circuit 
As shown in Fig.3 (b), the supply-independent bias 

circuit consists of MB1~MB4 and RB1 [18]. MOS 
transistors MB1~MB4 operate in the saturation region, and 
MB1 and MB2 are entirely the same. The channel lengths 
of MB3 and MB4 are the same, but MB3 has a channel 
width that is N times that of MB4. Therefore, the drain 
currents IB3 and IB4 can be expressed as 
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Figure 5. Open-loop frequency response of LDO regulator 
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where, μn is the mobility of an electron, Cox is the gate 
oxide capacitance per unit area. Equation (9) indicates 
that the bias-current IB4 is independent of the power 
supply voltage VDD. Therefore, the gate-voltage VBIAS of 
MOS transistor MB4 can be derived as 

4 14

2 1 11
( )BIAS THN

n ox B BB

V V
C W L R Nμ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (10) 

where, VTHN is the threshold voltage of NMOS transistor. 
Equation (10) indicates that the bias voltage VBIAS is also 
independent of the power supply voltage VDD. 

B.  Analysis and Design of LDO Regulator 
The designed LDO regulator is shown in Fig.3 (c), 

which consists of error amplifier, a PMOS power 
transistor Mpass, and a feedback resistive network. The 
feedback resistive network consists of capacitor CD2, and 
resistors RFB1 and RFB2. The error amplifier consists of 
MOS transistors MD1~MD7, resistor RD1 and capacitance 
CD1. The error amplifier compares the reference voltage 
VBIAS, which is provided by the supply-independent bias 
circuit, with the feedback voltage VFB that is provided by 
the feedback resistors RFB1 and RFB2, and generates an 
error voltage signal which is fed into the gate of power 
transistor Mpass to change its over-drive. The over-drive 
adjusts the drain current of Mpass and forces the output 
voltage VREG of LDO regulator to be corrected to the 
proper level. The error amplifier and power transistor 
Mpass form a negative feedback system, which is 
equivalent to a three-stage amplifier negative feedback 
system. Therefore, the open-loop stable of LDO regulator 
is critical issue.  

To analyze the stability of LDO regulator, the open-
loop transfer function of LDO regulator should be 
analyzed and discussed. For convenience, the topologic 
architecture of LDO regulator is shown in Fig.4. The 
first-stage error amplifier AE1 consists of MOS transistors 
MD1~MD5, whose equivalent input transconductance is 
written as gmd2. The second-stage amplifier AE2 consists 
of MOS transistors MD6 and MD7, whose equivalent input 
transconductance is written as gmd7. Ro1 and Ro2 are the 

output resistance of amplifier AE1 and AE2 respectively, 
and Co1 and Co2 are the parasitic capacitances at the 
output of AE1 and at the gate of Mpass respectively. gmpass 
is the equivalent transconductance of Mpass, and RL is the 
equivalent load resistance. In Fig.4, Ceq-out=CD3+CL, here 
CL is the equivalent capacitance of internal power line. 

To simplify the transfer function without losing 
accuracy with the goal of providing a clearer insight into 
the designed LDO regulator structure, it is assumed that 
capacitors CD1, CD2 and Ceq-out are much greater than the 
parasitic capacitance Co1 and Co2, and the gains of each 
stage is much greater than one, i.e. gmd2Ro1, gmd7Ro2 and 
gmpassRL>>1. On the other hand, the feedback resistance 
RFB2 is much greater than the load resistance RL, and Ro1 
and Ro2 are greater than RD1. Therefore, the loop transfer 
function of the designed LDO regulator can be 
approximated to 
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Co1 and Co2 are the lumped capacitance, so the non-
dominant poles p2 and p3 will shift to a higher frequency 
than the unity-gain frequency (UGF). To cancel the effect 
of non-dominant poles in the designed LDO regulators, 
the zero zf should be lower than poles p1 and pf, so RFB2 
should be much smaller than RFB1, i.e. zf<<pf. That is to 
say, the effect of the pole p1 can be cancelled by zf. To 
ensure z1 be left-plane zero, RD1 should be selected much 
larger than 1/gmd7. At the same time, since CD1 and CD2 
are the compensation capacitor, it is practical to take the 
assumption of z1<pf by optimizing resistors RD1 and RFB1, 
and compensation capacitors CD1 and CD2. From the 
above discussion, the LDO regulator will be stable 
because it is similar to a single pole system. Fig.5 shows 
the simulated open-loop frequency response of the 
designed LDO regulator. Simulation results show that the 
phase margin is about 61º, which is sufficient to ensure 
the loop stability of LDO regulator. 

