
An Architecture Independent Packing Method for
LUT-based Commercial FPGA

Meng Yang

State Key Lab of ASIC and Systems, Fudan University, Shanghai, China
Email: mengyang@fudan.edu.cn

Jinmei Lai

State Key Lab of ASIC and Systems, Fudan University, Shanghai, China
Email: jmlai@fudan.edu.cn

A.E.A. Almaini

School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, UK
Email: a.almaini@napier.ac.uk

Abstract—This paper proposes an efficient architecture
independent packing method for commercial FPGA. All
specific logics of commercial FPGA such as carry chain
arithmetic, x-LUT, are pre-designed into reference circuits
according to its architecture. Due to complex architecture of
contemporary FPGA, to enumerate all reference circuits in
a fine-grain manner is impractical. To overcome this
problem, coarse-grain manner is adapted in the approach.
By using constraint satisfaction problem technique the
proposed method matches pre-designed reference circuits
from the given user logic circuit. Transformation from the
reference circuit to the pre-packed cluster is simplified by
using several specifically designed instructions. In the next
stage, those directly connected FFs are absorbed into the
pre-packed clusters. The Last stage packs LUTs and FFs
into clusters in a delay-based manner. This method is
architecture independent and can be applied for any other
commercial FPGAs as long as the pre-designed reference
circuits are modified accordingly. The results obtained and
compared with commercial tool, ISE MAP, and academic
tool, PAM MAP, have shown the effectiveness of the
proposed method.

Index Terms—Packing, Algorithm, Computer-aided design,
FPGA

I. INTRODUCTION

Contemporary commercial field-programmable gate
arrays (FPGAs) consist of a cluster of configurable logic
blocks (CLBs) formed by look-up tables (LUTs) and flip-
flops (FFs) as well as arithmetic circuitry, configurable
I/O blocks (IOBs) and specialised hard IP blocks. For
example, a SLICE, a half of CLB, in the latest Xilinx
Virtex-7 FPGA family device contains four six-input
LUTs, eight FFs, carry chain arithmetic logic and other
circuitry. It is widely acknowledged that FPGAs are
slower, less area-efficient and less power efficient than
custom ASICs [1]. However, the programmability of
FPGAs, gives them the advantage of short time to market.
As a result, they have been widely used in a variety of
applications such as domestic communications and
automotive electronics.

Packing, which falls between technology mapping and
placement, is an extremely important step of the FPGA
computer aided design (CAD) flow. This step is most
commonly regarded as packing LUTs and FFs together to
form clusters [2]. However, in commercial FPGAs,
packing is the step that the various logic gates of
technology mapped circuit including not only LUTs and
FFs but also other logic gates are mapped to FPGA fabric
according to the available hardware resources. Packing
algorithms are well-studied in the literature for the
academic FPGA model, which consists of several basic
logic elements (BLEs). Each BLE has one LUT and one
FF. The FF can be optionally bypassed for implementing
combinational logic only. Local interconnect is available
for realising fast paths within the cluster. The output of
LUT/FF drives both local interconnect and general
interconnect. Inputs to the cluster come from general
interconnect [2].

The earliest work based on the academic FPGA model
proposed an area-driven packing algorithm (VPack) in
the earlier version of versatile placement and routing
(VPR) CAD tool [3]. This used the simplest graph pattern
match to pack LUTs and registers into BLEs in the first
step and packs BLEs into clusters in the second step.
Marquardt further extended the previous work carried out
by Betz to perform timing-driven packing (T-VPack) [4]
and improve speed and density. Recently, Verilog-to-
routing (VTR) [5], the latest version of VPR was
proposed, in which hardcore IPs are supported in the
packing stage.

Tom et al [6] proposed a non-uniform depopulation
technique, (Un/DoPack), which runs the FPGA CAD
flow twice. First iteration is the regular CAD flow. In the
second iteration, packing uses the layout result of the first
iteration and depopulates the congested regions. While
reducing the channel width, Un/DoPack, similar to the
other depopulation-based packing approaches, observes
an increase in total area and critical path delay.

