
Figure 1. Fifty-three photos from Chinese trouble of freight car 
detection system. 
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Abstract—The trouble of freight car detection system (TFDS) 
is a popular application in Chinese railway today. In this 
paper, the discrete-point sampling model is further 
developed to locate potential fault regions in the photos 
taken by the TFDS. The discrete-point sampling model not 
only contains the image’s region boundary information and 
region information, but also reflects the transition from 
region to boundary. The most salient component’s contours 
in samples are drawn by hand and recorded as data 
templates used for matching in test images. Experimental 
results show that by components’ classification, the method 
based on this model can classify different types of freight 
cars’ parts universally and locate the potential fault regions 
more accurately and quickly than regional gray matching or 
edge matching. The results of anti-noise testing in 
laboratory and more than two years daily operation at 
several inspecting stations show that our method has a 
strong ability to survive with nonlinear deformations, and 
has a good extensibility to be used with different parts, 
which meet application demands for the full-automatic 
inspection system. 
 
Index Terms— TFDS, discrete-point sampling model, 
components’ classification, potential fault regions locating 
 

I.  INTRODUCTION 

Every day in China, thousands and tens of thousands of 
freight trains are running on more than 90,000 kilometers 
railway. The trouble of freight car detection system [1]-[2] 
（ TFDS, official name ）  is a popular application 
demanded by the Chinese department of railway now. A 
TFDS takes 53 photos each freight car with five cameras 
from sides and bottom as showed in Fig. 1, which means 
each freight train may have 2,000-3,000 photos according 
to the number of its boxcars. Four experienced workers 
will look into all these photos and make judgments 
whether there are troubles or not in 10 minutes. Our goal 
is using computer to do the same job with the same 

accuracy and same speed as those experienced workers 
do, and change the human-control model to the computer 
combining with human-control model until the final 
realization of the complete computer-control model. 

The key problem in TFDS is how to classify 
components and locate potential fault regions as quickly 
as possible. Since China’s railway system has been 
developing rapidly, different kinds of freight cars are 
running at the same time with a variety of components. Both 
new and old components, even with the same function, may 
be designed in different years with several types. 
Different types of components may have different fault 
regions in different quantities. The computer fault 
detection algorithm should first automatically identify the 
component’s type in the freight car, then locate potential 
fault regions,  and detect if there is fault or not in these 
potential fault regions.  

The challenge also comes from the difficulty of 
components modeling. In TFDS, the status of freight car 
and photography conditions vary significantly at different 
inspecting stations such as illumination changes, different 
weather conditions, varying speed and camera vibration, 
etc. As a result, the photos of one component type may be 
quite different in details despite overall similarity. It is 
impossible to gain identical photos. In this case, if the 
common regional threshold segmentation or edge 
extraction algorithms are adopted, irregular and random 
changes will occur in the regions or edges. So it is very 
difficult to establish a unified mathematical model 
representing this type of component.    
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Before knowing about TFDS, the railway workers who 
look over those photos have already been checking out 
and repairing the faults in freight cars for more than five 
years. They are quite familiar with those regions with 
potential faults in various types of components, and they 
can classify the type of components and locate the region 
with potential faults as soon as they see the photo. In 
order to ensure the computer to reach the same detecting 
ability, many methods have been tried, including line 
matching[3], edge matching [4], corner point matching[5], 
SIFT[6] and its variant features [7] matching. However, 
the classification capacity, locating time and accuracy of 
these methods are no match for those experienced railway 
workers. This situation has not been changed until a 
method based on the discrete-point sampling model [8]-[9] 
(DPSM) is developed. This model takes advantage of 
both methods based on object region and boundary, 
obtaining the boundary information from a yin discrete-
point sampling map and regional information from a yang 
discrete-point sampling map. Yin and yang sampling 
maps reflect the transitional features from object region 
to object boundary in the image. Summarized from a 
large number of images, the transitional features are 
combined for component structure modeling and 
component type classification. Better results have been 
achieved in classifying the component types and locating 
potential fault regions. Currently, this model has been 
successfully applied in several freight car stations with 
TFDS. 

