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Abstract—This work addresses the multi-target tracking 
problem in the nonlinear Gaussian system. One probability 
hypothesis density filtering algorithm based on Gaussian-
Hermite numerical integration is proposed. In order to 
calculate integrations in the Gaussian mixture probability 
hypothesis density filter, the Gaussian-Hermite numerical 
integration method is used to approximate the integration. 
In the filtering stages of prediction and update, we calculate 
the corresponding Gaussian-Hermite integral points and 
weights, employ the method of numerical accumulation to 
approximate the integrations of the Gaussian mixture 
probability hypothesis density filter. Then the 
corresponding Gaussian items are calculated and the 
recursions of Gaussian mixture are implemented. The new 
algorithm can estimate not only the state vector effectively 
but also the number of targets accurately. Moreover, its 
time complexity increases in a low level. The simulation 
results show that the new algorithm can improve the 
accuracy of target tracking, and its time complexity keeps 
the same order of magnitude as the extended Kalman 
Gaussian mixture probability hypothesis density filter. 
 
Index Terms—probability hypothesis density filter, random 
finite sets, Gaussian-Hermite numerical integration, multi-
target tracking, state estimation 
 

I.  INTRODUCTION 

In recent years, the theory of random finite sets 
(RFS) is widely used in the fields of information fusion 
which is dealing with point estimation [1] and target 
tracking. More and more scholars pay attention to this 
theory. Random sets theory mainly refers to the random 
finite sets theory, it can solve the problem of multi-target 
tracking effectively under a complex environment. It 
already becomes one of the most popular direction in the 
multi-target tracking research field [2]. Mahler's 
probability hypothesis density (PHD) filter [3] is a filtering 
method based on the framework of RFS. This method 

represents multi-target state and measurement as random 
finite sets, and adopts an approach which is similar to the 
Bayesian theory to implement in a unified style. The 
complexity of the data association problem is avoided in 
this progress. Because formulas of the PHD filtering 
recursion contain integrals, it is generally difficult to 
obtain the analytical solution. To solve this problem, Vo 
et al. propose the Gaussian mixture PHD (GM-PHD) 
filter [4] which is applicable to the linear Gaussian systems. 
This algorithm assumes that the multi-target PHD could 
be written as the form of Gaussian mixture, then at each 
time step, the prediction and update PHD can also subject 
to the distribution of Gaussian mixture. Thus the 
recursive Gaussian mixture PHD filter algorithm is 
derived. Furthermore, Clark et al. prove that the GM-
PHD filter is convergence, and present the error boundary 
in trim and merge phases [5]. For multi-target tracking 
problems with nonlinear Gaussian assumption, the 
extended Kalman PHD (EK-PHD) filtering algorithm is 
given in [4]. EK-PHD uses the method of Taylor series 
expansion to get the local linearization of nonlinear 
functions, and then the GM-PHD is employed directly. 
However, only under the condition of weak nonlinear 
system, the EK-PHD can get satisfied filtering accuracy. 
If system is strong nonlinear, due to the large linear 
truncation errors, the filtering accuracy become low. In 
order to improve the accuracy in the strong nonlinear 
system, article [6] which is based on particle filter [7] 
presents the particle PHD (P-PHD) filter, also known as 
sequential Monte Carlo PHD (SMC-PHD). The algorithm 
uses a large number of particles and weights to 
approximate the nonlinear transformation of random 
variables. It can obtain higher filtering accuracy and can 
also apply to the condition of the system which is 
nonlinear and non-Gaussian. Then the convergence of P-
PHD is analyzed and proved in [8], and the boundary of 
the mean square error (MSE) is derived. Literature [9] 
adopts unscented particle filter (UPF) to implement P-
PHD filter, which uses unscented Kalman filter to get 
better importance density function and sample particles 
from it. In this way, good error performance is acquired. 
However, time complexity of this algorithm is very high 
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and real-time performance in filtering stage is poor. So, 
people try to find some other PHD filters whose 
complexities are not so high. Such as the unscented 
Kalman PHD (UK-PHD)[4] filter with nonlinear Gaussian 
assumption, which uses unscented transform to determine 
the sampling points to characterize the statistical 
properties of Gaussian random vector, and approximates 
the state of the system’s posterior probability. In [10], the 
central difference Kalman (CDK) filter is combined with 
PHD, and the CDK-PHD filter is proposed. This method 
uses the Stirling interpolation formula to approximate the 
polynomial of nonlinear function. It improves the 
estimation accuracy. Cubature Kalman Filter (CKF) [11] 
can be combined with the PHD, and the cubature PHD 
filter is given in [12]. This algorithm adopts the sampling 
rules of third-order spherical cubature-radial to compute 
the probability distribution of target state, which solves 
the computing problems of nonlinear state equation and 
observation equation. 

