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Abstract—Time series have become an important class of 
temporal data objects in our daily life while clustering 
analysis is an effective tool in the fields of data mining. 
However, the validity of clustering time series subsequences 
has been thrown into doubts recently by Keogh et al. In this 
work, we review this problem and propose the phase shift 
weighted spherical k-means algorithm (PS-WSKM in 
abbreviation) for clustering unsynchronized time series. In 
PS-WSKM, the phase shift procedure is introduced into the 
clustering process so that the phase problem is solved 
effectively. Meanwhile, the subsequences weights are 
assigned to subsequences to make the algorithm more 
robust. Experimental results on ECG datasets show that our 
approach is effective for the problem of unsynchronized 
time series subsequences clustering, which makes 
contributions to a wide range of applications, particularly in 
intelligent healthcare. 
 
Index Terms—time series clustering, unsynchronized time 
series subsequences, phase shift weighted spherical k-means 
algorithm 

I.  INTRODUCTION 

Time series data is an important kind of temporal data, 
which has initiated various research and development 
attempts in the fields of data mining. Clustering is one of 
the most frequently used methods in the fields of machine 
learning [1-4, 11-16]. Recently, time series clustering has 
aroused great interest among researchers. However, 
Keogh et al. declared that clustering time series 
subsequence is meaningless [5]. In [5], E. Keogh et al. 
conducted several clustering experiments with some of 
the commonly used clustering algorithms, such as k-
means, hierarchical, EM, SOMs and other variants of k-
Means, and found that the center subsequences obtained 
by the clustering algorithms are seriously distorted. This 
work invalidated the contributions of dozens of 
previously published papers. The reason for this 
phenomenon comes from the fact that the phase problem 
is not effectively handled in the clustering process and 
each subsequence has the equal contributions to the 
center subsequences. As a result, the final center 

subsequences are seriously distorted and the clustering 
algorithms lose effectiveness. 

In order to further study the problems posed by Keogh 
and link up the clustering techniques with the time series 
applications, in this work, we integrate the principle of 
phase shift into the clustering process and then propose a 
novel clustering algorithm, i.e., phase shift weighted 
spherical k-means algorithm (PS-WSKM in abbreviation). 
We aim at providing an effective and robust approach for 
the problem of clustering times series subsequences. 

The rest of the paper is organized as follows. In section 
2, we discuss the principle of unit vectors. In section 3, 
we propose the phase shift weighted spherical k-means 
algorithm PS-WSKM and investigate its properties. 
Section 3 reports the experimental results. 

II.  PROPERTIES OF UNIT VECTORS 

A.  Definitions 
Definition 1: Subsequence: Given a time series T of 

length m, a subsequence C of T is a sampling of length s 
≤ m of contiguous position from T, that is, C = tp, …, tp+n-

1 for 1 ≤ p ≤ m-s+1. 
Definition 2: Optimal phase shift: Given subsequence 

X and C of length s, the optimal phase shift τopt of X 
relative to C is defined as 
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in which X(τ) denotes the subsequence resulting from 
shifting X with phase shift τ. If i+τ > s, the subsequence 
wraps around to its end and uses the value at i+τ-s..  

B.  Some Properties of Unit Vectors 
In this section, we will show some important 

properties of the unit vectors. Suppose we are given n 
unit vectors x1, …, xn in Rs and their weights w1, …, wn, 
wi>0, i = 1, 2, …, n. The weighted mean vector of the 
unit vectors can be computed as: 
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Note that the weights of xi’s should be nonnegative real 
numbers. In addition, the mean vector m need not have a 
unit norm. One may capture its direction via the 
following calculation: 

m
mc =  (2) 

The weighted mean vector c with unit norm 
computed by Eq.(2) may be thought as the vector that is 
closest in cosine similarity (in an average sense) to all the 
unit vectors in dataset X. This provides us a solid 
theoretical foundation for the proposed algorithm. 