This paper is organized as follows. Section 2 briefly 
introduces the developed discrete-point sampling model. 
Section 3 presents how the discrete-point sampling model 
be used to locate the potential fault regions in a TFDS. In 
Section IV, we describe and discuss the results of our 
experiments. Section V offers our conclusion. 

II.  THEORY 

A.  Discrete-point Sampling 
The visual basis for application of the discrete-point is 

primarily established upon the spatial characteristics of 
vision, including the cumulative effect in space and the 
limitation of visual acuity [10]. Visual acuity of human 
eyes has a certain limit. For instance, based on the optical 
diffraction principle, a single light spot in a scene will no 
longer be a single spot when focused on the retina, but a 
pattern composed of a central bright disk and a series of 
surrounding dark and bright rings. The width of a fine 
line on the retina is always larger than 0.0087rad, no 
matter how fine the original test line is. Under the best 
light conditions, the best eyes of human beings can only 
distinguish grids composed of lines with width 
corresponding to 0.0097-0.011rad on the retina. 
Considering all these visual features, the major structural 
information in an image can be conveyed by a series of 
discrete-point in the image. Human brain can easily 
combine these discrete points and obtain meaningful 
information. Different amounts of discrete-point can 
convey different quantities of information and present the 
details of the image at different levels, which can be seen 

clearly in Fig. 2. It can be seen that as the sampling radius 
increases, the detailed information of the image is 
gradually decreasing, but it is still quite easy for human 
eyes to locate the wheel. If the current task is wheel 
locating, Fig. 3 (d) with r=3 can provide sufficient 
information with 25674 yin pixels, which account for 
only 2% of the total number of pixels in the original 
image. Fig. 3 gives the relationship among sampling 
radius, sampling points and sampling time in Fig.2. As 
shown in the figure, when sampling radius increases from 
1 to 2, the number of sampling points reduces by 75.2%, 
and sampling time shortens by 80.3%. Taking into 
account the convenience of grouping, we use r=2 as 
default sampling radius in our applications.  

B.  Sampling Model 
In this paper, we define yin points are pixels located in 

the region with uneven brightness, while yang points are 
pixels located in the region with even brightness. This 
involves how we perceive brightness contrasts. Our 
sampling model based on the perception of brightness 
contrast takes the following two factors into account: 

1) The human visual system mainly perceives the 
changes of brightness rather than brightness itself. The 
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Figure 3. Relationship among sampling radius, sampling points and 

sampling time. 

   

(a)  initial image                                     (b) r=1. 

     
(c) r=2                                                 (d)   r=3 

 
Figure 2. Initial image(1400×1024) and images composed of discrete-point 

with different sampling radii.          
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psychological brightness of a surface is generally 
determined by the relationship between the brightness of 
itself and its surroundings. The sampling model should 
contain such relationship. 

2) There are certain limits for human eyes to perceive 
the change of brightness. Firstly, the brightness difference 
between two images must be no less than △Bmin, which 
is the minimum brightness difference perceivable for 
human eyes. And however the ambient brightness B 
changes, the ratio △Bmin /B remains the same and equals 
to a constant. This constant should be regarded as a 
threshold in the sampling model to tell whether the 
discrete point is in a region with even brightness or not. 

The second factor is based on the Weber-Fechner 
Law[11]. The minimum brightness difference perceivable 
for human eyes ξ＝△Bmin/B, is called contrast sensitivity 
threshold or Weber-Fechner Ratio. Generally, for human 
eyes, ξ＝0.005～0.02. In case of extremely high or low 
brightness, ξ can rise up to 0.05. When watching TV, ξ 
may be larger due to the effects of stray lights. All these 
can be taken as a reference for the value selection of ξ in 
the sampling model. 