T-NDPack [7] proposed an objective cost function with
consideration of the criticality in terms of delay and

JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014 1131

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.5.1131-1137

routability simultaneously, which consequently reduces
the channel width requirements and the depth of the
critical path. However, it incurs logic area overhead. It
was claimed that minimum channel width and critical
path delay were reduced by 11.07% and 2.89%
respectively while increasing the number of CLBs by
13.28% compared to T-VPack.

Easwaran et al proposed a routability driven power-
aware packing method (W-T-VPack) [8] with
introduction of a new packing cost function based on
predicted individual net length. It claimed that W-T-
VPack outperforms T-RPack [9] and iRAC [10] in terms
of energy by 11.23% and 9.07%, respectively.

Rajavel et al proposed a many-objective FPGA circuit
packing strategy (MO-Pack) [11] that minimised the
channel width and the energy of a circuit implementation
without incurring any overhead on critical path delay.

Yang et al proposed a yet another many-objective
FPGA packing method (YAMO-Pack) [12]. It claimed
that YAMO-Pack outperforms iRAC and MO-Pack in
terms of channel width by 38.8% and 42.2%, respectively
and in terms of delay by 11.8% and 11.5%, respectively.
However, it requires acceptably more CPU time.

All methods mentioned above target the academic
FPGA model, which is significantly simpler than that
used for commercial FPGAs. Ahmed et al [13] from
Xilinx reported an architecture-specific packing for
Virtex-5 FPGAs. However, it can only be used for Xilinx
FPGA devices. Moreover, Shao, et al developed an area-
driven architecture independent PAM MAP algorithm
[14]. The architecture they used differs from the
academic model, but it targets area reduction only. To our
best knowledge, no timing-driven architecture
independent packing method has ever been published for
commercial FPGA. The remainder of the paper is
organized as follows. Section II gives details of Virtex-7
FPGA architecture, which will be used in the experiment
for demonstration. Constraint satisfaction packing
techniques and specific designed instructions are given in
Section III. Section IV discusses comparison results
between the proposed method and other tools. Conclusion
is then given in Section V.

II. VIRTEX-7 FPGA CLB ARCHITECTURE

To show the complexity of the contemporary
commercial FPGA architecture, a virtex-7 FPGA is
reviewed in this section. This architecture will be used for
evaluation experiment for demonstration purpose. A
Virtex-7 logic block, which is referred to as a CLB,
comprises two SLICEs (SLICEL and SLICEM) and a
switch matrix. SLICEL and SLICEM are exactly
identical, except that LUT in SLICEL is used for logic
only and SLICEM can be used for implementing memory
cells. The switch matrix allows for connections from a
SLICE back to the same SLICE, between the two SLICEs,
as well as into rows and columns of general interconnect.
Each SLICE contains four 6-input LUTs and 8 flip-flops.
The LUTs in Virtex-7 are implemented as what Xilinx
called true 6-LUTs, rather than being constructed using
smaller LUTs that can be optionally combined together

via multiplexers. The output of two true 6-LUTs, either in
top half of a SLICE or bottom half of a SLICE, can be
constructed as one 7-LUT via multiplexer F7MUX. Two
7-LUTs can function in one SLICE at the same time.
Besides, two 7-LUTs can be further combined together
via multiplexer F8MUX to form an 8-LUT in one SLICE.
Both outputs of 7-LUT and 8-LUT can be registered
individually. Fig. 1 shows the architecture of a SLICE of
Virtex-7 FPGAs.

