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Abstract—This paper proposes an efficient architecture 
independent packing method for commercial FPGA. All 
specific logics of commercial FPGA such as carry chain 
arithmetic, x-LUT, are pre-designed into reference circuits 
according to its architecture. Due to complex architecture of 
contemporary FPGA, to enumerate all reference circuits in 
a fine-grain manner is impractical. To overcome this 
problem, coarse-grain manner is adapted in the approach. 
By using constraint satisfaction problem technique the 
proposed method matches pre-designed reference circuits 
from the given user logic circuit. Transformation from the 
reference circuit to the pre-packed cluster is simplified by 
using several specifically designed instructions. In the next 
stage, those directly connected FFs are absorbed into the 
pre-packed clusters. The Last stage packs LUTs and FFs 
into clusters in a delay-based manner. This method is 
architecture independent and can be applied for any other 
commercial FPGAs as long as the pre-designed reference 
circuits are modified accordingly. The results obtained and 
compared with commercial tool, ISE MAP, and academic 
tool, PAM MAP, have shown the effectiveness of the 
proposed method.  
 
Index Terms—Packing, Algorithm, Computer-aided design, 
FPGA 

I.  INTRODUCTION 

Contemporary commercial field-programmable gate 
arrays (FPGAs) consist of a cluster of configurable logic 
blocks (CLBs) formed by look-up tables (LUTs) and flip-
flops (FFs) as well as arithmetic circuitry, configurable 
I/O blocks (IOBs) and specialised hard IP blocks. For 
example, a SLICE, a half of CLB, in the latest Xilinx 
Virtex-7 FPGA family device contains four six-input 
LUTs, eight FFs, carry chain arithmetic logic and other 
circuitry. It is widely acknowledged that FPGAs are 
slower, less area-efficient and less power efficient than 
custom ASICs [1]. However, the programmability of 
FPGAs, gives them the advantage of short time to market. 
As a result, they have been widely used in a variety of 
applications such as domestic communications and 
automotive electronics.  

Packing, which falls between technology mapping and 
placement, is an extremely important step of the FPGA 
computer aided design (CAD) flow. This step is most 
commonly regarded as packing LUTs and FFs together to 
form clusters [2]. However, in commercial FPGAs, 
packing is the step that the various logic gates of 
technology mapped circuit including not only LUTs and 
FFs but also other logic gates are mapped to FPGA fabric 
according to the available hardware resources. Packing 
algorithms are well-studied in the literature for the 
academic FPGA model, which consists of several basic 
logic elements (BLEs). Each BLE has one LUT and one 
FF. The FF can be optionally bypassed for implementing 
combinational logic only. Local interconnect is available 
for realising fast paths within the cluster. The output of 
LUT/FF drives both local interconnect and general 
interconnect. Inputs to the cluster come from general 
interconnect [2]. 

The earliest work based on the academic FPGA model 
proposed an area-driven packing algorithm (VPack) in 
the earlier version of versatile placement and routing 
(VPR) CAD tool [3]. This used the simplest graph pattern 
match to pack LUTs and registers into BLEs in the first 
step and packs BLEs into clusters in the second step. 
Marquardt further extended the previous work carried out 
by Betz to perform timing-driven packing (T-VPack) [4] 
and improve speed and density. Recently, Verilog-to-
routing (VTR) [5], the latest version of VPR was 
proposed, in which hardcore IPs are supported in the 
packing stage. 

Tom et al [6] proposed a non-uniform depopulation 
technique, (Un/DoPack), which runs the FPGA CAD 
flow twice. First iteration is the regular CAD flow. In the 
second iteration, packing uses the layout result of the first 
iteration and depopulates the congested regions. While 
reducing the channel width, Un/DoPack, similar to the 
other depopulation-based packing approaches, observes 
an increase in total area and critical path delay. 

T-NDPack [7] proposed an objective cost function with 
consideration of the criticality in terms of delay and 
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routability simultaneously, which consequently reduces 
the channel width requirements and the depth of the 
critical path. However, it incurs logic area overhead. It 
was claimed that minimum channel width and critical 
path delay were reduced by 11.07% and 2.89% 
respectively while increasing the number of CLBs by 
13.28% compared to T-VPack. 