As the Gaussian-Hermite numerical integration is 
applied to the nonlinear Gaussian filtering system, it is 
the Gaussian-sum quadrature Kalman (QKF) filter [13]. 
Under the inspiration of the work above, we apply the 
Gaussian-Hermite numerical integration method to the 
PHD filter process, and obtain a new PHD filter which 
can deal with multi-target nonlinear tracking system, 
namely the Gaussian-Hermite probability hypothesis 
density filter (GH-PHD). Compared with the EK-PHD 
filter algorithm, new algorithm improves the filtering 
accuracy. Although time complexity of this algorithm 
increases, it keeps the same order of magnitude with EK-
PHD filter algorithm. So, it is acceptable in many 
practical applications. 

II.  PROBLEM FORMULATION 

In the process of multi-target tracking, old targets may 
be disappearing and new targets may be appearing in one 
time step so that the number of targets is changing over 
time. Suppose the number of targets is ( )M k  at time k , 
by using the random finite sets, the state set of targets can 
be represented as ,1 , ( ){ , }k k k M k=X x x"  and the 
measurement set can be represented as 

,1 , ( ){ , }k k k N k=Z z z" , where ( )N k  is the measurement 
number at time k . 

Suppose that the state set is kX  at time k , then at time 
1k +  the state set of targets can be expressed as 

1 11 1( ) ( )k k k kk k k kS B+ ++ += ΓX X X∪ ∪                   (1) 

where 1 ( )kk kS + X  is the RFS of targets survival, 

1 ( )kk kB + X  is the RFS of targets spawned at time 1k +  

from previous targets with state kX , 1k +Γ is the RFS of 
spontaneous birth at time 1k + . Usually we use 

1( )k kf +X X  to express the transition density of multi-
target state. 

Similarly, at time k  the set of measurements can be 
expressed as 

( )k k k k= ΘZ K X∪                           (2) 

where kK is the measurement random set of false 
measurements or clutter. ( )k kΘ X  is the measurement 
random set produced by the real targets. Usually we use 

( )k kg Z X  to express the measurement likelihood 
function. 

In the target tracking system, it is usually assumed that 
the dynamic model and measurement model of a single 
target are represented as follows 

1( )k k kf −= +x x ω                             (3) 

( )k k kh= +z x υ                               (4) 

where kω  and kυ  are both the additive Gaussian noises. 

kx  is the state vector, ( )f ⋅  and ( )h ⋅  are the transition 
function and the measurement function, respectively. 
Assume 0( )p x  is the initial state distribution, the 
purpose of target tracking is to estimate the posterior 
distribution recursively, thus to estimate the target state 
and the target number. 

III.  GAUSSIAN-HERMITE NUMERICAL INTEGRATION 

Gaussian-Hermite filter is a nonlinear Bayes filter 
under the assumption of Gaussian distribution. It is a kind 
of recursive filtering method based on Gaussian-Hermite 
numerical integration [13], which is implemented by 
choosing integral points and the corresponding weights to 
enhance the accuracy of the system state mean and the 
variance estimate [14]. 

Assume that ( )g x  is a weighted integral function on an 
interval ( , )a b , then the integral can be expressed as 

( ) ( ) ( )
b

a
I g W x g x dx= ∫                           (5) 

where ( )W x  is a weighted function. If we use m  
numerical points to integrate, formula (5) can be 
approximated as 

1
( ) ( )

m

i i
i

I g w g ξ
=

≈∑                               (6) 

where iξ is the standard integral point, iw  is its 
corresponding weight. 