A6

A4
A3

A1

O5LUT6

LUT6

S1

S0 SEL

O

A2

A5

A6

A4
A3
A2

A5

A1

Carry Chain
arithmetic

Carry Chain
arithmetic

CIN

COUT

FF

FF

FF

FF O5/O6/7LUT/CX

O6

O6

O5/O6/DX

DX

CX

O5

O6

A6

A4
A3

A1

O5LUT6

LUT6

S1

S0 SEL

O

A2

A5

A6

A4
A3
A2

A5

A1

Carry Chain
arithmetic

Carry Chain
arithmetic

FF

FF

FF

FF

O5/O6/7LUT
and O5/AX

O6

O6

BX

AX

O5

O6

O5/O6/7LUT/AX

O5/O6/8LUT
and O5/BX
O5/O6/8LUT/BX

O5/O6 and
O5/DX

O5/O6/7LUT
and O5/CX

Fig. 1 Virtex-7 SLICE architecture.

III. CONSTRAINT SATISFACTION PROBLEM TECHNIQUE
FOR FPGA PACKING

A constraint satisfaction problem [15] is defined by an
ordered set of n variables =X n（1,2, ,）, a finite domain
Di of possible values for each variable i, and a set of
constraints among variables. A constraint

1 2, rj j jR , , on

the ordered set of variables 1 2(,)rj j j, , is a subset of

1 2 rj j jD D D× × , which only contains the allowed

combinations of values for variables 1 2, rj j j, , .
An isomorphism of a graph 1 1 1(,)G V E= with a sub-

graph of a graph 2 2 2(,)G V E= is equivalent to the
constraint satisfaction problem [16]. A variable i is
associated with each vertex 1iv V∈ , and all variables take
values on domain V2. Let n be the cardinality of V1.
Finding a sub-graph isomorphism is then equivalent to
finding a complete assignment satisfying the following
structure constraint:

2 2 1
,

2

(,) | (, ,)
(, ,)

for all , 1,2, ,

a b a b
i j

a b

v v V V v v edge G i j
R

edge G v v
i j n with i j

∈ × ≠ ∧⎧ ⎫
= ⎨ ⎬⇒⎩ ⎭

= ≠

 (1)

Packing problem is similar to isomorphic match
problem. A user circuit C can be described by a directed
graph 1 1 1(,)G V E= , where each vertex 1iv V∈ in G1
corresponds to a component or a primary input or primary

1132 JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

output in C, and each directed edge 1ie E∈ corresponds
to a wire connecting between two different vertexes in C.
The set of given circuits is a set of configurable circuits
implementing different types of logic functions, which is
known as reference circuits from packing point of view
and can also be described by directed graphs respectively.
Each directed graph 2 2 2(,)G V E= corresponds to a
reference circuit. These configurable circuits are pre-
constructed manually according to available FPGA
hardware logic resources. Packing algorithm identifies all
isomorphic matches in a user design circuit according to a
set of given reference circuits.

In order to match reference circuits in a user design
circuit, several constraints should be applied. Type
constraint should be satisfied for the purpose of matching
exact type of vertex in the circuit such as LUT and FF.
Start constraint is used for the outgoing edge from a
vertex. Similarly, end constraint is for the incoming edge
from a vertex. These two constraints are used for
matching one particular edge of graph, i.e., from one type
of logic gate to another. Input constraint and output
constraint are used for primary input and primary output
respectively. Shared input constraint identifies shared
inputs which is used in the case of more than one sink net
shared by two pins.

As long as the reference circuits represent all the
functionalities that FPGA hardware resources can
implement, it can always find a feasible solution for
packing result. However, it is impossible to enumerate all
reference circuits for a complex contemporary FPGA,
which makes isomorphism packing impractical. Let us
consider a case of two 6-LUTs and a 2to1 multiplexer
F7MUX forming one 7-LUT in one SLICE. If ignoring
sequential outputs, there are 4 cases already, as shown in
Fig. 2. Hence, four reference circuits must be constructed
in order to match all these patterns. If considering
sequential outputs, the number of combination patterns
can be increased significantly. It is therefore crucial to
select the proper reference circuits, achieving not only
less number of reference circuits but also covering all the
functionalities a SLICE of contemporary FPGA can
implement.