It is a hard work to cluster time series subsequences 
that are not strictly synchronized and many solutions 
have been proposed. One straightforward solution is to 
adjust the phase while the algorithm runs so that the 
cosine similarity between two subsequences is 
maximized. This procedure requires finding the optimal 
phase shift between two subsequences. However, for two 
subsequences with length s, brute force search for the 
optimal phase shift between them involves O(s2) 
computation complexity. This will become the speed 
bottleneck when the algorithm runs on large datasets. In 
the following, we will show that, using the convolution 
theorem, the time complexity to find the optimal phase 
shift τopt between x and c is O(slogs), which provides us 
an efficient approach for finding the optimal phase shift. 

Let x and y be two normalized vectors whose length 
equals to 1 in the Euclidean space, rxy be the consine 
similarity and dxy be Euclidean distance between x and y, 
respectively, then we could have the following 
relationship: 

2

2
11 xyxy dr =−  (3) 

On the other hand, the cosine similarity between two 
subsequences X(τ)= {x1, x2, …, xs} and C= {c1, c2, …, cs} 
can be computed as follows: 

∑
=
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s

i
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0
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where s is the length of the two subsequences. Obviously, 
the cosine similarity between two subsequences is similar 
in nature to the convolution of two discrete series. 
Whereas convolution involves reversing the series, then 
shifting it and multiplying by another one, the cosine 
similarity defined in Eq.(4) only involves shifting it and 
multiplying, without the reversing step. 

Theorem 1: Assuming X and C are subsequences of 
length s, the time complexity to find the optimal phase 
shift τopt between X and C is O(slogs). 

Proof: According to the convolution theorem, under 
suitable conditions, the Fourier transform of a 
convolution is the pointwise product of Fourier 
transforms. Let F denotes the Fourier operator and F-1 as 

the inverse Fourier transform, F{X} and F{C} are the 
Fourier transforms of time series X and C, the consine 
similarity defined in (4) can be computed as follows: 

)}(}{}{{)( *1
, ττ CFXFFr cx ⋅= −   

in which F*(C) denotes the complex conjugate of the 
Fourier transform of C. With Fast Fourier Transforms 
(FFT), )(, τcxr s for different values of τs can be 
computed together, thus the time complexity of 
computing )(, τcxr s for different τ values is identical to 
that of FFT, which is O(slogs). On the other hand, 
according to the relationship between consine similarity 
and Euclidean distance revealed in Eq.(3), the optimal 
phase τopt of X relative to C can be computed with 

)(maxarg),( , ττ
τ

cxopt rCX =   

Thus the Theorem is proved. € 
The properties discussed above provide us useful 

theoretical tools to develop an effective clustering 
algorithm for clustering unsynchronized time series data. 

III.  PHASE SHIFT WEIGHTED SPHERICAL K-MEANS 
ALGORITHM 

Let X be the set of subsequences with the length of s, 
Β = [β1, β2, …, βn] be the weight vector, V=[v1, …, vs] be 
the center subsequence, d(xi, vj) be the Euclidean distance 
between subsequence xi and vj, and r be a parameter for 
the weight βi. For the jth cluster, the learning criterion can 
be defined as follows: 
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ε  in Eq.(5) is introduced into the 

objective function to avoid zero division errors. We can 
minimize Eq.(5) by iteratively solving the following 
optimization problems: 

Problem P1: Fix Β=Β ˆ  and XX ˆ= , solve the 
reduced problem ˆ ˆ( , , )J X v Β ; 

Problem P2: Fix VV ˆ=  and XX ˆ= , solve the 

reduced problem J( X̂ , ˆ jv , Β ); 

Problem P3: Fix Β=Β ˆ  and VV ˆ= , solve the 

reduced problem ˆˆ( , , )jJ X v Β . 
To solve problem P1 and find the center that makes Eq.(5) 
minimized, the cluster center vj can be computed as 
follows: 
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To solve problem P2 and find the fuzzy feature 
weight Β that makes the objective function minimized 
under constraints Eq.(5b), we use Lagrange multipliers. 
By using Lagrange multipliers, we have 
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Unlike problem P1 and problem P2, problem P3 is 
defined on a discrete domain and the function 

ˆ( , , )jJ X v Β  is uncontinuous. Thus the partial derivatives 
cannot be used here. However, we can shift the phase for 
each subsequence xi so that ( )2 ˆ,i jd x v  is minimized. In 

this way, the phase problem involved in time series data 
is solved in this step. For fixed Β̂  and ˆ jv , 