Comprehensively considering the above two factors, a 
sampling model for discrete points is further developed in 
this paper, as shown in Fig. 4. In this model, Cr and CR 
represent the inner circle and outer circle of concentric 
circles, and their radiuses are r and R respectively. R≥r+1. 
CR-r is a concentric ring. pi is the No. i pixel in Cr, and gi 
is the brightness value of pi. pj is the No. j pixel in CR-r, 
and gj is the brightness value of pj. r is chosen as the 
sampling radius for discrete-point, which means the 
distance between each sampling point and its 4-
neighborhood sampling points is r. The values of r and R 
are related to the type and size of the object to be detected. 

According to the Weber-Fechner Law, the difference 
between mean brightness of ring region CR-r and mean 
brightness of inner circular region Cr is the brightness 
difference in the neighborhood of the center point. This 
brightness difference divided by the mean brightness of 
inner circular region Cr is U(pk), the relative brightness 
uniformity in the neighborhood of pk . So the sampling 
operator for pk is developed as follows: 
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Next, Weber-Fechner Ratio ξ is introduced as a 
threshold to evaluate the brightness uniformity of pk’s 
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In applications, the sampling map (yin or yang), 
sampling radius r and the threshold ξ should be 
appropriately selected according to the type and size of 
objects to be detected, and noise level in the image. If the 
object is a plane, yang sampling map should be choose 
and Formula (1), (3) should be used for sampling the 
original image. If the object is a line or a point, yin 
sampling map should be choose and Formula (1), (2) 
should be used for sampling the original image. Sampling 
radius r should be determined by the size of objects. 
Generally speaking, the larger the size of object to be 
detected is, the larger the sampling radius is, and the 
common value of r is 2 in our applications. The threshold 
ξ to evaluate the brightness uniformity in the 
neighborhood is affected by the overall noise level of the 
image. Higher noise level requires larger ξ to restrain 
noise interference; otherwise, the value of ξ can be 
smaller, and the common value of ξ is 0.05 in our 
applications. In practice, there is no need to select the 
optimal Weber-Fechner Ratio ξ for the human eyes. If the 
entire photo is too dark to identify the details, ξ can be 
decreased to increase detailed information, which is 
contrary to physiological property of human eyes. If the 
photo has too many details and contains a lot of noise, ξ 
can be increased to reduce unnecessary information. 

III.  APPLICATION 

Based on the DPSM, a new technique is invented to 
automatically classify the components of freight cars and 
locate the regions with potential faults. This technique is 
efficient, accurate, simple and general. This technique 
can judge the structural type of the component in the 
image and locate the regions with potential faults in 
200~300 ms. Meanwhile, it is applicable to all parts of 
the freight car, which lays a solid foundation for the 
further  research on automatic fault detection of freight 
cars. The procedures of this technique are as follows:  

Step 1: Select learning samples for all types of 
components in a certain part of freight cars, and at least 
one learning sample for each type of component. 

Step 2: After careful observation of the yin sampling 
maps and yang sampling maps from learning samples, 
some components in these learning samples are selected 
and their contours are drawn up by hand in their sampling 
maps. At least one component’s contours should be 
drawn up for each learning sample. The contours are not 
necessarily continuous or closed. The standard for 
drawing up the contours of the component is to clearly 
distinguish the current learning sample from other 

 

Figure 4.  The diagram of discrete-point sampling model. 

1268 JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER



learning samples within the same part of freight cars. Fig. 
5 shows the contours of the component in Part n_3_1 
drawn by hand in yin –yang sampling maps. 

Step 3: Store the information about the hand-drawn 
contours of all components from all learning samples 
within the same part of freight car in the format of *.ink 
data file, and prepare the ink data file for this part of 
freight car. The information stored in *.ink data file 
mainly includes: yin and yang location sign of each 
component in each sample, each component’s code, the 
code of the part that the components belong to, the code 
of structural type that the part belongs to, number of fault 
regions, serial number of learning sample in the part, 
coordinates of a component locating point in its learning 
sample, search radius of component locating point, type 
of component locating point, key length for component 
locating and coordinate sequence of component contour 
points, etc. 