C.  Analysis of PSRR 
To improve the PSRR of piecewise-linear BGR, a 

LDO regulator is adopted in this paper, as shown in Fig.3. 
The operating supply voltage of core circuit of piecewise-
linear BGR is the output voltage VREG instead of power 
supply voltage VDD. Therefore, the PSRR of piecewise-
linear BGR with LDO regulator will be improved. Under 
the condition of low frequency, the PSRR can be 
quantitatively analyzed as follows. 

For convenience, it is assumed that gmj and imj are, 
respectively, the transconducatnce and the small-signal 
drain current of transistor Mj, here j=1, 2, 3…. Assumed 
that power supply voltage has an incremental variation 
vdd, the incremental current ib1 of MB1 can be derived as 

1

3 1 3
1

1
dd

b

mb B dsb
mb

vi
g R r

g

=
+

                  (20) 

where, rdsb3 is the source-drain resistance of MB3. MB1 and 
MB2 form current mirror pair, and they are entirely the 
same. Therefore, the gate-source variation vbias of MB4 
can be derived as 

4 3 1 3
1

1( )
dd

bias

mb mb B dsb
mb

vv
g g R r

g

=
+

              (21) 

 
Assumed that vreg is the output voltage variation of 

LDO regulator, and the feedback voltage variation vfb can 
be derived as 

2
1 2

reg
fb FB

FB FB

v
v R

R R
=

+
                 (22) 

As shown in Fig.3, the error amplifier of LDO 
regulator is made up of MOS transistors MD1~MD7, 
resistor RD1 and compensation capacitor CD1. To simple 
the analysis, it is assumed that the dc gain Av of error 
amplifier is far greater than 1, i.e. Av>>1. Neglected the 
effect of drain current variation of MD1 and MD6, the gate 
voltage variation vgpass of power transistor MPASS can be 
derived as 

2

1 2
4 3 1 3

1

1( )

v FB reg v dd
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FB FB
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mb

A R v A vv
R R g g R r

g

= −
+ +

  

(23) 
According to (20) ~ (23) and the Kirchhoff current law 

(KCL) at the output node VREG of the LDO regulator, it 
is derived as 

4 3 1 3
1

2

1 2

1 1( )
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mb mb B dsb
reg mb

mpass eq L
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A

g g R rv gg R A Rv g R
R R

−

−

+
+

=
+

+

  

(24) 
where, Req-L is the equivalent resistance seen from node 
VREG to ground. In the similar way, it is assumed that va, 
vb and v1 are, respectively, the voltage variations at node 
A, node B and node 1. So, va and vb can be derived as 

1 1( - )ra m reg av g v v=                        (25) 

2 1(v - )rb m reg bv g v=                       (26) 
where, ra and rb are the resistance seen from node A and 
node B to ground respectively. Amplifier A1 and A2 are 
entirely the same, and whose dc gain Ad is far greater 
than 1, i.e. Ad>>1. In Fig.3, the voltage variation v1 at 
node 1 has that v1=Ad×(vb-va). According to (25) and (26), 
it is derived as 

1 reg
1

11+
d m

d m

A g v
v

A g
β

β
=                      (27) 

where, β=rb-ra. MOS transistors M1, M2, M5 and M6 are 
entirely the same, and it is concluded that gm1=gm2=gm5= 
gm6. Therefore, it is derived as 

1,2,5,6 1
1

1
1+m reg

d m

i g v
A g β

=            (28) 

The voltage variation v2 at node 2 has that v2=Ad×(vc-
vb), here vc is voltage variation at node C. MOS 
transistors M3, M4 and M9 are entirely the same, and it is 
concluded that gm3=gm4=gm9. In the similar way, it is 
derived as 

1 1
3,4,9 3 reg

1 4 2

1+
(1+ )(1 )

d m d m b
m

d m d m

A g A g ri g v
A g A g R

β
β

+=
+

 (29) 

Transistors M7 and M8 form the current mirror pair, 
and transistor M8 has the aspect ratio that is α times that 
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Figure 6. Output voltage VREF of piecewise-linear BGR with- and 
without- LDO regulator as a function of temperature T 

