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Abstract—In order to design and optimize high-linearity 
power amplifier (PA), which with nonlinear and memory 
effect, it is very important to build power amplifier behavior 
modeling accurately. This paper proposes a power amplifier 
behavior modeling based on RBF neural network with 
improved chaos particle swarm optimization algorithm. To 
make the particles evenly distribute in the problem search 
space, a novel Chaos Particle Swarm Optimization (CPSO) 
is proposed based on the analysis of the ergodicity of chaos 
and inertia weight of Particle Swarm Optimization (PSO). 
Based on circle model, the new model is introduced to avoid 
PSO from getting into local optimum. This paper uses free 
scale semiconductor chip MRF6S21140 to carry on 
amplifier circuit design in the ADS and the MATLAB fitting 
simulation of the extracted data, by improved CPSO-RBF 
algorithm. Its accuracy is assessed by comparing RBF 
modeling with voltage RMS error (RMSE), epochs, and 
fitting time. The result shows that improved CPSO-RBF has 
better fitting function.  
 
Index Terms—Power Amplifier; CPSO; Neural Network; 
Behavioral Model  
 

I.  INTRODUCTION 

With the development of modern communication 
technology, many communication systems use high 
efficient spectrum techniques. These techniques have a 
high peak to average power ratio, in order to increase the 
transfer rate and channel capacity, that is, efficient digital 
modulation formats (such as M-QAM and OFDM) and 
new multiple access methods (such as OFDMA, MC-
CDMA, and WCDMA). The power amplifier device will 
produce nonlinearity and memory effects because of 
these techniques. In order to linearize the nonlinear power 
amplifier system, an accurate power amplifier behavior 
model is to be obtained. Thus, the behavior modeling 

techniques, which can deal with both nonlinear and 
memory effect, have become one of the hot topics in 
interdisciplinary research, including: microwave 
applications, wireless communications, radar, 
semiconductor physics, nonlinear control, and 
instrumentation.  

In behavioral modeling, for example, one of the 
challenges of the modeling of nonlinear behavior of RF 
microwave modules is to precisely describe both strong 
nonlinearity and memory effects, which have more time 
on the dynamic characteristics of a constant or 
combination [1-3]. Power amplifier is a critical nonlinear 
module in various radio frequency communication 
systems. In an efficient modulation system, the fact 
demonstrates that power amplifier is not only 
characteristic of nonlinearity but also of strong memory 
effects. Therefore, how to precisely model memory effect 
in dynamic nonlinear amplifier is an important problem. 
There are lots of reports on RF power amplifier modeling 
both at home and abroad, which include memoryless 
model, Volterra-Series model and its Simplified model, 
different types of neural network model, and so on [4-6]. 
Compare to Volterra series model, neural network model 
has good approximation capabilities. It can better 
describe the behavior of weak and strong nonlinear 
amplifier models, and the result can be generalized. One 
of the advantages of RBF neural network model is that it 
can be applied to any nonlinear function, and it is also 
suitable for power amplifier model building. In RBF 
neural network model, we need to determine the structure 
parameters, which are the center bits of basis function, 
the variance, and network weights [7,8]. These parameters 
will determine the performance of the neural network. 
Particle Swarm Optimization (PSO) algorithm uses the 
same speed model as the position search, which is fast, 
accurate, and concise, and has low computational 
complexity and easy implementation. Particle Swarm 
Optimization (PSO) algorithm will search for global 
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Figure1.    RBF Neural Network model block diagram 

optimal solution through groups of particles in 
cooperation and competition. In order to improve the 
performance of neural network training, researchers at 
home and abroad used Particle Swarm Optimization 
(PSO) algorithm to train neural network weights and 
topology. However, the basic PSO algorithm in slow 
fitting is close to the optimal solution, which is easy to 
appear and even to a standstill, and makes the network 
training difficult to achieve the desired effect. Hence, 
many scholars proposed a modified PSO algorithm. 
Currently several improved algorithms have been made, 
such as adaptive PSO algorithm, hybrid PSO algorithm, 
collaborative PSO algorithm, discrete PSO algorithm, and 
immune PSO algorithm. Chaos in a nonlinear 
phenomenon is widespread in nature: it appears to be 
chaotic, but has exquisite internal structure; it has 
randomness, ergodicity, and regularity characteristics, 
and it is extremely sensitive to initial conditions; it can 
change according to its own laws within a certain range 
and will not repeat to loop through all state. These 
properties can be optimized using chaotic motion search. 