Easwaran et al proposed a routability driven power-
aware packing method (W-T-VPack) [8] with 
introduction of a new packing cost function based on 
predicted individual net length. It claimed that W-T-
VPack outperforms T-RPack [9] and iRAC [10] in terms 
of energy by 11.23% and 9.07%, respectively. 

Rajavel et al proposed a many-objective FPGA circuit 
packing strategy (MO-Pack) [11] that minimised the 
channel width and the energy of a circuit implementation 
without incurring any overhead on critical path delay. 

Yang et al proposed a yet another many-objective 
FPGA packing method (YAMO-Pack) [12]. It claimed 
that YAMO-Pack outperforms iRAC and MO-Pack in 
terms of channel width by 38.8% and 42.2%, respectively 
and in terms of delay by 11.8% and 11.5%, respectively. 
However, it requires acceptably more CPU time. 

All methods mentioned above target the academic 
FPGA model, which is significantly simpler than that 
used for commercial FPGAs. Ahmed et al [13] from 
Xilinx reported an architecture-specific packing for 
Virtex-5 FPGAs. However, it can only be used for Xilinx 
FPGA devices. Moreover, Shao, et al developed an area-
driven architecture independent PAM MAP algorithm 
[14]. The architecture they used differs from the 
academic model, but it targets area reduction only. To our 
best knowledge, no timing-driven architecture 
independent packing method has ever been published for 
commercial FPGA. The remainder of the paper is 
organized as follows. Section II gives details of Virtex-7 
FPGA architecture, which will be used in the experiment 
for demonstration. Constraint satisfaction packing 
techniques and specific designed instructions are given in 
Section III. Section IV discusses comparison results 
between the proposed method and other tools. Conclusion 
is then given in Section V. 

II.  VIRTEX-7 FPGA CLB ARCHITECTURE 

To show the complexity of the contemporary 
commercial FPGA architecture, a virtex-7 FPGA is 
reviewed in this section. This architecture will be used for 
evaluation experiment for demonstration purpose. A 
Virtex-7 logic block, which is referred to as a CLB, 
comprises two SLICEs (SLICEL and SLICEM) and a 
switch matrix. SLICEL and SLICEM are exactly 
identical, except that LUT in SLICEL is used for logic 
only and SLICEM can be used for implementing memory 
cells. The switch matrix allows for connections from a 
SLICE back to the same SLICE, between the two SLICEs, 
as well as into rows and columns of general interconnect. 
Each SLICE contains four 6-input LUTs and 8 flip-flops. 
The LUTs in Virtex-7 are implemented as what Xilinx 
called true 6-LUTs, rather than being constructed using 
smaller LUTs that can be optionally combined together 

via multiplexers. The output of two true 6-LUTs, either in 
top half of a SLICE or bottom half of a SLICE, can be 
constructed as one 7-LUT via multiplexer F7MUX. Two 
7-LUTs can function in one SLICE at the same time. 
Besides, two 7-LUTs can be further combined together 
via multiplexer F8MUX to form an 8-LUT in one SLICE. 
Both outputs of 7-LUT and 8-LUT can be registered 
individually. Fig. 1 shows the architecture of a SLICE of 
Virtex-7 FPGAs. 
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Fig. 1  Virtex-7 SLICE architecture. 

III.  CONSTRAINT SATISFACTION PROBLEM TECHNIQUE 
FOR FPGA PACKING 

A constraint satisfaction problem [15] is defined by an 
ordered set of n variables =X n（1,2, ,）, a finite domain 
Di of possible values for each variable i, and a set of 
constraints among variables. A constraint 

1 2, rj j jR , ,  on 

the ordered set of variables 1 2( , )rj j j, ,  is a subset of 

1 2 rj j jD D D× × , which only contains the allowed 

combinations of values for variables 1 2, rj j j, , . 
An isomorphism of a graph 1 1 1( , )G V E=  with a sub-

graph of a graph 2 2 2( , )G V E=  is equivalent to the 
constraint satisfaction problem [16]. A variable i is 
associated with each vertex 1iv V∈ , and all variables take 
values on domain V2. Let n be the cardinality of V1. 
Finding a sub-graph isomorphism is then equivalent to 
finding a complete assignment satisfying the following 
structure constraint: 