In order to reduce the number of reference circuits, the
construction of reference circuits in the proposed method
only considers combinational logic. Although the
sequential logic is not included in the reference circuits, it
will be dealt with after graph pattern match in the second
step of packing method. By doing so, it can not only
reduce the complexity of the individual reference circuit
but the count number of the reference circuits as well.
Those different logic functions that behave a similar
function are categorized as one function type. For
example, there are four different ways to form 7-LUT in
one SLICE, as shown in Fig.2(a), Fig.2(b), Fig.2(c) and
Fig.2(d), respectively. The graph, shown in Fig. 2(a), is
the subset of the graph shown in Fig.2(d). The graphs,
shown in Fig.2(b) and Fig.2(c), are also the subset of the
graph shown in Fig.2(d). Therefore those four graphs are
considered as one function type. One function type

accordingly has only one reference circuit. The directed
graph of reference circuit is modified by inserting a
virtual primary input (VPI) at the input of the vertex and
inserting a virtual primary output (VPO) at the output of
the vertex, as shown in Fig. 3.

 (a) (b)

A6

A4

A3

A1

D6-LUT

D6-LUT

S1

S0 SEL

OUT

A2

A5

A6

A4

A3

A2

A5

A1

 (c) (d)
Fig. 2 (a) 7-LUT with single output, (b) 7-LUT with 2 outputs, in

which one output is from 7-LUT and the other is from the top 6-LUT, (c)
7-LUT with 2 outputs, in which one output is from 7-LUT and the other

is from the bottom 6-LUT, (d) 7-LUT with 3 outputs, in which two
outputs are from 6-LUTs and one is from 7-LUT.

Fig. 3 Directed graph for 7-LUT reference circuit

After a reference circuit is matched from a given user

design circuit by utilising graph constraint satisfaction
technique, transformation from the reference circuit to the
pre-packed cluster process is required. The process for
the newly created cluster involves creating a new cluster,
wires connection, wires disconnection and specifying
configurations such as buffer, MUX, LUT and FF. A key
observation is that for a given reference circuit wire
connections for the newly created cluster and the
configuration settings never alter. In addition, the
transformation processes of different reference circuits

JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014 1133

© 2014 ACADEMY PUBLISHER

are identical. The net connections and the configuration
values for different created clusters are different.
Therefore each step in the process can be used as an
instruction. As a result, the whole process works as
executing instruction one after another. For a different
specific architecture, reference circuits are different and
those reference circuits must be modified accordingly.
However, the execution of the instruction is the same for
a different architecture. The designed instructions are
architecture independent, simple but effective, as shown
in TABLE I.

TABLE I
SUMMARY OF INSTRUCTIONS

Instructions Description

create_instance (inst, type) Creates a new instance
according to its type.

unhook (insta.p1)
Disconnects the pin with
name p1 of instance from
its net.

connect (inst1.p1, inst2.p1)

Connects the pin with name
p1 of instance1 to the net
which has pin with name
p1 of instance2.

reconnect (inst1.p1, inst2.p1)

Disconnects pin with name
p1 of instance1 from its net
and connects it to the net
which has pin with name
p1 of instance2.

xconnect (inst.p1, inst.p2)

Exchanges the net
connections of two
different pins, p1 and p2,
which is used for two pins
swap.

set_configuration(inst, value) Sets one configuration of
the instance.

copy_property (inst1,value1,
inst2,value1)

Copies value1, which is
one property of instance1,
to instance2.

set_ property (inst, value) Sets one property of the
instance.

create_instance (inst, type) Creates a new instance
according to its type.

unhook (inst.p1)
Disconnects the pin with
name p1 of instance from
its net.

connect (inst1.p1, inst2.p1)

Connects the pin with name
p1 of instance1 to the net
which has pin with name
p1 of instance2.