Step 4: Select an *.ink data file for a test image 
according to which part of freight car it shows, and then 
calculate the yin or yang sampling map of test image 
using formula 2 or 3 according to the yin and yang 
location sign of every component in this *.ink data file. 
Yin and yang sampling maps might be calculated only 
once for each test image. 

Step 5: In the yin or yang sampling map of test image, 
take the coordinates of component locating point in its 
learning sample as the search center, search the 
component locating point in the test image within the 
search radius of the component locating point according 
to the type of component locating point and key length 
for component locating. Only those points that can meet 
the key length for component locating and correspond to 
the type of component locating point can be regarded as 
the potential component locating points in the test image. 

Step 6: Load the coordinate sequence of component 
contour points onto all the potential component locating 
points of the test image, i.e. map the coordinate sequence 
of component contour points in the corresponding 

learning sample into yin or yang sampling map of test 
image for matching. Suppose Nm is the actual number of 
matching points, Nink is the number of points in the 
coordinate sequence of component contour points. If this 
mapping receives the “response” of yin or yang sampling 
map, which means there are yin or yang sampling points 
appearing in the mapping region, then these points will be 

 

(a) Part n_1_0                                 (b) Part n_1_2 

 

(c) Part n_4_9                                         (d) Part n_4_3 

 

(e) Part n_3_1                                           (f)Part n_3_4 

Figure 6. Classification and locating results in different parts of TFDS.

 
(a) Type 311 sample image                                 (b)Component in Type 311 Yin Map                (c) Component in Type 311 Yang Map 

 
(d) Type 312 sample image                              (e)Component in Type 312 Yin Map           (f) Component in Type 312 Yang Map 

Figure 5. Contours of the component in Part n_3_1 drawn by hand in yin sampling maps. 
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counted as matching points. The total number of 
matching points Nm divided by the number of points in 
the coordinate sequence of component contour points Nink 
is the match ratio of the test image to the contour of this 
component, as shown in Formula 6: 

 m

i n k

N
N

λ =      (6) 

Step 7: Rank the order of the match ratios calculated 
according to all the coordinate sequences of component 
contour points. The component type with highest match 
ratio is most likely to be the component type existing in 
the test image. Then the part’s structural type in the test 
image can be determined according to the code of the part 
that this component type belongs to and the code of 
structural type that the part belongs to.  

Step 8: Locating of region with potential faults. After 
the proper classification of structural type in a certain part 
of freight car, it becomes easier to locate the regions with 
potential faults according to its structural type. First, 
these regions are marked in the above learning samples, 
and information about the type and location of faults is 
also recorded in the ink data file that contains the 
information about components in learning samples. After 
the component in the test image is located, the location of 
its regions with potential faults can be confirmed as well. 
Fig. 6 shows the location of regions with potential faults 
in different part s. 

When preparing the ink files, attention should be paid 
to the following aspects and the accuracy of classification 
may be effectively improved:  

1. Selecting component types with salient differences； 
Based on the visual saliency of human eyes, component 

types with significant differences should be selected, and the 
conditions for locating points should be set reasonably, so as 
to achieve an initial acceptable result of classification and 
locating. 

2. Selecting typical sample image for each type of 
component； 

When selecting learning samples for drawing component 
contour, pay attention to the representativeness of these 
sample images, and use the least sample images to ensure 
the search ranges of locating points can cover all the 
possible regions and the initial conditions of locating points 
can be met by most test images except for special ones. 

3. Appropriately drawing component with auxiliary 
structural difference 

If there are lots of errors appear when classify two 
groups of structural types , keep the component’s 
contours with significant difference, and draw contours of 
another component with auxiliary structural difference, so 
as to improve the accuracy of classification. 