2 2 1
,

2

( , ) | ( , , )
( , , )

for all , 1,2, ,   

a b a b
i j

a b

v v V V v v edge G i j
R

edge G v v
i j n with i j

∈ × ≠ ∧⎧ ⎫
= ⎨ ⎬⇒⎩ ⎭

= ≠

 (1) 

Packing problem is similar to isomorphic match 
problem. A user circuit C can be described by a directed 
graph 1 1 1( , )G V E= , where each vertex 1iv V∈  in G1 
corresponds to a component or a primary input or primary 
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output in C, and each directed edge 1ie E∈  corresponds 
to a wire connecting between two different vertexes in C. 
The set of given circuits is a set of configurable circuits 
implementing different types of logic functions, which is 
known as reference circuits from packing point of view 
and can also be described by directed graphs respectively. 
Each directed graph 2 2 2( , )G V E=  corresponds to a 
reference circuit. These configurable circuits are pre-
constructed manually according to available FPGA 
hardware logic resources. Packing algorithm identifies all 
isomorphic matches in a user design circuit according to a 
set of given reference circuits. 

In order to match reference circuits in a user design 
circuit, several constraints should be applied. Type 
constraint should be satisfied for the purpose of matching 
exact type of vertex in the circuit such as LUT and FF. 
Start constraint is used for the outgoing edge from a 
vertex. Similarly, end constraint is for the incoming edge 
from a vertex. These two constraints are used for 
matching one particular edge of graph, i.e., from one type 
of logic gate to another. Input constraint and output 
constraint are used for primary input and primary output 
respectively. Shared input constraint identifies shared 
inputs which is used in the case of more than one sink net 
shared by two pins. 

As long as the reference circuits represent all the 
functionalities that FPGA hardware resources can 
implement, it can always find a feasible solution for 
packing result. However, it is impossible to enumerate all 
reference circuits for a complex contemporary FPGA, 
which makes isomorphism packing impractical. Let us 
consider a case of two 6-LUTs and a 2to1 multiplexer 
F7MUX forming one 7-LUT in one SLICE. If ignoring 
sequential outputs, there are 4 cases already, as shown in 
Fig. 2. Hence, four reference circuits must be constructed 
in order to match all these patterns. If considering 
sequential outputs, the number of combination patterns 
can be increased significantly. It is therefore crucial to 
select the proper reference circuits, achieving not only 
less number of reference circuits but also covering all the 
functionalities a SLICE of contemporary FPGA can 
implement. 

In order to reduce the number of reference circuits, the 
construction of reference circuits in the proposed method 
only considers combinational logic. Although the 
sequential logic is not included in the reference circuits, it 
will be dealt with after graph pattern match in the second 
step of packing method. By doing so, it can not only 
reduce the complexity of the individual reference circuit 
but the count number of the reference circuits as well. 
Those different logic functions that behave a similar 
function are categorized as one function type. For 
example, there are four different ways to form 7-LUT in 
one SLICE, as shown in Fig.2(a), Fig.2(b), Fig.2(c) and 
Fig.2(d), respectively. The graph, shown in Fig. 2(a), is 
the subset of the graph shown in Fig.2(d). The graphs, 
shown in Fig.2(b) and Fig.2(c), are also the subset of the 
graph shown in Fig.2(d). Therefore those four graphs are 
considered as one function type. One function type 

accordingly has only one reference circuit. The directed 
graph of reference circuit is modified by inserting a 
virtual primary input (VPI) at the input of the vertex and 
inserting a virtual primary output (VPO) at the output of 
the vertex, as shown in Fig. 3. 
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Fig. 2  (a) 7-LUT with single output, (b) 7-LUT with 2 outputs, in 

which one output is from 7-LUT and the other is from the top 6-LUT, (c) 
7-LUT with 2 outputs, in which one output is from 7-LUT and the other 

is from the bottom 6-LUT, (d) 7-LUT with 3 outputs, in which two 
outputs are from 6-LUTs and one is from 7-LUT. 

