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Abstract—The shape features of planar C-B-spline segments 
are analyzed. The necessary and sufficient conditions are 
derived for the curve having one or two inflection points, a 
loop or a cusp, or be locally or globally convex. All 
conditions are completely characterized by the relative 
position of the control polygon’s side vectors, and are 
summarized in three kinds of shape diagrams in terms of 
the linear independence of the three side vectors. Moreover, 
it is proved that a spatial C-B-spline segment has no 
singularities and generalized inflection points. 
 
Index Terms—C-B-spline, Singularity, Inflection point, 
Convexity, Shape diagram 
 

I.  INTRODUCTION 

The C-B-spline segments introduced in [1, 2] not only 
inherit many geometric properties from B-splines, but 
also have an adjustable shape parameter, and can 
represent arcs of circles and ellipse, as well as some 
transcend curves such as cycloid and helix precisely. In 
[3], the authors proved that C-B-spline segments are 
generated by a normalized totally positive basis, and 
constructed a normalized basis of C-B-splines which 
admits optimal shape preserving and stability properties. 

It is well known that the distributions of singular points 
and inflection points, and the (local or global) convexity 
of parametric curves play very important roles in 
designing curves. For instance, in numerically controlled 
milling operations, many of algorithms rely on the fact 
that the trace of the curve is smooth-an assumption that is 
violated if a cusp is present. Inflection points often 
indicate unwanted oscillations in applications such as 
automobile body design and aerodynamics, and surface 
that has a cross-section curve possessing a loop cannot be 
manufactured.  

This topic (also known as shape classification or 
geometric characterization of a curve in computer aided 
geometric design) has been studied before from different 
points of view [4–18]. For the case of general parametric 
curves the reader can see [4, 5]. For planar cubic 
parametric curves some useful results can be found in [6–
11]. For the rational case one can refer to [12–14]. For C-
curves a classical shape diagram (similar to those in [6, 7]) 
was obtained in [15]. However in the papers [4–15], the 

difference between global and local convexity was 
untouched. In [16] a necessary and sufficient condition 
for global convexity of planar curves was presented. In 
[17], the authors did not only investigate inflection points 
and singularities but also the global and local convexity 
of the planar cubic trigonometric Bézier curves with a 
shape parameter. A different class of shape diagram of B-
spline curves with shape parameters was discussed in 
[18]. Some applications research related to this topic can 
be found in [19-21]. 

In this paper we apply the method presented in [11], 
which is based on the theory of envelope and topological 
mapping, to C-B-spline segment, we obtain the 
distribution regions of singular points and inflection 
points without much difficulty. According to the linear 
independence of three side vectors, we obtain three kinds 
of shape diagrams, which are different from that in [17], 
for the planar C-B-spline segment. Two of the three kinds 
of shape diagrams are different from that in [18]. 
Furthermore we discussed the influence of shape 
parameter on the shape diagram. In addition, we show 
that the spatial C-B-spline segment is a twisted curve. 

The rest of this paper is organized as follows. In 
Section 2, we introduce the construction of the C-B-
spline segments. In Section 3, the cusps, inflection points, 
loops and convexity of the planar C-B-spline segment are 
discussed. In Section 4, the influence of shape parameter 
on the shape diagram is illustrated. In Section 5, we deal 
with the spatial C-B-spline segment. We close in Section 
6 with a brief summary of our work. 

II.  C-B-SPLINE SEGMENTS 

The C-B-spline segment introduced in [1, 2] can be 
defined in the following way: 

Definition 1:  Let ( 0,1, 2,3)i i =d  be given control 
points and α  be a real value with 0 α π< < . The curve  

3

0
( ) ( ), [0,1]i i

i

t b t t
=

= ∈∑r d ,                              (1) 

is called C-B-spline segment with a parameter α , where 
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0

3 0

1 3 0

2 1

( ) [ sin( )] /[2 (1 cos )],
( ) (1 ),
( ) ( ) 2 ( ) 1 ,
( ) (1 ).

b t t t
b t b t
b t b t b t t
b t b t

α α α α α α= − − − −⎧
⎪ = −⎪
⎨ = − + −⎪
⎪ = −⎩

    (2) 

It was proved that curves which are piecewise C-B-
spline segments are continuously differentiable up to 
order two and the limit of ( )tr  approaches a uniform B-
spline curve as α  tends to zero in [1], more details can 
refer to [2]. It is not difficult to see that the curve is 
actually a straight line segment if all four control points 
are collinear but coincident, and collapses to a single 
point if all four control points are coincident. In the 
following section we discuss the shape features of planar 
C-B-spline segments. Without loss of generality, we 
suppose that the control points ( 0,1, 2,3)i i =d  are not 
collinear and are denoted by two dimensional column 
vectors in Sections 3 and 4. 

III.  SHAPE ANALYSIS OF PLANAR C-B-SPLINE SEGMENTS 

We recall the following preliminary knowledge before 
discussion. The interested reader is referred to [4, 10, 11, 
16, 22] for further details. 