IV.  RESULTS AND DISCUSSION 

In this section, we will compare our method with 
several classical template matching methods, and we will 
test its performances in classifying and locating, 
addressing noise interfering, and performing extensible 
learning. We will use four experiments, including 
matching comparison, locating test, noise test and 
extensibility test. Our test environment utilizes an Intel 

Core i5-2540 2.60GHz CPU ， 4 GB RAM, and 
VC++2010.  

A.  Matching Comparison  
A total of 744 images with good quality in a 

component type I of the wheel part as shown in Fig. 3 (a) 
are selected from a TFDS station. One image is randomly 
chosen to be the learning sample, as Fig. 7 (a) shows; the 
chosen image is used to generate an edge map (Fig. 7 (b)) 
and a yin DPSM (Fig. 7 (c)). The triangular region in the 
middle of the image is regarded as the salient component; 
it is marked as component type I of a wheel part, which is 
used to generate a gray template (Fig. 7 (d)), an edge 
template (Fig. 7 (e)) and a hand-sketch template (Fig. 7 
(f)). All of these three templates are used for matching 
and locating in the whole range (1400×1024) of the 
remaining 743 images. All of the best matching areas are 
cut out as sub-images, to be checked by manual 
inspection. If there is a whole triangular region, such as 
Fig. 7 (d) in a sub-image, this matching is correct. If there 

 
(a) Initial image (1400×1024);  (b) edge map;              (c) yin DPSM; 

 
(d) gray template;      (e) edge template     (f) hand-sketch template. 

Figure 7. Three different template matching methods with their templates.

TABLE I 
MATCHING COMPARISON RESULTS WITH 743 IMAGES 

Methods
Acc
urac-
y(%)

Averag
e-time 
(ms) 

Mean Varianc
e 

Size 
(Byte

s) 
Gray 

matching 

1 

99.4

6 
314.64

0.975

3 

0.0005

02 

200×

160 

Gray 

matching 

2 

99.7

3 
306.96

0.956

8 

0.0013

80 

200×

160 

Gray 

matching 

3 

100.

00 
306.11

0.992

5 

0.0000

35 

200×

160 

Edge 

matching

100.

00 
6955.88

0.982

0 

0.0000

05 

190×

20 

Out 

method 

100.

00 
154.22

0.930

0 

0.0041

09 

827×

4+3 
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is no such triangular region or part of it, then this 
matching is incorrect. 

Table I records, for the three templates, the correct rate, 
the average time cost, the matching rate’s mean and 
variance and the template’s size. The gray template 
matching uses the cvMatchTemplate function in OpenCV, 
where schemes 1, 2, and 3 correspond to 
SQDIFF_NORMED, CCOEFF_NORMED, and 
CCORR_NORMED, respectively. The template-
matching methods that are based on the gray correlation 
are easily affected by illumination changes or occlusions. 
Edge matching based on distance transformations [12]-
[13] can overcome such effects, while it is 
computationally expensive and its real-time performance 
is still not satisfactory. In the method that we proposed in 
this paper, it costs 90 ms on average to generate a yin 
DPSM of a whole image, and 65 ms for single hand-
sketch template matching. Thus, with half the time of the 
gray template and 10% of its size, our method not only 
makes the same matching and positioning result as the 
gray matching scheme 3 and edge matching do, but also 
prepares well for subsequent classifications and locating. 

B.  Test on the Locating of Potential Fault Regions 
In this test, the DPSM is applied to locate potential 

fault regions in wheel-part images from TFDS. 1,150 
wheel-part images of the freight car are randomly 
selected from the total images taken in one day by a test 
station. These images are used as test samples, including 
5 different structural types. Each image is in the original 
size of 1400×1024. The locating technique based on 
DPSM is adopted to locate the regions with potential 
faults in all the wheel images. The accuracy and 
efficiency of this technique is tested, and the test result is 
recorded according to the type of the wheel, as shown in 
TABLE II. 