Firstly, we consider one-dimensional situation, it is 
assumed that a random variable x  with a Gaussian 
probability density is ( )=N( ;0,1)p x x . The expectation of 
the function ( )g x  can be approximated as 

1

[ ( )] ( )N( ;0,1)

( )

R
m

l l
l

g x g x x dx

w g ξ
=

Ε =

≈

∫

∑
                         (7) 

The method which uses root-finding to calculate the 
integral points is unstable on the arithmetic, so we adopt 
the method which is proposed in literature [13] to get 
integral points and weights. This method exploits the 
relationship between orthogonal polynomials and the 
tridiagonal matrix. Assume that J  is a symmetric 
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tridiagonal matrix with zero diagonal elements and other 
elements are 

, 1 2,1 ( 1)i iJ i i m+ = ≤ ≤ −                         (8) 

Here, m  is the number of standard integral points. In fact, 
the specific number of integral points is determined by m  
and the dimension of state vector. For example, if 5m = , 
then the dimension of state vector is 4, it will have 625 
points. If 3m > , through experiments we found that the 
filtering precision of algorithm improvement is not big, 
but its time complexity increases significantly. For these 
reasons, we select 3m =  in the experiment. The standard 
integral point is taken to be 2l lξ ε= , where lε  is the l -
th eigenvalue of matrix J ; the corresponding weight is 

2
1( )l lw ν= , where 1( )lν  is the first element of the l -th 

normalized eigenvector of matrix J . 
Furthermore, we can extend one dimensional case to 

multi-dimensional case. Assume a random vector x  has 
a Gaussian density ( ) N( ; , )

xnp =x x I0 , where 
xnI  is the 

identity matrix with x xn n×  dimensions. Since each 
element of x  is mutually uncorrelated, integral rule of 

xn  dimensions Gaussian-Hermite is as follows: 

1 1

11 1

1

[ ( )] ( )N( ; , )

... ( ... )

( ).

n nx x
nx

nx

R
m m

l l l l
l l

m

l l
l

g g d

w w g

w g

ξ ξ
= =

=

Ε =

≈

=

∫

∑ ∑

∑

x x x I x

ξ

0

                    (9) 

where 
1

T
1

[ ... ] , x

n jx

n
l l l l lj

w wξ ξ
=

= = ∏ξ . 

Moreover, we further assume that a random vector x  
has a Gaussian density ˆ( ) N( ; , )p =x x x P , do Cholesky 
decomposition of P , and get T=P SS , 1 ˆ( )−= −y S x x , 
then 

1 1
1

T

1 1

1

1

ˆE[ ( )] ( )N( ; , )

ˆ( )N( ; , )

ˆ... ( [ ... ] )

ˆ( )

( ).

x

n nx x
nx

nx

nx

n

m m

l l l l
l l

m

l l
l

m

l l
l

g g d

g d

w w g

w g

w g

ξ ξ

ξ

= =

=

=

=

= +

≈ +

= +

=

∫
∫

∑ ∑

∑

∑

x x x x P x

Sy x y I y

S x

S x

x

0

     (10) 

Now, integral points can be obtained by 
ˆl lξ= +x S x                                (11) 

IV.  PROBABILITY HYPOTHESIS DENSITY FILTER 

Traditional multi-target tracking algorithms are related 
to data association, which means we need to determine 
the corresponding relationship between tracks and 
measurements. The computational complexity of data 
association grows exponentially along with the increase 

of the number of targets and measurements. Mahler's 
PHD filter is a kind of target tracking algorithm based on 
random sets theory [3]. This algorithm can avoid the 
complex progress of data association and can deal with 
multi-target tracking problem in an effective manner. The 
traditional Bayes filter propagates global probability 
density, but the calculation of global probability density 
in multi-target tracking is very difficult. Aiming at this 
problem, PHD propagates first-order statistics of the 
random finite sets via the posterior probability density. 
Also because of PHD propagation is posterior intensity of 
the state space, its integral in any state space is the 
expectation of targets’ number. Therefore, PHD filter can 
not only track the multi-target state when target number is 
unknown or changing over time, but also estimate the 
target number. Similar to the Bayes filter in multi-target 
tracking, the recursions in PHD filter also include 
prediction stage and update stage. 

At time k , the PHD prediction formula is 

1: 1 , 1 11 1

1 1 1 1: 1 11

( ) ( ) [ ( ) ( )

( )] ( )
k k k k S k k k kk k k k

k k k k k kk k

D p f

D d

γ

β
− − −− −

− − − − −−

= +

+
∫x Z x x x x

x x x Z x
     

(12) 
where ( )k kγ x  is intensity of the spontaneous birth RFS 

at time k , 11( )k kk kβ −− x x  is intensity of the RFS 

spawned at time k  by a target with previous state 1k −x , 

, 1( )S k kp −x  is the probability that a target with previous 

state 1k −x  still exists at time k . 11( )k kk kf −− x x  is the 

transition probability density of target state. 