Example 1: Use designed instructions to create a SLICE
with functionality of 7-LUT by combining two 6-LUTs
and F7MUX. Assume 6-LUT has six inputs A1, A2, A3,
A4, A5 and A6 as well as two outputs O5 and O6.
F7MUX has three inputs I0, I1 and S as well as one
output O. The SLICE has the same architecture as Xilinx-
7 FPGA.
1. Create a slice with name slice_a by using instruction

create_slice (slice_a, SLICE)
2. Reconnect function generator A6LUT input

connections to the newly created slice inputs by using
following instructions.

reconnect (A6LUT.A1, slice_a.A1)
reconnect (A6LUT.A2, slice_a.A2)
reconnect (A6LUT.A3, slice_a.A3)
reconnect (A6LUT.A4, slice_a.A4)
reconnect (A6LUT.A5, slice_a.A5)
reconnect (A6LUT.A6, slice_a.A6)

3. Reconnect function generator B6LUT input
connections to the newly created slice inputs by using
following instructions.

reconnect (B6LUT.A1, slice_a.B1)
reconnect (B6LUT.A2, slice_a.B2)
reconnect (B6LUT.A3, slice_a.B3)
reconnect (B6LUT.A4, slice_a.B4)
reconnect (B6LUT.A5, slice_a.B5)
reconnect (B6LUT.A6, slice_a.B6)

4. Reconnect wires to the newly created slice outputs
and internal connections by using following
instructions, in which A, B, AX and AMUX are
SLICE pin name of Xilinx Vertex 7 series family
FPGA device.

reconnect (A6LUT.O6, slice_a.A)
reconnect (B6LUT.O6, slice_a.B)
reconnect (F7MUX.S, slice_a.AX)
reconnect (F7MUX.O, slice_a.AMUX)
connect (A6LUT.O6,F7MUX.I0)
connect (B6LUT.O6,F7MUX.I1)

5. Copy properties from 6-LUTs and set properties by
using following instructions, in which “INIT” is the 6-
LUT initial value and “NAME” is the 6-LUT instance
name.
copy_property (A6LUT,INIT, slice_a,A6#LUT)
copy_property (B6LUT,INIT, slice_a,B6#LUT)
copy_property (A6LUT,NAME, slice_a, ANAME)
copy_property (B6LUT,NAME, slice_a, BNAME)
set_property (slice_a, FXLUT::TRUE)

6. Set configurations by using following instructions, in
which AOUTMUX, AUSED, BUSED are SLICE
configurations of Xilinx Vertex 7 FPGA device.

set_configuration (slice_a, AOUTMUX::F7)
set_configuration (slice_a, A6#LUT::A6#LUT)
set_configuration (slice_a, AUSED::0)
set_configuration (slice_a, BUSED::0)

For the consideration of timing issue, the constraint

satisfaction problem technique of graph matching
mentioned in early sections is only used for the first stage
of the proposed packing. In this stage, only combinational
specific logics are matched and packed for a given user
design. As a result, the input to the second stage is a
netlist consisting of pre-packed combinational clusters,
hard IP blocks, LUTs and FFs. In the second stage it
packs selected FFs to pre-packed combinational clusters,
in which the FF directly driven by the output of the
cluster is selected. In other words, if the FF is driven by
the output of other block such as a LUT or a FF, this FF
is ignored. It is known as FF absorption stage. In the

1134 JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

same way, it repeatedly packs the selected FFs into the
cluster until no more FF can be selected for packing.
After this stage completes, the netlist consists of pre-
packed combinational clusters, pre-packed sequential
clusters, hard IP blocks, LUTs and FFs. Final stage deals
with LUTs and FFs in a delay-based manner, which is
similar to MO-Pack [11] and YAMO-Pack [12], to pack
them into clusters.

The pseudo code of proposed algorithm is outlined as
follows.

IV. RESULTS

The proposed method is developed under Microsoft
Visual Studio 2010 and implemented in C++. The results
have been run on the PC with an INTEL CPU 2.4 GHz
and 4 GB RAM.