This paper is organized as follows: in Section II, the 
paper proposes a novel chaotic Particle Swarm 
Optimization algorithm, by combining with the RFB 
neural network to build power amplifier behavioral 
modeling. In Section III, the paper proposes a power 
amplifier behavior modeling based on RBF neural 
network with improved chaos particle swarm 
optimization algorithm (CPSO-RBF). In Section IV, the 
paper shows the simulation results of CPSO-RBF power 
amplifier modeling has higher precision. Finally, in 
Section V, a conclusion is presented. 

II   POWER AMPLIFIER NEURAL NETWORK MODEL OF RBF 
AND THE LEARNING ALGORITHM 

A.  The Expression of RBF Neural Network Model of 
Power Amplifier 

This model is the selection of General RBF Neural 
networks. RBF Neural network is consisted of input layer, 
hidden layer, and output layer. In this model, input 
amplifiers of complex signals are converted to amplitude 
and phase of a polar form, and then are trained on the 
real-valued amplitude and phase. According to the 
amplifier's nonlinear characteristics and memory effects 
of power amplifier, the amplifier output expression is: 

 
( ) ( ( ) , ( 1) , , ( ) )

exp{ [ ( ) [ ( ) , ( 1) , , ( ) ]]}
y l g x l x l x l L

j l f x l x l x l L
= − − ×

Φ + − −
. (1) 

|x(l)| and Φ(l) are the input signal amplitude and phase 
respectively, L is the memory effect in a memory depth, 
which is the number of models in the previous sample. 
Nonlinear power amplifier can be expressed by AM/AM 
and AM/PM characteristic curves. There are two 
corresponding output nodes for AM/AM and AM/PM 
nonlinear distortion functions, g() and f(), that can 
describe the dynamic characteristics of power amplifier’s 
AM/AM and AM/PM. 

RBF Neural network has L+1 entries input notes, 
which is X=[|x(l)|,|x(l-1)|,…,|x(l-L)|]T. It supposes based 
training samples for n, and it’s hidden layers have M 
(M<N) neurons. Any one of the neurons indicated by i, 
φ(X,Ci) is the primary function which for the ith 
motivation of hidden units in output. Hidden output layer 
weights can be provided by ωji. Output unit also set a 
threshold φ, in order to suppress floor G0 of a neuron's 
output as 1, the output unit is attached to the right value 
for ω0i. The model structure is shown in Figure 1:  

Function φ(X,Ci) generally selectes basis on Green's 

function, using the definition of Green's functions 
2

2( ) exp( )
2

i
i

i

x c
G x c

σ
−

− = − to indicate the hidden layer of 

non-linear function {φi(x)=G(||X-ci||), i=1,2,…,M}. M is 
the number of hidden layer of units, X is the input vector, 
{ci|i=1,2,…,M} is the central point of G(), and σi is the 
field width of the ith hidden node. The jth (j=1,2) output 
node of the output is: 

 
1

( ) ( )
L

ji i j
i

jy x G x c bω
=

= − +∑ . (2) 

Among them, ωji is the weight that connects between 
the hidden layer of ith nerve cell and output layer of the jth 
neuron, and bj is the ground term. Smoothness of the 
approximation is depended on 2

iσ . 
The number of real parameters to M(L+3)+2 of RBF 

Neural network can show the nonlinear dynamic behavior 
of the power amplifier.  

B.  Improved Chaos Particle Swarm Optimization 
Algorithm 

Set in the group, the ith Particles is xi (xi1, xi2, …, xid) 
with experienced location pi (pi1, pi2, …, pid), and for 
individuals the best location is pbest. Currently, all 
particles that make up the groups have experienced the 
best location pgbest, and grain ith’s speed can provide by 
vi(vi1, vi2, …, vid). On each iteration, the grain ith in d-
dimensional (1≤i≤d) space the following equations:  
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Figure 2.    Logistic distribution by iterated 1000 times 
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Figure 3.    Circle distribution by iterated 1000 times 
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Figure 4.    The new map distribution by iterated 1000 times 

 1
1 2()( ) ()( )k k k k k

id id id id gbest idv v cRand p x c Rand p xω+ = + − + − . (3) 

 1k k k
id id idx x v+ = + . (4) 

In formula (3), ω is the inertia weights, which keeps 
the particles movement inertia, and ω gives it the ability 
to explore new areas; c1 and c2 are acceleration constants, 
their values are usually between 1.5-2, and the algorithm 
takes the value of 2. They allow each particle’s 
accelerated motion to pbest and pgbest locations. Rand () 
represents random numbers, which ranges form (0, 1). 