1 1: 11( )k kk kD − −− x Z  is the posterior intensity of target at 

time 1k − . 

The integral of PHD prediction function 1( )k kD − ⋅  is the 
estimation of target number, i.e., 

1: 11 1 1 1 1( ) S B
k k kk k k k k k k k k kN D d N N NΓ

−− − − − −= = + +∫ x Z x   (13) 

where 

1 ( )k k kk kN dγΓ
− = ∫ x x                               (14) 

, 1 1 1 1 1: 1 11 1( ) ( ) ( )S
S k k k k k k k kk k k kN p f D d− − − − − −− −= ∫ x x x x Z x  

     (15) 

1 1 1 1: 11 1( ) ( )B
k k k k k kk k k kN D dβ − − − −− −= ∫ x x x Z x       (16) 

Here, formulas (14)-(16) express the expectation of 
spontaneous birth target number, the expectation of 
survival target number, and the expectation of spawned 
target number, respectively. 

At time k , the PHD update formula is 

1: , 1: 11

, 1: 11

, 1: 11

( ) (1 ( )) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )k k

k k k D k k k kk k

D k k k k k k kk k

k D k k k k k k k kk k

D p D

p g D

p g D dκ

−−

−−

∈ −−

= − +

+
∑

∫z Z

x Z x x Z

x z x x Z

z x z x x Z x

      

(17) 
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where ( ) ( )k k kc zκ λ=z  is the intensity of clutter RFS at 
time k , ( )kc z  is probability density of clutter, kλ  is the 
average number of clutter. Assume that the number of 
clutter which appears at each time obeys Poisson 
distribution, ( )k k kg z x  is the measurement likelihood 
function of target, , ( )D k kp x  is the detection probability. 

Similarly, the update formula of the expectation value 
of the target number is 

1:

, 1: 11 1

, 1: 11

, 1: 11

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )k

k k k k k

D k k k k kk k k k

D k k k k k k k kk k

k D k k k k k k k kk k

N D d

N p D d

p g D d

p g D dκ

−− −

−−

∈ −−

=

= −

+
+

∫
∫
∫∑
∫z Z

x Z x

x x Z x

x z x x Z x

z x z x x Z x
                   (18) 

From the prediction equation (12) and update equation 
(17) above, there are integrals among them. These 
integrations have no analytical solution in generally. In 
fact, the integral form can be written as an integral form 
of a nonlinear function multiplied by a Gaussian 
distribution, i.e., 

nonlinear function * Gaussian distribution d∫ x     (19) 

This kind of integral form can be approximated by using 
the method of formula (10), thus gaining a Gaussian-
Hermite PHD filter algorithm. 

V.  GAUSSIAN-HERMITE PHD FILTER 

Assume that the collection for Gaussian mixture 
components is 1( ) ( ) ( )

1 1 1 1{ , , } kJi i i
k k k iw −

− − − =m P  at time 1k − , and at 

time k  the measurement set is kZ . For birth targets, the 
prediction stage is the same as that of the GM-PHD filter 
in which the numerical integrations are not needed. For 
survival targets, it uses numerical integration in 
recursions. In time update stage, for the variance of every 
Gaussian items, do Cholesky decomposition, i.e., 

( ) ( ) ( ) T
1 1 1( )i i i

k k k− − −=P S S                           (20) 
Then, use formula (10) to calculate the integral points of 
each Gaussian component 

( ) ( ) ( )
, 1 1 1
i i i

l k k l kξ− − −= +x S m                         (21) 

Next, predict each integral point according to the state 
transition equation 

( ) ( )
, 1, 1 ( )i i

l kl k k f −− =x x                              (22) 

Finally, one-step prediction mean and variance of 
survival targets are given as 

( ) ( )
1 , 1

1

m
i i

lk k l k k
l

w− −
=

=∑m x                        (23) 

( ) ( ) ( ) T ( ) ( ) T
1 , 1 , 1 1 1

1

ˆ ˆ( ) ( )
m

i i i i i
l kk k l k k l k k k k k k

l

w− − − − −
=

= − +∑P x x x x Q      (24) 

where lw  is the corresponding weight of Gaussian-
Hermite integral point and kQ  is the variance of process 
noise. 