To verify the effectiveness of the proposed method,
design circuits in register transfer level Verilog format
from the benchmark suite in Quartus II university
interface program (QUIP) [17] are chosen. The selected
designs are architecture independent and those circuits
can be logically optimised by Xilinx commercial logic
synthesis tool XST. Xilinx ISE MAP and the proposed
method are then applied to the output of XST to pack
logic into Xilinx Virtex-7 FPGA SLICE. The device

xc7k160t-fbg676-3 is chosen for demonstration. TABLE
II shows the comparison of the mapping results.

TABLE II
COMPARISON OF ISE MAP AND OURS IN TERMS OF DELAY

Benchmarks
ISE
MAP
(ns)

Ours
(ns)

Improve-
ment (%)

barrel16 2.243 2.164 3.52
barrel16a 2.829 2.706 4.35
barrel32 2.995 2.978 0.57
barrel64 3.495 3.420 2.15
fip_cordic_cla 4.762 4.555 4.35
fip_cordic_rca 4.017 3.841 4.38
fip_risc8 8.243 8.454 -2.56
mux32_16bit 2.268 2.205 2.78
mux64_16bit 3.114 3.038 2.44
mux8_128bit 2.595 2.685 -3.47
mux8_64bit 1.364 1.314 3.67
oc_aes_core 4.885 4.964 -1.62
oc_aes_core_inv 7.73 8.144 -5.36
oc_des_area_opt 2.389 2.262 5.32
oc_des_des3area 3.115 3.260 -4.65
oc_des_des3perf 3.392 3.305 2.56
oc_des_perf_opt 2.423 2.356 2.77
oc_minirisc 6.612 6.381 3.49
oc_miniuart 1.812 1.753 3.26
oc_mips 14.64 14.924 -1.94
oc_rtc 3.312 3.222 2.72
oc_ssram 1.609 1.500 6.77
oc_video_dec 3.223 3.207 0.50
oc_video_enc 2.089 2.164 -3.59
oc_video_jpeg 3.723 3.677 1.24
Average 3.96 3.94 0.51

TABLE III
COMPARISON OF PAM MAP AND OURS

Benchmarks

Area
(No. of SLICE) Delay (ns)

PAM
MAP Ours Imp

(%)
PAM
MAP Ours Imp

(%)
barrel16 24 20 -17 2.473 2.164 -12.5
barrel16a 49 41 -16 2.961 2.706 -8.6
barrel32 110 103 -6 3.384 2.978 -12.0
barrel64 140 133 -5 3.842 3.42 -11.0
fip_cordic_cla 120 118 -2 4.945 4.555 -7.9
fip_cordic_rca 74 68 -8 3.961 3.841 -3.0
fip_risc8 134 122 -9 8.454 8.454 0.0
mux32_16bit 136 135 -1 2.225 2.205 -0.9
mux64_16bit 268 259 -3 3.874 3.038 -21.6
mux8_128bit 279 270 -3 2.952 2.685 -9.0
mux8_64bit 140 136 -3 1.456 1.314 -9.8
oc_aes_core 170 158 -7 6.023 4.964 -17.6
oc_aes_core_inv 300 295 -2 8.465 8.144 -3.8
oc_des_area_opt 160 147 -8 2.845 2.262 -20.5
oc_des_des3area 297 285 -4 3.856 3.26 -15.5
oc_des_des3perf 300 280 -7 3.505 3.305 -5.7
oc_des_perf_opt 580 560 -3 2.969 2.356 -20.6
oc_minirisc 180 165 -8 7.023 6.381 -9.1
oc_miniuart 36 34 -6 1.965 1.753 -10.8
oc_mips 1100 1055 -4 16.4 14.92 -9.0
oc_rtc 130 118 -9 3.762 3.222 -14.4
oc_ssram 36 33 -8 1.865 1.5 -19.6
oc_video_dec 134 130 -3 3.723 3.207 -13.9
oc_video_enc 104 96 -8 2.476 2.164 -12.6
oc_video_jpeg 476 465 -2 3.937 3.677 -6.6
Average 219 209 -6 4.374 3.939 -11

JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014 1135

© 2014 ACADEMY PUBLISHER

It can be seen that the proposed method can achieve
comparable results compared to Xilinx ISE MAP. It
should be noted that since the proposed method is
architecture independent it can be used for Altera FPGA
architecture as well as long as the pre-designed reference
circuits are modified accordingly to be suitable for Altera
FPGA architecture.