Jj( X̂ , ˆ jv , Β )

( )( )2
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is also minimized. 
In the following, we will extend the above procedure 

to the case of multiple clusters. Let W = [w1, w2, …, wk] 
be the weights of each cluster, Β = [βji]c×n be the weights 
of each subsequence in each cluster, V be center 
subsequences of clusters, the objective function can be 
formulated as follows: 
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It can be illustrated as the combination of several clusters 

with objective functions Eq.(5) weighted by α
jw

1
. Its 

minimization implies that the weighted quadratic sum of 
the within-cluster distance should be minimized. We have 
the following iteration equations: 
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Now we discuss the phase adjustment and cluster 
assignment procedure. For each subsequence, we find the 
cluster center which has the maximal similarity with it 
and the corresponding optimal phase shift τopt required to 
produce this maximal similarity. Then we assign the 
subsequence to this cluster and adjust the phase by the 
optimal phase shift τopt. 

We state the process of the algorithm PS-WSKM as 
follows: 
Algorithm: PS-WSKM 

Input: periodic time series T, period s, cluster number 
k 

Output: the vector of the subsequences weights В, 
partition matrix U, cluster weights W and the center 
subsequence V. 

Step 1: Segment the time series T with period s to 
obtain the set of the subsequences X(0). 

Step 2: Randomly generate a set of initial cluster 
weights W(0) and subsequences weights in each cluster 
В(0). Randomly choose k subsequences as initial centers 
V(0). Set t = 0. 

Step 3: Let )1(ˆ +Β=Β t , )1(ˆ += tWW  and 
)1(ˆ += tVV . For each subsequence Xi

(t), find the center 
subsequence Vl

(t+1) which has the maximal similarity with 
it and the corresponding optimal phase shift τopt required 
to produce this similarity. Assign the subsequence to this 
cluster with uli

(t+1) = 1 and uji
(t+1) = 0, for j = 1, …, k and j 

≠ l. Adjust the phase of Xi
(t) with Xi

(t+1)= {Xi
(t)}(τopt). 

Step 4: Let )1(ˆ += tXX , )(ˆ tWW = and ( )ˆ tv v= , 
compute Β(t+1) using equation Eq.(10a). 

Step 5: Let )(ˆ tWW = , )1(ˆ +Β=Β t and )1(ˆ += tXX , 
compute v(t+1) using equation Eq.(10c). 

Step 6: Let )1(ˆ += tXX , )1(ˆ +Β=Β t  and ( 1)ˆ tv v += , 
compute W(t+1) using equation Eq.(10b). 

Step 7: Compute QU(t+1)(X(t+1), v(t+1), W(t+1), Β(t+1)) 
using equation Eq.(10a). If | QU(t+1)(X(t+1), v(t+1), W(t+1), 
Β(t+1)) - QU(t)(X(t), v(t), W(t), Β(t))| < ε, output (U(t+1), v(t+1), 
W(t+1), Β(t+1)) and stop. Otherwise, t = t+1 and goto Step 3.

The newly introduced weighting vector W is used to 
determine discords clusters. According to Eq.(10b), the 
cluster weight wj reflects the weighted within-cluster 
distance of cluster j. If most of the subsequences within 
cluster j are close to their cluster center and the size of 
cluster j is much smaller than others, the wj will have 
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small value. This shows that the cluster with small size 
and small within-cluster distance is more likely to be a 
discord cluster. 

IV.  EXPERIMENTAL STUDY 

Electrocardiograms (ECG) are typical periodic time 
series we encounter in our daily life. Up to now, there are 
many test datasets available from Internet. In this work, 
we test our algorithm using ECG datasets. 

In our experiments, we split ECGs into subsequences 
without overlapping with each other, each of which 
contained one cycle. Then we normalized the 
subsequences to make each of them has the length of 1. 
The resulted subsequences were the input of our 
algorithm. 

A.  Robustness Experiments on PS-WSKM 
This experiment was conducted to verify the 

robustness of the proposed algorithm PS-WSKM when 
the cluster number is set to 1 and compared it with Pk-
means (k=1) [6]. 