Assume that the prediction result of the component 
collection for Gaussian Mixture is 1( ) ( ) ( )

11 1 1{ , , } k kJi i i
ik k k k k kw −

=− − −m P , 
in the measurement update, we do Cholesky 
decomposition for ( )

1
i

k k −P  as well as formula (20), i.e., 
( ) ( ) ( ) T

1 1 1( )i i i
k k k k k k− − −=P S S , then the new integral point is 

( ) ( ) ( )
, 1 1 1
i i i

ll k k k k k kξ− − −= +x S m                         (25) 

Then, calculate integral point of measurement prediction 
( ) ( )

1 , 1
1

( )
m

i i
lk k l k k

l
w h− −

=

=∑z x                        (26) 

Next, state update and covariance update of the integral 
point are calculated as 

( ) ( ) ( ) ( ) ( )
1 1( )i i i i i

k kk k k k− −= + −x m K z z                     (27) 
( ) ( ) ( ) ( ) ( ) T

1 ( )i i i i i
k k kk k −= − zzP P Κ P Κ                      (28) 

where ( )h ⋅  is the measurement function of target, ( )iz  is 
the actual measurement value of the corresponding time, 

( )i
kΚ  is the filter gain, it is calculated as follows: 

( ) ( ) ( ) 1( )i i i
k

−= xz zzΚ P P                               (29) 

( ) ( ) ( ) T ( ) ( ) T
, 1 , 1 1 1

1
( ) ( )

m
i i i i i

zz k l l k k l k k k k k k
l

w − − − −
=

= + −∑P R z z z z       (30) 

( ) ( ) ( ) T ( ) ( ) T
, 1 , 1 1 1

1
( ) ( )

m
i i i i i

xz l l k k l k k k k k k
l

w − − − −
=

= −∑P x z m z           (31) 

where ( ) ( )
, 1 , 1( )i i

l k k l k kh− −=z x . 
From the description above, the pseudo code for the 

GH-PHD filter is summarized as below: 
Step 1: prediction for spontaneous birth targets 

0i =  
for ,1, , kj Jγ= "  

: 1i i= +  
( ) ( )

,1
i j

kk k γ− =m m ， ( ) ( )
,1

i j
kk kw wγ− = ， ( ) ( )

,1
i j

kk k γ− =P P   

end 
Step 2: prediction for existing targets 

( ) ( ) ( ) T
1 1 1( )j j j

k k k− − −=P S S  

for 11,..., kj J −=  

: 1i i= +  

for 1, ,l m= "  
( ) ( ) ( )
, 1 1 1
i j j

l k k l kξ− − −= +x S m  
( ) ( )
, 1 , 1( )i i

l k k l k kf− −=x x  

end  

( ) ( )
, 11

i j
S k kk kw p w −− = , ( ) ( )

1 , 1
1

m
i i

lk k l k k
l

w− −
=

=∑m x

( ) ( ) ( ) T ( ) ( ) T
1 , 1 , 1 1 1

1
( ) ( )

m
i i i i i

l kk k l k k l k k k k k k
l

w− − − − −
=

= − +∑P x x m m Q
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end 

1k kJ i− =  

Step 3: each component in the measurement update 
for 11,..., k kj J −=  

( ) ( )
1 , 1

1

ˆ
m

j j
lk k l k k

l
w− −

=

=∑z z  

( ) ( ) T ( ) ( ) T
, 1 , 1 1 1

1

ˆ ˆ( ) ( )
m

j j j j
k l l k k l k k k k k k

l

w − − − −
=

= + −∑zzP R z z z z  

( ) T ( ) ( ) T
, 1 , 1 1 1

1

ˆ( ) ( )
m

j j j
l l k k l k k k k k k

l
w − − − −

=

= −∑xzP x z m z  

( ) 1j
k

−= xz zzΚ P P ， ( ) ( ) ( ) ( ) T
1 ( )j j j j

k kk k k k −= − zzP P Κ P Κ  

end 
Step 4: measurement update 

for 11,..., k kj J −=  

( ) ( )
, 1(1 )j j

k D k k kw p w −= −  

( ) ( ) ( ) ( )
1 1,j j j j

k kk k k k− −= =m m P P  

end 
: 0i =  

for k∈z Z  

: 1i i= +  

for 11,..., k kj J −=  

( ) ( ) ( ) T
1 1 1( )i i i

k k k k k k− − −=P S S  

for 1,l m= "  
( ) ( ) ( )
, 1 1 1
i i i

ll k k k k k kξ− − −= +x S m
( ) ( )
, 1 , 1( )i i

l k k l k kh− −=z x  

end  
( ) ( ) ( ) ( )