Other published methods such as iRAC [9], MO-Pack
[11], YAMO-Pack [12] etc are not comparable because
they are targeting academic FPGA model. The method
presented in [13] is not comparable either, because the
test suite used is from industry and not available.
Therefore, PAM MAP [14] is chosen for comparison,
since PAM MAP is architecture independent and it can
target Virtex-7 as well. The comparison results are shown
in TABLE III. It can be seen that the proposed method
can outperform PAM MAP in terms of area and delay in
all tested cases, achieving, on average, 6% and 11%
improvement, respectively.

V. CONCLUSIONS

The latest FPGAs contain composite logic blocks with
LUTs, FFs, MUXs and other arithmetic circuitry. Packing
design elements into the available logic resources is an
extremely complex problem. In this paper, an architecture
independent packing method for the commercial FPGA
device is proposed. The proposed method has three stages.
In the first stage, the constraint satisfaction problem
technique of graph matching is utilised to implement
specific logic such as 7-LUT, 8-LUT and carry chain
arithmetic logic from the given user design circuit.
Second stage packs the selected FFs to pre-packed
combinational clusters. In the third stage, the delay-based
method is carried out to deal with unclustered LUTs and
FFs. The experimental results show that the proposed
approach achieves similar performance in terms of speed
compared with Xilinx commercial tool ISE MAP. The
proposed algorithm also outperforms area-driven
architecture independent PAM MAP, which can achieve
on average, 6% and 11% in terms of area and speed,
respectively.

ACKNOWLEDGMENT

This work was supported by a grant (No. 11MS011)
from State Key Lab of ASIC and System, China and the
National High Technology Research and Development
(863) Thematic Program of China (No. 2012AA012001).

REFERENCES
[1] I. Kuon, J. Rose, “Measuring the gap between FPGAs and

ASICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol.26, pp. 203–215, 2007.

[2] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for
Deep-Submicron FPGAs, Kluwer Academic Publisher,
1999.

[3] V. Betz, J. Rose, VPR, “A new packing, placement and
routing tool for FPGA research,” Proceedings of the 7th
International Workshop on Field-Programmable Logic
and Applications, pp. 213-222, 1997.

[4] A. Marquardt, V. Betz, J. Rose, “Using cluster-based logic
blocks and timing-driven packing to improve FPGA speed
and density,” Proceedings of the ACM/SIGDA 7th
International Symposium on Field Programmable Gate
Arrays, pp. 37-46, 1999.

[5] J. Rose, J. Luu, C. Yu, et al, “The VTR project:
architecture and CAD for FPGAs from Verilog to routing,”
Proceedings of the ACM/SIGDA 20th International
Symposium on Field Programmable Gate Arrays, pp. 77-
86, 2012.

[6] M. Tom, D. Leong, G. Lemieux, “Un/DoPack: reclustering
of large system-on-chip designs with interconnect variation
for low-cost FPGAs,” Proceedings of the IEEE/ACM 2006
International Conference on Computer-Aided Design, pp.
680-687, 2006.

[7] H. Liu and A. Akoglu, “Timing-driven nonuniform
depopulation-based clustering,” International Journal of
Reconfigurable Computing, vol. 2010, pp. 1-11, 2010.

[8] L. Easwaran, and A. Akoglu, “Net-length-based
routability-driven power-aware clustering,” ACM
Transaction on Reconfigurable Technology and Systems,
vol. 4, pp. 38:1-16, 2011.