Chaos in a nonlinear phenomenon is widespread in 
nature, and the more commonly used model is the chaos 
model of logistic model, whose expression is: 

 1 (1 ) 1,2,n n nX X X nμ+ = − = . (5) 

The following figure is a performance chart image of 
logistic, when μ=4. Logistic map is iterated 1000 times 
within the range of (0, 1) map. Figure 2 shows 0, 0.1, and 
0.9, 1 with high probability interval value, where the 
highest probability point could reach 212 times. However, 
between 0.1 to 0.9, the average probability point is 76 
times. When the optimal value falls between 0.1, and 0.9, 
we need a number of iterations to get the optimal solution, 
and this greatly reduces the efficiency of algorithms.[9] 

However, logistic model produces uneven distribution 
of chaos, and round mapping model Traverse with good 
uniformity. The equation is as follows: 

 [ ]1 sin 2 mod1
2n n n
aX X b Xπ
π+

⎡ ⎤= + − ⎢ ⎥⎣ ⎦
. (6) 

Following figure 3 is the allocation plan of Circle map 
by iterated 1000 times. Among them, a=0.5 and b=0.2. 
The probability of 0-1 point is as shown in figure 3. It can 
be perceived that the maximum number is 151 times, 
minimum is 63 times, and the average is about 100 times, 
which is higher than logistic mapping but less than 
uniform probability distribution. 

In order to further improve the adequacy and traversal 
of chaotic search, this paper presents a new map, which 
can be written as the following formula: 

 [ ]1 (1* sin 4 ) mod1
4n n n
aX X b Xπ
π+

⎡ ⎤= + − ⎢ ⎥⎣ ⎦
. (7) 

 

Figure 4 is the new model, mapping iterative 1000 
times and 0-1 range of distribution. You can see from the 
figure, the maximum value is 115 times and minimum is 
94 times. The new model is better than the basic Circle 

map and the logistic map on mapping efficiency, and it 
distributes more evenly. 

Chaos Particle Swarm Optimization is mainly reflected 
in the application of the paper: By using the new model, 
it can have a uniform distribution of chaos, initialized to 
population, and inertia weight. ωis an important 
parameter in Particle Swarm Optimization algorithm, 
with evolutionary adaptive adjustment of the value of ω, 
formula sets as follows: 

 [ ]1 1* sin 4 mod[1] 0.2
4n n n
aX X b Xπ
π+

⎡ ⎤= + − +⎢ ⎥⎣ ⎦
.(8) 

In formula (8), K is the number of iterations. 
The detailed algorithm is as follows: 
Step 1. Initial population. Set the population size to be 

N, the particle dimension to be D, and assign initial 
values with small differences to the chaotic equation (7) 
of i, then we can get a chaotic variable xi; and by 
changing the ith variable on the interval of Xmin, Xmax 
map to the location variable values, we can build location 
variable. 

Step 2. Calculate the fitness value d for each particle. 
Step 3. Set the individual extreme pbest as the current 

position of each particle; select the particle with the best 
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Figure5.    Power amplifier circuit schematic 
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Figure 6.    The input and output voltage of power amplifier 
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Figure 7.    Fitting result of voltage range based on RBF model 

fitness value to be the corresponding global extreme 
value, gbest.  

Step 4. Use formula (8) to calculate the inertia weight 
valueω, in formula (3). 

Step 5. Update the speed and position of the particle 
according to formulas (3) and (4). 

Step 6. The fitness value of each particle will be 
compared with the existing pbest value. If the new value 
is better, then replace the existing pbest value, otherwise, 
retain the original values; select the individual with the 
optimal fitness in pbest to be gbest. 

Step 7. Determine whether the fitting criteria is met, if 
yes, terminate the optimization process and output the 
result; otherwise return to step 2. 

III   THE ALGORITHM OF RBF NEURAL NETWORK WITH       
IMPROVED CHAOS PARTICLE SWARM OPTIMIZATION  

The performance of RBF network is determined by the 
parameters of the network, which is the center and 
variance of the basis function as well as network weights 
[10]. If the chaotic particle swarm algorithm is used for 
neural network training, then it is not easy for particles to 
get into the local optimum [11-12]. This algorithm can 
also expand the search space, search the global optimal 
solution, and speed up the fitting rate of the neural 
network training algorithm. Specific optimization 
(improved CPSO-RBF) procedures are as follows: 

a) Preprocess the sample, and normalize the sample 
data value to the range between 0 and 1. 

b) Initialize the network structure; then the parameters 
of wi, ci, σi will constitute particles and give them random 
values to initialize the size, location, and speed of the 
particle swarm. 

c) After getting the input/output response value of RBF 
neural network, calculate the fitness value of particle 
swarm according to fitness value formula of fitness to 
determine the optimal value of individual and population. 
N denotes the number of the training samples, D denotes 
the number of output neurons, yij and tij denote the output 
value, and the expected output value of the jth component 
of the ith sample respectively. 

d) Update the position and speed of population 
particles according to the formulae (3) and (4), and then 
produce new particle swarm. 

e) Judge whether the result meets the optimization goal 
or maximum number of training, if it meets the 
termination conditions, then terminate the algorithm; 
otherwise returns to c. 