, 1 1ˆN( ; , )i j j j
k D k k k k kw p w − −= zzz z P ， 

( ) ( ) ( ) ( ) ( )
1 1ˆ( )i j j j j

k kk k k k− −= + −m m K z z  

( ) ( )i j
k k k=P P  

end 

1

( )
( )

1( )
1

, 1,...,
( ) k k

j
i k

k k kJ i
k ki

w
w j J

wκ − −

=

= =
+∑z

 

end 

1 1k k k k kJ iJ J− −= +  

Output: ( ) ( ) ( )
1{ , , } kJi i i

k k k iw =m P . 
The number of Gaussian items for the posterior 

probability density will be increasing as time passing. As 
a result, a large number of calculation time is wasted to 
update the Gaussian items which have small weights. In 
order to control the number of Gaussian items, we can 

use pruning and merging method which is described in 
[4]. This can be done by setting a truncation threshold T  
and a merging threshold U . In pruning stage, Some 
Gaussian items are abandoned as their weights are 
smaller than truncation threshold. As a result, the 
Gaussian items whose weights are greater than truncation 
threshold are kept. In merging stage, give two Gaussian 
items ( ) ( ) ( ){ , , }i i i

k k kw m P  and ( ) ( ) ( ){ , , }j j j
k k kw m P , when the 

means and variances of the two Gaussian items meet 
( ) ( ) T ( ) 1 ( ) ( )( ) ( ) ( )i j i i j
k k k k k U−− − ≤m m P m m , the two Gaussian 

items will be merged. 
For multi-target state extraction, the clustering method 

is commonly used in the P-PHD filter[15]. Under the 
condition of Gaussian mixture, we generally use the 
method mentioned in [4] to extract targets’ state. Given a 
threshold, the Gaussian component with weight which is 
greater than the threshold can be regarded as a target and 
the corresponding state is the estimation of the target. 

VI.  SIMULATION EXPERIMENT AND RESULT ANALYSIS 

In the simulation region, assume that there are two 
targets. Each target is moving via constant velocity model 
or constant turn model. Target 1 appears at time 1k = , 
and dies at time 40k = ; target 2 appears at time 6k = , 
and dies at time 49k = . Two targets both travel in 
straight lines before time 16k = , then they are making 
turns until time 34k = , and the targets resume straight 
trajectories after time 34k = . 

The state vector of targets is T[ ]k x x y y=x � � , it 
consists of position component ( , )x y  and velocity 

component ( , )x y� � . Each target has survival probability 

, 0.99S kp =  and detection probability , 0.98D kp = . The 
corresponding motion equation is 

1k k k−= +x Fx Gω                            (32) 
where transition matrix of state noise is 

T2

2

2 0 0
0 0 2

T T
T T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

G . When targets do constant 

velocity motion, 
1 1 0

blkdiag ,
0 1 0 1

T⎛ ⎞⎡ ⎤ ⎡ ⎤= ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

F ; when 

targets do constant turn motion, 
sin 1 cos1 0

0 cos 0 sin
1 cos sin0 1

0 sin 0 cos

T T

T T
T T

T T

Ω − Ω⎡ ⎤−⎢ ⎥Ω Ω⎢ ⎥
Ω − Ω⎢ ⎥= ⎢ ⎥− Ω Ω

⎢ ⎥
Ω Ω⎢ ⎥

⎢ ⎥Ω Ω⎣ ⎦

F . kω  is white 

Gaussian noise, state noise matrix is 
diag([0.5 0.5])k =Q , sampling period is 1T = s, and 

the turn rate is (5 80)rad/sΩ = π . 
Measurement equation of the system is  
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2 2

arctan( )
k

k k
k

y
x

r
x y

θ
⎡ ⎤

⎡ ⎤ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥+⎣ ⎦

z υ                           (33) 

where ~ N( ; , )k k⋅υ R0 , and 2 2diag([ ])
k kk rθσ σ=R , 

2 ( 180)
kθσ = × π rad/s, 8

kr
σ = m. Measurement vector 

kz includes two components, the bearing kθ  and range kr . 
For convenience, assume that there are no spawned 

targets. And suppose PHD of spontaneous birth target 
random sets is 

(1) (2)( ) 0.1N( ; , ) 0.1N( ; , )k γ γ γ γγ = +x x m P x m P  

where 

[ ]T(1) -1000 60 500 0γ =m ,

[ ]T(2) 1050 -62 1070 0γ =m ,

diag([100 40 100 40])γ =P . Clutter is uniformly 
distributed in the surveillance region, and the number of 
clutter subjects to a Poisson distribution whose mean is 