Definition 2:  If the tangent vector ( )t′r of the 
parametric curve ( )tr  changes direction oppositely at 0t , 
then the curve ( )tr  has a cusp at 0t  (see [4, 11]). 

Definition 3:  Let ( ) ( ) ( )t t tγ ′ ′′= ×r r , where given two 
vectors  T

1 2( , )x x=x  and T
1 2( , )y y=y , we define the 

cross product 1 2 2 1x y x y× = −x y . If ( )tγ  changes sign at 

0t  with 0( ) 0t′ ≠r , then the curve ( )tr  has an inflection 
point at 0t  (see [4, 10, 11]). 

Definition 4:  If there exists 1 2t t≠  such that 1 2( ) ( )t t=r r , 
then the curve ( )tr  has a loop (see [11]). 

Definition 5:  Let  
( ) ( ) ( )t t tγ ′ ′′= ×r r , 

( ) (0) [ ( ) (0)]m t t′ × −= r r r , 
( ) [ ( ) (0)] ( )n t t t′= − ×r r r , 

And suppose that the curve ( )tr ( [0,1]t ∈ ) has no 
singularities (cusps or loops). If none of ( )tγ , ( )m t  and 

( )n t  changes sign for all [0,1]t ∈ , then the curve r(t) is 
globally convex. If ( )tγ   does not change sign for all 

[0,1]t ∈ , but there exists 0 (0,1)t ∈  such that ( )m t  or 
( )n t  changes sign at 0t , then the curve ( )tr  is locally 

convex (see [16]). 
Definition 6:  For given family of curves :tC  
( , , ) 0F x y t =  with a single parameter t , :C ( , ) 0f x y =   

is called as the envelop curve of the given family of 
curves tC , if the curve C  satisfies that every point on 
C belongs to one curve in the given family tC  and C  
tangents to tC  at the point. The equation of C  can be 
determined by solving the simultaneous equations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( , , ) 0,
( , , ) 0,t

F x y t
F x y t

=⎧
⎨ ′ =⎩

 

with respect to x  and y  (see [22]). 
Let -1( 1, 2,3)i i i i− =a = d d , the curve (1) can be 

rewritten as 
0 0 1 2 3 2 3 3( ) [1 ( )] [ ( ) ( )] ( )t b t b t b t b t= + − + + +r d a a a .  (3) 

First, we suppose that the side vectors 1a  and 3a  are 
linearly independent; in other words 1 3 0× ≠a a . Then the 
side vector 2a  can be expressed as linear combination of 
the two side vectors 1a  and 3a ; that is 2 1 3u v= +a a a , 
where 2 3 1 2 1 3( , ) ( , ) / ( )u v = × × ×a a a a a a . The coefficients 
u and v  clearly indicate the relative position of the 
control polygon’s side vectors. Substituting 

2 1 3u v= +a a a  into (3), we have 

0 0 2 3 1

3 2 3 3

( ) {1 ( ) [ ( ) ( )]}
{ ( ) [ ( ) ( )]} .

t b t u b t b t
b t v b t b t

= + − + +
+ + +

r d a
a

              (4) 

The following theorem shows the relation between the 
position of point ( , )u v  in uv -plane and the shape 
features of the curve segment (4). 

Theorem 1: Assume that 2 1 3u v= +a a a  with 1 3 0× ≠a a . 
Then, the shape features of the curve segment (4) are 
completely determined by the position of point ( , )u v  in 
uv -plane (see Fig. 1) as follows: 

 if 0( , )u v N∈ , then ( )tr  is globally convex and 
has no inflection points and singularities; 

 if 1 2( , )u v N N∈ ∪ , then ( )tr  is locally convex 
and has no inflection points and singularities; 

 if ( , )u v S∈ , then ( )tr  has a single inflection 
point and no singularities; 

 if ( , )u v D∈ , then ( )tr  has two inflection points 
and no singularities; 

 if ( , )u v C∈ , then ( )tr  has a cusp and no loops 
and inflection points; 

Figure 1.  Shape diagram of planar C-B-spline segment with 1 3 0× ≠a a . 
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 if ( , )u v L∈ , then ( )tr  has a loop and no cusps 
and inflection points. 

The regions mentioned above are defined as: 
{( , ) | 0} {( ,0) | 1 0} {(0, ) | 1 0};S u v uv u u v v= < − < < − < <∪ ∪  

D  is the open region that is bounded by the coordinate 
axis and the curve C ; 
L  is the region that is bounded by curves C , 1L  and 2L , 
and 1L L⊂ , 2L L⊂ , but C L⊄ ; 

1N  is the region that is bounded by curves 1L  and 2l , 
and 2 1l N⊄ ; 

2N  is the region that is bounded by curves 2L  and 1l , 
and 1 2l N⊄ ; 