 

 
Fig. 3  Directed graph for 7-LUT reference circuit 

 
After a reference circuit is matched from a given user 

design circuit by utilising graph constraint satisfaction 
technique, transformation from the reference circuit to the 
pre-packed cluster process is required. The process for 
the newly created cluster involves creating a new cluster, 
wires connection, wires disconnection and specifying 
configurations such as buffer, MUX, LUT and FF. A key 
observation is that for a given reference circuit wire 
connections for the newly created cluster and the 
configuration settings never alter. In addition, the 
transformation processes of different reference circuits 
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are identical. The net connections and the configuration 
values for different created clusters are different. 
Therefore each step in the process can be used as an 
instruction. As a result, the whole process works as 
executing instruction one after another. For a different 
specific architecture, reference circuits are different and 
those reference circuits must be modified accordingly. 
However, the execution of the instruction is the same for 
a different architecture. The designed instructions are 
architecture independent, simple but effective, as shown 
in TABLE I. 

TABLE I   
SUMMARY OF INSTRUCTIONS 

Instructions Description 

create_instance (inst, type) Creates a new instance 
according to its type. 

unhook (insta.p1) 
Disconnects the pin with 
name p1 of instance from 
its net. 

connect (inst1.p1, inst2.p1) 

Connects the pin with name 
p1 of instance1 to the net 
which has pin with name 
p1 of instance2. 

reconnect (inst1.p1, inst2.p1) 

Disconnects pin with name 
p1 of instance1 from its net 
and connects it to the net 
which has pin with name 
p1 of instance2. 

xconnect (inst.p1, inst.p2) 

Exchanges the net 
connections of two 
different pins, p1 and p2, 
which is used for two pins 
swap. 

set_configuration(inst, value) Sets one configuration of 
the instance. 

copy_property (inst1,value1, 
inst2,value1) 

Copies value1, which is 
one property of instance1, 
to instance2. 

set_ property (inst, value) Sets one property of the 
instance. 

create_instance (inst, type) Creates a new instance 
according to its type. 

unhook (inst.p1) 
Disconnects the pin with 
name p1 of instance from 
its net. 

connect (inst1.p1, inst2.p1) 

Connects the pin with name 
p1 of instance1 to the net 
which has pin with name 
p1 of instance2. 

 
Example 1: Use designed instructions to create a SLICE 
with functionality of 7-LUT by combining two 6-LUTs 
and F7MUX. Assume 6-LUT has six inputs A1, A2, A3, 
A4, A5 and A6 as well as two outputs O5 and O6. 
F7MUX has three inputs I0, I1 and S as well as one 
output O. The SLICE has the same architecture as Xilinx-
7 FPGA. 
1. Create a slice with name slice_a by using instruction 

create_slice (slice_a, SLICE) 
2. Reconnect function generator A6LUT input 

connections to the newly created slice inputs by using 
following instructions. 

reconnect (A6LUT.A1, slice_a.A1) 
reconnect (A6LUT.A2, slice_a.A2) 
reconnect (A6LUT.A3, slice_a.A3) 
reconnect (A6LUT.A4, slice_a.A4) 
reconnect (A6LUT.A5, slice_a.A5) 
reconnect (A6LUT.A6, slice_a.A6) 
 

3. Reconnect function generator B6LUT input 
connections to the newly created slice inputs by using 
following instructions. 

reconnect (B6LUT.A1, slice_a.B1) 
reconnect (B6LUT.A2, slice_a.B2) 
reconnect (B6LUT.A3, slice_a.B3) 
reconnect (B6LUT.A4, slice_a.B4) 
reconnect (B6LUT.A5, slice_a.B5) 
reconnect (B6LUT.A6, slice_a.B6) 
 

4. Reconnect wires to the newly created slice outputs 
and internal connections by using following 
instructions, in which A, B, AX and AMUX are 
SLICE pin name of Xilinx Vertex 7 series family 
FPGA device. 

reconnect (A6LUT.O6, slice_a.A) 
reconnect (B6LUT.O6, slice_a.B) 
reconnect (F7MUX.S, slice_a.AX) 
reconnect (F7MUX.O, slice_a.AMUX) 
connect (A6LUT.O6,F7MUX.I0) 
connect (B6LUT.O6,F7MUX.I1) 
 