5r = . Pruning threshold is prun 1e 5T = − , merging 
threshold is prun 4U = . ospa 70c =  is the adjustment factor 
of state error and cardinality error, ospa 2p =  is the 
distance of OSPA, max 100J =  is the largest number of 
Gaussian components. The entire time of the simulation 
is 49 s, the surveillance region is 
[ 2 , 2]rad [0,1600]m−π π × . 

Results of the GH-PHD filter and the EK-PHD filter 
are shown in Fig 1. From Fig 1, we are easily known that 
EK-PHD filter and GH-PHD filter both have better 
estimate of targets. The difference is that the tracking 
performance of GH-PHD filter is better than that of EK-
PHD. EK-PHD filter cannot accurately estimate the 
location of targets, it will also leak with some targets in 
the turn stage, and GH-PHD filter can accurately estimate 
the location of targets. Target trajectories and 
measurements in the area of the surveillance are shown in 
Fig 2. The marks of blue “ ο ” express the clutter 
distribution, the marks of red “*” are the true trajectory of 
targets. 5r =  is the number of clutter and it subjects to 
the Poisson distribution, the clutter uniformly distributes 
in the whole surveillance area. 
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Fig 1  The position of targets estimated via GH-PHD filter and EK-PHD 

filter 

Fig 3 displays the true number and the estimation 
number of targets of GH-PHD filter and EK-PHD filter 
throughout the simulation by time step. From Fig 3, we 
know that target number estimated by GH-PHD 
algorithm matched with the true target number well. It 
appears that the deviation of estimation only happened at 
time 18k =  and 19k = , at other time it can accurately 
estimate the number of targets; but the target number 
which is estimated by EK-PHD filter algorithm and the 
true target number have a few differences. 
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Fig 2  Clutters and measurements 
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Fig 3  The true number and the estimation number of targets 

In order to evaluate the accuracy of multi-target 
tracking filter, optimal subpattern assignment distance 
(OSPA)[16] is used, which can measure the difference 
between sets well, and it is one of the most popular 
evaluation criteria which has been used by many scholars 
in recent years. OSPA distance in the simulation is 
displayed in Fig 4. We are easy to know that the OSPA of 
GH-PHD filter is smaller than that of EK-PHD, although 
a few steps’ OSPA is high, like the case at time 18k = , 
however, the performance is better than EK-PHD’s as a 
whole. 

From the experimental results above, no matter what 
the target moving model is straight line or making turns, 
GH-PHD filter can both obtain higher filter accuracy than 
EK-PHD’s. At the same time, GH-PHD filter needs to 
calculate numerical integrations and the corresponding 
weight for each Gaussian item, its calculation is 
inevitably bigger than that of EK-PHD filter. One 
simulation experiment shows that GH-PHD filter 
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consumes 10.0900 seconds and EK-PHD filter consumes 
0.9521 seconds. 
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Fig 4  OSPA distance 

VII.  CONCLUSION 

Aiming at the probability hypothesis density filter 
based on the theory of random finite sets in the multi-
target tracking problem, this paper combines Gaussian-
Hermite numerical integral with Gaussian mixture PHD 
filter, and one algorithm to deal with nonlinear Gaussian 
system is presented, i.e., GH-PHD filter. In this approach, 
the joint distribution of targets and the number of targets 
can be well estimated, even if the target number is 
unknown or changing with time. It has good satisfied 
accuracy in multi-target tracking system. The proposed 
algorithm is suitable for the nonlinear clutter environment, 
and it breaks through the limitation of GM-PHD which is 
only suitable for linear system. For solving the multi-
target tracking under a nonlinear system, the new 
algorithm provides a new implemented approach. The 
new algorithm calculates the integral points and weights 
of every Gaussian items in PHD recursion so that the 
computation of new algorithm is larger than that of EK-
PHD filter. But the computational complexity still keeps 
in the same order of magnitude, so it is acceptable in 
many engineering applications. 
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