[9] A. Singh, G. Parthasarathy, and M. Marek-Sadowska,
“Efficient circuit clustering for area and power reduction in
FPGAs,” ACM Transaction on Design Automation
Electronic Systems, vol. 7, pp. 643-663, 2002.

[10] E. Bozorgzadeh, S. O. Memik, X. Yang, and M.
Sarrafzadeh, Routability-driven packing: metrics and
algorithms for cluster-based FPGAs, Journal of Circuits,
Systems and Computers, vol. 13, pp. 77–100, 2004.

[11] S. Rajavel, and A. Akoglu, “MO-Pack: Many-objective
clustering for FPGA CAD,” Proceedings of the 48th
ACM/IEEE Design Automation Conference, pp. 818-823,
2011.

[12] M. Yang, J.M. Lai and J.R. Tong, “Yet Another Many-
Objective Clustering (YAMO-Pack) for FPGA CAD,”
Proceeding of the 23rd International Conference on Field
Programmable Logic and Applications, pp. 1-4, 2013.

[13] T. Ahmed, P. D. Kundarewich, J. H. Anderson, at al,
“Architecture-Specific Packing for Virtex-5 FPGAs,”
Proceedings of the ACM/SIGDA 16th International
Symposium on Field Programmable Gate Arrays, pp. 5-13,
2008.

[14] Y. Shao, J.M. Lai, J. Wang and J.R. Tong, “PAM Map: an
architecture-independent logic block mapping algorithm
for sram-based FPGAs,” Proceedings of the 5th Southern
Conference on Programmable Logic, pp. 15-19, 2009.

[15] L.P. CordelIa, P. Foggia, C. Sansone and M. Vento, “A
(sub)graph isomorphism algorithm for matching large
graphs,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, pp. 1367-1372, 2004.

[16] B.N. Tran, T.D. Nguyen, “An Efficient Algorithm for
Isomorphic Problem on Generic Simple Graphs,”
Proceedings of the Second Asia International Conference
on Modeling Simulation, pp. 824-829, 2008.

[17] Quartus II University Interface Program. Available:
http://www.altera.com.cn/education/univ/research/unvquip.
html

Meng Yang received Bachelor of Engineering (Honor) degree
in Electrical Engineering from Shanghai University, Shanghai,
China, in 1999. He received Master of Science with distinction
in Electronics and Communication Engineering and Ph.D. in
Electronics from School of Engineering Edinburgh Napier
University, Edinburgh, UK, in 2002 and 2006, respectively.

1136 JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Currently he is a lecturer of State Key Lab of ASIC and
System and Department of Microelectronics, School of
Information Science and Technology, Fudan University,
Shanghai, China. His research interests include algorithms in
FPGA design automation, logic synthesis, and dynamic
reconfigurable FPGA automation design. He has published
more than 30 research papers.

Jinmei Lai received PhD degree in Shanghai Jiaotong
University, Shanghai, China, in 1998. She was a Post-Doctor in
Zhejiang University and Fudan University.

Currently she is a full professor of State Key Lab of ASIC
and System, Fudan University, Shanghai, China. Her research
interests include low power and reconfigurable architecture of

FPGA and SOC, embedded IP core generation automation,
logic synthesis and dynamic reconfigurable FPGA automation
design, SOC testing automation. She has published more than
80 research papers and holds dozens of Chinese patents.

A.E.A. Almaini was born in Baghdad where he completed his
school education. He received the B.Sc. (Eng), M.Sc., and Ph.D.
degrees in electrical & electronic engineering from universities
in England. He published a book, Electronic Logic Systems, and
over 100 research papers.

Currently he is a Professor Emeritus at Edinburgh Napier
University, Edinburgh, UK. His main research interests include
the synthesis, optimization and automation in the field of digital
electronics.

JOURNAL OF COMPUTERS, VOL. 9, NO. 5, MAY 2014 1137

© 2014 ACADEMY PUBLISHER