5. Copy properties from 6-LUTs and set properties by 
using following instructions, in which “INIT” is the 6-
LUT initial value and “NAME” is the 6-LUT instance 
name. 
copy_property (A6LUT,INIT, slice_a,A6#LUT) 
copy_property (B6LUT,INIT, slice_a,B6#LUT) 
copy_property (A6LUT,NAME, slice_a, ANAME)
copy_property (B6LUT,NAME, slice_a, BNAME)
set_property (slice_a, FXLUT::TRUE) 
 

6. Set configurations by using following instructions, in 
which AOUTMUX, AUSED, BUSED are SLICE 
configurations of Xilinx Vertex 7 FPGA device. 

set_configuration (slice_a, AOUTMUX::F7) 
set_configuration (slice_a, A6#LUT::A6#LUT)
set_configuration (slice_a, AUSED::0) 
set_configuration (slice_a, BUSED::0) 

 
For the consideration of timing issue, the constraint 

satisfaction problem technique of graph matching 
mentioned in early sections is only used for the first stage 
of the proposed packing. In this stage, only combinational 
specific logics are matched and packed for a given user 
design. As a result, the input to the second stage is a 
netlist consisting of pre-packed combinational clusters, 
hard IP blocks, LUTs and FFs. In the second stage it 
packs selected FFs to pre-packed combinational clusters, 
in which the FF directly driven by the output of the 
cluster is selected. In other words, if the FF is driven by 
the output of other block such as a LUT or a FF, this FF 
is ignored. It is known as FF absorption stage. In the 
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same way, it repeatedly packs the selected FFs into the 
cluster until no more FF can be selected for packing. 
After this stage completes, the netlist consists of pre-
packed combinational clusters, pre-packed sequential 
clusters, hard IP blocks, LUTs and FFs. Final stage deals 
with LUTs and FFs in a delay-based manner, which is 
similar to MO-Pack [11] and YAMO-Pack [12], to pack 
them into clusters. 

The pseudo code of proposed algorithm is outlined as 
follows. 

 

IV.  RESULTS 

The proposed method is developed under Microsoft 
Visual Studio 2010 and implemented in C++. The results 
have been run on the PC with an INTEL CPU 2.4 GHz 
and 4 GB RAM. 

To verify the effectiveness of the proposed method, 
design circuits in register transfer level Verilog format 
from the benchmark suite in Quartus II university 
interface program (QUIP) [17] are chosen. The selected 
designs are architecture independent and those circuits 
can be logically optimised by Xilinx commercial logic 
synthesis tool XST. Xilinx ISE MAP and the proposed 
method are then applied to the output of XST to pack 
logic into Xilinx Virtex-7 FPGA SLICE. The device 

xc7k160t-fbg676-3 is chosen for demonstration. TABLE 
II shows the comparison of the mapping results.  

TABLE II   
COMPARISON OF ISE MAP AND OURS IN TERMS OF DELAY 

Benchmarks 
ISE 
MAP 
(ns) 

Ours 
(ns) 

Improve- 
ment (%) 

barrel16 2.243 2.164 3.52 
barrel16a 2.829 2.706 4.35 
barrel32 2.995 2.978 0.57 
barrel64 3.495 3.420 2.15 
fip_cordic_cla 4.762 4.555 4.35 
fip_cordic_rca 4.017 3.841 4.38 
fip_risc8 8.243 8.454 -2.56 
mux32_16bit 2.268 2.205 2.78 
mux64_16bit 3.114 3.038 2.44 
mux8_128bit 2.595 2.685 -3.47 
mux8_64bit 1.364 1.314 3.67 
oc_aes_core 4.885 4.964 -1.62 
oc_aes_core_inv 7.73 8.144 -5.36 
oc_des_area_opt 2.389 2.262 5.32 
oc_des_des3area 3.115 3.260 -4.65 
oc_des_des3perf 3.392 3.305 2.56 
oc_des_perf_opt 2.423 2.356 2.77 
oc_minirisc 6.612 6.381 3.49 
oc_miniuart 1.812 1.753 3.26 
oc_mips 14.64 14.924 -1.94 
oc_rtc 3.312 3.222 2.72 
oc_ssram 1.609 1.500 6.77 
oc_video_dec 3.223 3.207 0.50 
oc_video_enc 2.089 2.164 -3.59 
oc_video_jpeg 3.723 3.677 1.24 
Average 3.96 3.94 0.51 