The traditional methods of matching locating by gray-
level template or edge template cannot predict the 
structural types of wheel part, and thereby fail to select 
the correct template in advance. The locating technique 
based on DPSM proposed in this paper can 
simultaneously accomplish such three tasks as detection, 
locating and classification and reach high efficiency. 
According to TABLE II., locating accuracy of all five 
wheel types has reached over 95%, and the average 
locating accuracy of all the images reaches 97.04%. The 
average time for one image is equivalent to the time cost 
by matching with a single gray-level template. Therefore, 
both classification accuracy and locating efficiency of the 

technique in this paper can meet the requirements of 
automatic fault detection of freight cars.  

C.  Noise Test 
After testing millions of TFDS images, it is confirmed 

that the rapid classification and locating technique based 
on the DPSM has strong anti- noise capability. In order to 
analyze the anti- noise capability of image classification 
and locating method based on DPSM, salt and pepper 
noise of different signal-to-noise ratios are added to 1150 
tested images used in test (a). The classification and 
locating method based on the DPSM is adopted to 
classify the images, and experimental results are shown in 
Table III and Table IV. 

According to the experimental result, the classification 
and locating method based on a DPSM has strong 
resistance to both random noise and salt-pepper noise. It 
should be noted that, when the signal-to-noise ratio 
reduces to a certain degree, Weber-Fechner Ratio ξ can be 
properly increased to reduce the detailed information and 
further improve the anti-interference capability of 
detection system. 

D.  Extensibility Test 
With training, anyone who has experience with a 

computer can master our hand-sketch shape matching 
method that is based on a DPSM and can apply it to 
images of different parts from TFDS. If a new type of 
component occurs, then we must draw a new hand-sketch 
template for it, which can be accomplished flexibly by 
inspectors in each of the TFDS stations according to the 
actual situations of their recent passing freight cars. Our 
method has been successfully applied to more than 10 

TABLE II 
REGIONS LOCATING RESULT 

Type 151 152 153 154 155 total 

Photos’ 
number 

773 229 38 33 77 1150 

Correct 
rate(%) 

96.9 97.4 97.4 100 96.1 97.04

Time(ms
) 

231 245 245 284 257 239 

TABLE III 
CLASSIFICATION RESULT WITH RANDOM NOISE  

SNR 151 
(773) 

152 
(229)

153 
(38) 

154 
(33) 

155 
(77) 

total 
(1150)

∞ 98.06 99.56 100 100 96.10 98.35
25.70 97.67 99.56 97.37 100 97.40 98.09
19.95 98.71 98.69 97.37 96.97 97.40 98.52
17.88 97.93 97.82 78.95 93.94 90.91 96.70
15.02 97.67 93.01 84.21 78.79 84.42 94.87
13.59 92.11 79.91 55.26 45.45 70.13 85.65
13.29 79.56 68.99 28.95 21.21 58.44 72.70

TABLE IV 
CLASSIFICATION RESULT WITH RANDOM NOISE  

SNR 151 
(773)

152 
(229)

153 
(38) 

154 
(33) 

155 
(77) 

total 
(1150)

21.43 99.61 97.82 97.37 100 94.81 98.87
18.50 98.06 60.70 73.68 9.09 20.78 82.09
16.80 97.41 37.12 65.79 3.03 14.29 76.09