IV   THE SIMULATION RESULTS OF POWER AMPLIFIER 
BEHAVIOR MODELING 

It uses the MRF6S21140 semiconductor transistor of 
free scale for power amplifier circuit design. Based on the 
design of the circuit, CDMA2000 source is used for 
enveloping simulation. The amplifier circuit schematic is 
shown in figure 5. Figure 6 shows that due to the inherent 
nonlinear of power amplifier, there is a certain degree of 
distortion of output signal corresponding to the original 
input signal of power amplifier. In order to modeling 

power amplifier, we must take the waveforms of 
input/output voltage amplitude. In the process of the 
neural network training, it needs to use the amplifier's 
input voltage amplitude as neural network input and the 
amplifier's output amplitude as expected output of the 
neural network.  

Choose the input/output of the power amplifier with 
the greatest amplitude to build the new model. The 
experiment uses 90 data points to facilitate the simulation 
of neural network, and we select memory depth M=3. 

It extracts 200 groups of input and output voltage 
amplitude values from the power amplifier circuit design, 
compares the fitting degree of input/output voltage 
amplitude of RBF, and improves CPSO_RBF power 
amplifier models according to the selected voltage from 
amplifier circuit. Analyze the simulation results and fit 
the simulation results. The results include: voltage 
amplitude output value and output error. It shows the 
curves of fitting result of voltage range based on RBF 
model in figure 7, the curves of fitting result of voltage  

range based on improved CPSO-RBF model in figure 8, 
fitness curve and epoch curve of improved CPSO-RBF 
model in figure 9 and figure 10. The specific simulation 
data are shown in table 1.  
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Figure 8.    Fitting result of voltage range based on CPSO-RBF model
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Figure 9.    Fitness curve of improved CPSO-RBF model 

 
Figure 10.    Epoch curve of improved CPSO-RBF model 

TABLE I.   
THE SIMULATION RESULTS OF RBF AND CPSO-RBF 

MODELING BASE ON VOLTAGE AMPLITUDE 

Items RBF CPSO-RBF 
RMSE 0.0042 0.0027 

Epochs 12 20 

Fitting time(s)： 2.00 3.00 
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Figure 11.    The output power spectrum diagram 
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Figure 12.    The local enlarged spectrum diagram 

By contrasting figure 7 and figure 8, we can see that 
improved CPSO-RBF modeling has better fitting effect 
than RBP modeling. Improved CPSO-RBF modeling can 
simulate the power amplifier more accurately. It 
optimizes RBF neural network weights for global by 
improved CPSO algorithm, and overcomes the problems 
in training accuracy and speed of RBF. By comparing the 
actual output voltage with the simulated output voltage 
map, the simulated data of improved CPSO-RBF 
modeling is close to the measurement and is quite 
consistent. The effect of memory is also being considered 

in the simulation process, and thus, this modeling can 
simulate the nonlinear and memory effects of the power 
amplifiers. Improved CPSO-RBF modeling, which 
increases training frequency, has longer time-
consumption. Voltage RMS error (RMSE) is compared 
between improved CPSO-RBF modeling output and RBF 
modeling output of amplifier to validate the model 
accuracy. Also, we compare epochs and fitting time to 
validate the modeling training speed. Obviously, this 
error can be controlled in a small numerical range, and 
fitting time can be maintained in a short time.  

The output power spectrum diagram of the amplifier 
model of improved CPSO-RBF modeling and RBF 
modeling is shown in figure 5 (a), and figure 5 (b) is the 
local enlarged spectrum diagram of figure 5 (a). In figure 
5 (b), curve ① is for actual output power spectrum of 
amplifier, curve ② is output power spectrum for RBF 
model calculation, and curve  i③ s the output power 
spectrum for improved CPSO-RBF model calculation. It 
can be seen that improved CPSO-RBF model’s output 
power spectrum of amplifier is better and closer to the 
actual power spectra model performance by the 
simulation results. 

V   CONCLUSIONS 

Building a precise power amplifier behavior modeling 
is important for building simulating models, and it is 
crucial for practical designing purpose. This paper 
extends from RBF power amplifier behavior modeling, 
and by improving the calculation of PSO and network 
weights of RBF, it builds and simulates the improved 
CPSO_RBF modeling. In conclusion, we can get great 
and precise results from the improved CPSO_RBF, and it 
can describe nonlinear and memory effects of the power 
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amplifiers precisely. Hence, this modeling could be used 
for the linearization of power amplifier system, and it is 
crucial for practical designing purpose. 
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