 

Figure 7. Simulated PSRR of piecewise-linear BGR with- and 
without- LDO regulator  

of transistor M7. Transistors M10 and M11 are entirely the 
same, so it is derived as 
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To simple the analysis, it is assumed that 

1 1d mA g β >>  and 4 2 1d mA g R >> . According to (28) 
~ (30) and KCL at the output of BGR, it is derived as 

 

3 4
3

reg 2

(1 )ref b

d d

v r R RR
v A R A

β α
β β

+ + +≈ +            (31) 

where, vref is the output voltage variation of piecewise-
linear BGR with LDO regulator. Therefore, the PSRR of 
the designed piecewise-linear BGR with LDO regulator 
can be written as 

20 lg 20lg

20lg 20lg

ref ref reg
dB

vdd reg dd

ref reg

reg dd

v v v
PSSR

v v v

v v
v v

= = ×

= +

       (32) 

According to (24), (31) and (32), it is concluded that 
the PSRR of the designed piecewise-linear BGR will be 
improved significantly by adopting the LDO regulator. 

IV. SIMULATION RESULTS 

To confirm the circuit of the designed piecewise-linear 
BGR in this paper, the piecewise-linear BGRs with- and 

without- LDO regulator are designed and simulated in 
SMIC 0.18μm CMOS process with 1.35-V power supply 
voltage. 

Fig.6 shows the output voltage VREF of piecewise-
linear BGR with- and without- LDO regulator as a 
function of temperature T with 1.35-V power supply 
voltage. Simulation results show that the temperature 
coefficient of the piecewise-linear BGR without LDO 
regulator is 2.89ppm/ºC when temperature varying from -
50 ºC to 125 ºC. And, the output voltage VREF of 
piecewise-linear BGR with LDO regulator has only the 
temperature coefficient of 1.65ppm/ºC. 

The simulated PSRR of piecewise-linear BGR with- 
and without- LDO regulator is shown Fig.7. The 
piecewise-linear BGR with LDO regulator at 10Hz, 
100Hz, 1kHz, 10kHz and 100kHz achieves , respectively, 
-110.42dB, -110.41dB, -109.18dB, -94.65dB and -
64.51dB. And the piecewise-linear BGR without LDO 
regulator at 10Hz, 100Hz, 1kHz, 10kHz and 100kHz 
achieves, respectively, -75.35dB, -75.31dB, -72.28dB, -
55.19dB and -35.23dB. Compared to the piecewise-linear 
BGR without LDO regulator, the designed high PSRR 
piecewise-linear BGR with LDO regulator has an 
improvement of PSRR with about 35dB, 36.9dB and 
29.28dB at 10Hz, 1kHz and 100kHz respectively. 
Therefore, the PSRR improvement is achieved by 
adopting LDO regulator. 

Fig.8 shows the simulated line-regulations of 
piecewise-linear BGR with- and without- LDO regulator. 
When power supply voltage VDD varies from 1.2V to 7V, 
the output voltage deviation of piecewise-linear BGR 
without LDO regulator is 3.83mV, but the output voltage 
deviation of piecewise-linear BGR with LDO regulator is 
only 98.23μV. Compared to the piecewise-linear BGR 
without LDO regulator, the piecewise-linear BGR with 
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Figure 8. Simulated line-regulation of piecewise-linear BGR with- and 
without- LDO regulator  

LDO regulator has a well line regulation. Finally, to 
provide an evaluation on the designed high PSRR BGR 
with LDO regulator in this paper, comparison of some 
reported BGR is shown in Table I. As shown in Table I, 
the designed piecewise-linear BGR with LDO regulator 
has a well performance.  

V.  CONCLUSIONS 

A CMOS high PSRR piecewise-linear BGR, which has 
an output below 1V, has been designed and analyzed in 
this paper. Compared to piecewise-linear BGR without 
LDO regulator, the designed high PSRR piecewise-linear 
BGR achieves high PSRR performance by adopting LDO 
regulator. Simulation results shows that the designed high 
PSRR piecewise-linear BGR with LDO regulator 

provides an output voltage with excellent stability, a low 
temperature coefficient, and high PSRR performance. It 
is well suited for analogue and mixed signal systems. 
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