TABLE V 
RESULTS OF COMPONENT CLASSIFICATIONS IN FIVE PARTS 

Parts n_1_0 n_1_2 n_4_3 n_3_1 n_3_4 

primitive types 5 5 5 6 8 

no primitive 
proportion % 

0 0 2.6 12.6 11.8

Correct rate % 99.46 99.39 96.21 92.64 91.35 
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parts in several TFDS stations for more than two years. In 
the following five-part test, we extract 2000 images for 
each part randomly from a TFDS, and Fig. 6 shows their 
classification and locating results. Table IV shows the 
experimental results of component classifications with 
mainstream types in five parts of TFDS based on our 
method. The mainstream types of components refer to the 
common component types in this part, for which the 
hand-sketch has been drawn and recorded. Because non-
mainstream types refer to some component types that 
occasionally appear in this part and that differ greatly 
from the mainstream components, their hand-sketches are 
not drawn. During classification, those non-mainstream 
types should be distinguished as a special category, i.e., 
the category that could not be recognized. However, 
because of the irregular and wide changes, the non-
mainstream types are likely to be detected as mainstream 
types of components, which lead to errors in the 
classification results. The experimental results in table IV 
show that, for parts with small structural changes and 
without non-mainstream types of components, the 
accuracy of this classification method can reach over 
99.0%; while for parts with complex structure and large 
proportions of non-mainstream types of components, the 
accuracy of this classification method decreases to 90%. 
In this case, the threshold for some false fault alarms 
should be appropriately decreased, and manual judgments 
are needed. 

V.  CONCLUSIONS 

The DPSM reflects the transient process from object 
region to object edge and provides a platform for storing, 
representing, searching and detecting object structures. To 
detect the images in a certain part of TFDS is actually to 
give an overall description of all the image samples in this 
part. This description not only includes edge information and 
regional information, but also includes the relative positions 
of edges and regions and allows the mutual conversion 
between edges and regions, which may be caused by 
position deviation, light changes or covered spots. 
Nevertheless, as long as the component of freight car exists, 
the transient process from component region to component 
edge will exist undoubtedly. This transient process is not 
reflected by a certain pixel or edge, but distributed in a 
certain region that is not necessarily continuous. In other 
words, as long as there is a certain region in the yin sampling 
map or yang sampling map that can contain the contour of a 
certain component of the freight car, it can be deduced that 
the original image probably contains this component. 
Moreover, whenever the components of freight cars are 
upgraded, the ink data files can be replaced to update the 
classification and locating algorithm, so this algorithm can 
serve as an open and standard tool for TFDS. In fact, 
compiling ink data files is storing knowledge features, the 
ink files is corresponding to the storage space of knowledge 
features of freight car components, and mapping the 
component data in ink files to sampling maps is searching 
for knowledge features. All these steps are completed based 
on yin-yang sampling maps. Yin-yang sampling maps can 
store the knowledge about the point, line or plane objects. 

Edge graphs and threshold graphs cannot properly 
demonstrate the knowledge features of the point, line or 
plane objects in complex and changing backgrounds. DPSM 
can solve this problem to some extent under certain 
conditions, provide a platform for object detection to 
effectively extract knowledge features, and search 
knowledge features at a very fast speed only in a small 
storage space. In many cases, accompanied by discrete 
point grouping algorithm and computing geometric 
algorithms, the yin-yang sampling maps can replace edge 
maps or threshold maps as a more efficient and robust 
model for object detection in a large quantity of images. 

ACKNOWLEDGMENT 

This work was supported in part by the Natural 
Science Foundation of China under Grant 60975021. 

REFERENCES 
[1] Z.H. Liu, D.Y. Xiao and Y.M. Chen, “Displacement fault 

detection of bearing weight saddle in TFDS based on 
hough transform and symmetry validation,” in 9th 
International Conference on Fuzzy Systems and 
Knowledge Discovery (FSKD), pp. 1404-1408, Chongqing, 
China, May. 2012. 

[2] X.D. Yang, L.J. Ye and J.B. Yuan, “Research of Computer 
Vision Fault Recognition Algorithm of Center Plate Bolts 
of Train,” in 1st International Conference on 
Instrumentation, Measurement, Computer, Communication 
and Control, pp.978-981, Beijing, China, Oct. 2011. 

[3] Wang, Yanxia, Yan Ma, and Qixin Chen. "A Method of 
Line Matching Based on Feature Points." Journal of 
Software 7.7 (2012): 1539-1545. 