TABLE III   
COMPARISON OF PAM MAP AND OURS 

Benchmarks 

Area 
(No. of SLICE) Delay (ns) 

PAM 
MAP Ours Imp 

(%) 
PAM 
MAP Ours Imp 

(%)
barrel16 24 20 -17 2.473 2.164 -12.5
barrel16a 49 41 -16 2.961 2.706 -8.6
barrel32 110 103 -6 3.384 2.978 -12.0
barrel64 140 133 -5 3.842 3.42 -11.0
fip_cordic_cla 120 118 -2 4.945 4.555 -7.9
fip_cordic_rca 74 68 -8 3.961 3.841 -3.0
fip_risc8 134 122 -9 8.454 8.454 0.0
mux32_16bit 136 135 -1 2.225 2.205 -0.9
mux64_16bit 268 259 -3 3.874 3.038 -21.6
mux8_128bit 279 270 -3 2.952 2.685 -9.0
mux8_64bit 140 136 -3 1.456 1.314 -9.8
oc_aes_core 170 158 -7 6.023 4.964 -17.6
oc_aes_core_inv 300 295 -2 8.465 8.144 -3.8
oc_des_area_opt 160 147 -8 2.845 2.262 -20.5
oc_des_des3area 297 285 -4 3.856 3.26 -15.5
oc_des_des3perf 300 280 -7 3.505 3.305 -5.7
oc_des_perf_opt 580 560 -3 2.969 2.356 -20.6
oc_minirisc 180 165 -8 7.023 6.381 -9.1
oc_miniuart 36 34 -6 1.965 1.753 -10.8
oc_mips 1100 1055 -4 16.4 14.92 -9.0
oc_rtc 130 118 -9 3.762 3.222 -14.4
oc_ssram 36 33 -8 1.865 1.5 -19.6
oc_video_dec 134 130 -3 3.723 3.207 -13.9
oc_video_enc 104 96 -8 2.476 2.164 -12.6
oc_video_jpeg 476 465 -2 3.937 3.677 -6.6
Average 219 209 -6 4.374 3.939 -11
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It can be seen that the proposed method can achieve 
comparable results compared to Xilinx ISE MAP. It 
should be noted that since the proposed method is 
architecture independent it can be used for Altera FPGA 
architecture as well as long as the pre-designed reference 
circuits are modified accordingly to be suitable for Altera 
FPGA architecture. 

Other published methods such as iRAC [9], MO-Pack 
[11], YAMO-Pack [12] etc are not comparable because 
they are targeting academic FPGA model. The method 
presented in [13] is not comparable either, because the 
test suite used is from industry and not available. 
Therefore, PAM MAP [14] is chosen for comparison, 
since PAM MAP is architecture independent and it can 
target Virtex-7 as well. The comparison results are shown 
in TABLE III. It can be seen that the proposed method 
can outperform PAM MAP in terms of area and delay in 
all tested cases, achieving, on average, 6% and 11% 
improvement, respectively. 

V.  CONCLUSIONS 

The latest FPGAs contain composite logic blocks with 
LUTs, FFs, MUXs and other arithmetic circuitry. Packing 
design elements into the available logic resources is an 
extremely complex problem. In this paper, an architecture 
independent packing method for the commercial FPGA 
device is proposed. The proposed method has three stages. 
In the first stage, the constraint satisfaction problem 
technique of graph matching is utilised to implement 
specific logic such as 7-LUT, 8-LUT and carry chain 
arithmetic logic from the given user design circuit. 
Second stage packs the selected FFs to pre-packed 
combinational clusters. In the third stage, the delay-based 
method is carried out to deal with unclustered LUTs and 
FFs. The experimental results show that the proposed 
approach achieves similar performance in terms of speed 
compared with Xilinx commercial tool ISE MAP. The 
proposed algorithm also outperforms area-driven 
architecture independent PAM MAP, which can achieve 
on average, 6% and 11% in terms of area and speed, 
respectively. 
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