In order to intuitively show how the discords affect 
the center subsequence found by the algorithm, we 
created a synthetic dataset by introducing known number 
of discords into the xmitdb_x108_0 dataset. In our dataset, 
the discords were more than 10% percent such that the 
negative effects of the discords to the whole dataset 
cannot be ignored. We run the proposed PS-WSKM (k=1) 
and Pk-means on it respectively and plot the resulting 
subsequences and the center subsequences in Fig 1(a) and 
Fig 1(c), respectively. Meanwhile, we also run the both 
algorithms on the original xmitdb_x108_0 dataset without 
discords involved and the results are plotted in Fig 1(b) 
and Fig 1(d). In Fig 1, the subsequences after phase 
adjustment by both algorithms are drawn in blue and their 
center subsequences are highlighted in red. The primary 
differences between the center subsequences are 
highlighted by green circles. One point needs to be 
mentioned here is that the phases of the four resulted 
center subsequences in Fig 1 are not synchronized. This 
is due to the random initialization of the algorithms. 
However, this does not prevent us coming to our 
conclusions. 

Comparing Fig 1(a) with Fig 1(b), we can observe 
that the center subsequence generated by PS-WSM 
changes slightly after discords are introduced. This 
implies that PS-WSKM is robust to the discords in the 
dataset. In contrast, the center subsequence generated by 
Pk-means is sensitive to the discords in the dataset when 
we compare Fig 1(c) with Fig 1(d). The robustness of PS-
WSKM comes from the introduction of the weight vector 
В. Recall the center update equation in Eq.(6) and we can 
easily infer that the discords with larger βis have less 
contribution to the center subsequence computation. 
However, for Pk-means, each subsequence makes 
identical contribution to the center subsequence such that 
the center subsequence is influenced greatly if enough 
discords are introduced. 

 

B. Multiple-cluster Datasets Experiments on PS-WSKM 
To evaluate the performance of PS-WSKM, we 

conducted two experiments on the dataset containing 
multiple clusters. 

The first part of PS-WSKM experiment was conducted 
on MIT-BIH datasets labeled 102, 104, 106 and 108. Fig 
2 shows the results obtained by PS-WSKM running on 
these datasets when the optimal k values are properly 
assumed. As can be seen from Fig 2, PS-WSKM can 
discover the center subsequence of each cluster 
successfully, which agree with the clustering results 
obtained by Pk-means. 

 
 (a) 

 
(b) 

 (c) 
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(d) 

Fig.1 the center subsequences obtained by different 
algorithms 

(a) center subsequences resulted from PS-WSKM 
(k=1) running on the dataset with discords 
introduced (b) center subsequences resulted from 
PS-WSM running on the original xmitdb_x108_0 
dataset (c) center subsequences resulted from Pk-
means running on the dataset with discords 
introduced (d) center subsequences resulted from 
Pk-means running on the original xmitdb_x108_0 
dataset 

 PS-WSKM  (r=1, α=3) Pk-means

 Cluster 
weight 

Center 
subsequence 

of each 
cluster 

Distribution 
of the 

subsequences 
weights 

Center 
subsequence 

of each 
cluster 

102 

0.6994 
  

0.3006 
  

104 

0.4084 
  

0.5916 
  

106 

0.7177  
  

0.2823 
  

108 

0.4363 
  

0.5637 
  

Fig.2 Comparison of PS-WSKM and Pk-means results on several MIT-
BIH datasets 

IV CONCLUSIONS 

The effectiveness of clustering time series 
subsequences has been thrown into doubts by Keogh et al. 
recently. In this work, we investigate this problem by 
introducing subsequences’ weights and a phase shift 
procedure into the clustering process. We proposed PS-
WSKM to cluster time series subsequences so that the 
unsynchronized time series subsequences can be 
clustered effectively. 

On one hand, this work has opened up new 
opportunities for applying clustering techniques to the 
unsynchronized time series subsequences clustering tasks. 
On the other hand, the introduction of subsequences 
weights makes the algorithm more robust. However, we 
only use the raw time series data. In our future work, we 
will integrate the dimensionality reduction or feature 
extraction techniques into the clustering process. In this 
way, the learning algorithm will become more smart and 
effective. 
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