[4] H.Z. Wang and J. Oliensis, “Rigid Shape Matching by 
Segmentation Averaging,” IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 32, no. 4, pp. 619-635, Apr. 2010. 

[5] Yang, Huihua, et al. "An Efficient Vehicle Model 
Recognition Method."Journal of Software 8.8 (2013): 
1952-1959. 

[6] Gao, Tao, et al. "Feature particles tracking for moving 
objects." Journal of Multimedia 7.6 (2012): 408-414. 

[7] Zeng, Lin, et al. "A Self-adaptive and Real-time Panoramic 
Video Mosaicing System." Journal of Computers 7.1 
(2012): 218-225. 

[8] Zhu, Zongxiao, Guoyou Wang, and Jianguo Liu. "Object 
detection based on multiscale discrete-point sampling and 
grouping." Sixth International Symposium on Multispectral 
Image Processing and Pattern Recognition. International 
Society for Optics and Photonics, YiChang, China,2009. 

[9] Zhu, Z., et al., “Fast and Robust 2D-Shape Extraction 
Using Discrete-Point Sampling and Centerline Grouping in 
Complex Images”. Image Processing, IEEE Transactions 
on, 2013. 22(12): p. 4762-4774. 

[10] Ali, Mohamed Ather and Klyne, M.A., “Vision in 
Vertebrates”. New York: Plenum Press. 1985, pp. 28. 

[11] Jianhong  Shen, “On the foundations of vision modeling I. 
Weber's law and Weberized TV restoration,” Physica D: 
Nonlinear Phenomena, vol.175, no.3-4, pp. 241-251,2003. 

[12] R.G. Caves, P.J. Harley and Q. Shuan, “Matching map 
features to synthetic aperture radar (SAR) images using 
template matching,”, IEEE Trans. Geosci. Remote Sensing, 
vol. 30, no.4, pp.680-685, Jul. 1992. 

[13] J. Kang and G.Yang, “Fast morphological pyramid 
matching algorithm based on the Hausdorff distance,” in 
2011th IEEE International Conference on Cyber 

1272 JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER



Technology in Automation, Control, and Intelligent 
Systems, IEEE, pp.288-292, KunMing, China, Mar. 2011. 

 
 
Zongxiao Zhu received the BS degree and the MS degree in 
electrical and electronic engineering from Xi’an Jiaotong 
University, Xi’an, China in 2000 and 2003, respectively. He is 
currently pursuing the Ph.D. degree in control science and 
engineering at the Institute for Pattern Recognition and 
Artificial Intelligence, Huazhong University of Science & 
Technology, Wuhan China.  

From 2003 to 2004, he was an engineer with SuZhou Shihlin 
Electric&Engineering Co., where he was in charge of designing 
small power converters (on the market in 2004). Since 2004, he 
has been a faculty of College of computer Science, South-
Central University for Nationality (SCUN), Wuhan, China. In 
2007, he founded the Information Processing Laboratory for 
Minority Language (IPLML) in SCUN and began to manage a 
multidisciplinary research team aiming at using information 
technology to salvage, protect and broadcast endangered 
minority cultures. His research interests include image 
processing, object detection, and endangered minority culture’s 
protection with information technology. 

Mr. Zhu is a member ACM and a member of Chinese 
computer federation (CCF).  
 
 
Guoyou Wang received BS degree in Electronic Engineering 
and the MS degree in pattern recognition and intelligent system 
from Huazhong University of Science and Technology, Wuhan, 
China in 1988 and 1992, respectively. He is currently a 
professor with the Institute for Pattern Recognition and 
Artificial Intelligence, Huazhong University of Science & 
Technology, Wuhan China. His research interests include image 
processing, image compression, pattern recognition, artificial 
intelligence, and machine learning. 
 

JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014 1273

© 2014 ACADEMY PUBLISHER