0N  is the complement of the union 1 2C S D L N N∪ ∪ ∪ ∪ ∪  
in uv -plane;  
where the parametric equations of the curves C , iL  and 

il  are defined as: 
cos( ) 1 ,

cos( ) cos( ) 2cos
: 0 1,

cos( ) 1 ,
cos( ) cos( ) 2cos

tu
t t

C t
tv

t t

α α
α α α α

α
α α α α

− −⎧ =⎪ + − −⎪ < <⎨ −⎪ =
⎪ + − −⎩

        (5) 

1

sin sin( ) ,
sin sin( ) sin( ) 2 cos

: 0 1,
sin( ) ,

sin sin( ) sin( ) 2 cos

t tu
t t t

L t
t tv

t t t

α α α α
α α α α α α

α α
α α α α α α

− − −⎧ =⎪ + − − −⎪ < ≤⎨ − +⎪ =
⎪ + − − −⎩

(6) 

2

sin( ) ,
sin sin( ) sin( ) 2( )cos

: 0 1,
sin( ) sin( ) ,

sin sin( ) sin( ) 2( )cos

t tu
t t t

L t
t tv

t t t

α α α α
α α α α α α α

α α α α
α α α α α α α

− + + −⎧ =⎪ + − − − −⎪ ≤ <⎨ − + −⎪ =
⎪ + − − − −⎩

  (7) 

*

1 *

(1 ) ,
: 0 1,

(1 ) ,
u t u

l t
v t t v

⎧ = −⎪ ≤ ≤⎨
= − + −⎪⎩

                                      (8) 

*

2 *

(1 ) ,
: 0 1,

(1 ) ,
u t t u

l t
v t v

⎧ = − + −⎪ ≤ ≤⎨
= −⎪⎩

                                     (9) 

and * * ( sin )
2(sin cos )

u v α α
α α α
−= = −
−

. 

Proof: 
The proof is composed of four parts corresponding to 

the case of cusps, inflection points, loops and convexity, 
respectively. 

A.  The Case of Cusps 
According to Definition 2, the necessary condition that 

the curve ( )tr  has cups is ( ) 0t′ =r . From (4), we have 

0 2 3 1 3 2 3 3{ ( ) [ ( ) ( )]} { ( ) [ ( ) ( )]} 0.b t u b t b t b t v b t b t′ ′ ′ ′ ′ ′− + + + + + =a a  
By the linear independence of 1a  and 3a , we obtain 

0 2 3

3 2 3

( ) /[ ( ) ( )],
( ) /[ ( ) ( )].

u b t b t b t
v b t b t b t

′ ′ ′= +⎧
⎨ ′ ′ ′= − +⎩

                          (10) 

Substituting (2) into (10), we get (5), that is the 
parametric equations of the curve C . 

Conversely, suppose that the point 0 0( , )u v  lies on the 
curve C  and 0 0( )u u t= , 0 0( )v v t= , where 0 (0,1)t ∈ , 
then 0( ) 0t′′ ≠r . Otherwise, from 0( ) 0t′′ =r , we can get 

0 0 0 2 0 3 0

0 3 0 2 0 3 0

( ) /[ ( ) ( )],
( ) /[ ( ) ( )].

u b t b t b t
v b t b t b t

′′ ′′ ′′= +⎧
⎨ ′′ ′′ ′′= − +⎩

 

It follows that 0 0 1,u v+ = which contradicts 0 0( , )u v C∈ . 
Therefore, according to the Taylor expansion 

0 0 0( ) ( )( ) ( )t t t t o t t′ ′′= − + −r r , 
we know that ( )t′r  changes direction oppositely at 0t . 

Hence we have proved that the curve segment (4) has a 
cusp if and only if ( , )u v C∈ . 

B.  The Case of Inflection Points 
By direct computation from (4), we can get 

1 3( ) ( ) ( ) ( ; , )t t t f t u vγ ′ ′′= × = ×r r a a , 
where 

0 3 2 3 0 1

0 3 2 3 0 1

( ) ( ) ( ) ( ) ( ) ( )
( ; , ) .

( ) ( ) ( ) ( ) ( ) ( )
b t b t b t b t b t b t

f t u v u v
b t b t b t b t b t b t

′ ′ ′ ′ ′ ′
=− + +

′′ ′′ ′′ ′′ ′′ ′′
 

According to Definition 3, the point 0( )tr  is an 
inflection point if and only if ( ; , )f t u v  changes sign at 0t . 
In the uv -plane, the possible region of inflection points 
must be covered by the family of straight 
lines ( ; , ) 0f t u v = . After solving the simultaneous 
equations 

( ; , ) 0,
( ; , ) 0,t

f t u v
f t u v

=⎧
⎨ ′ =⎩

 

with respect to u  and v , we get (10). 
From Definition 6 we know that the curve C  is just the 

envelope of the family of straight lines ( ; , ) 0f t u v = . The 
curve C  is strictly convex continuous curve, so that the 
region swept by the tangent lines of the curve C  is 
S D∪ (see Fig. 1), i.e. the possible region that results in 
inflection points. 

Apparently, the curve C has at least a tangent line 
0( ; , ) 0f t u v =  passing through an arbitrary point 0 0( , )u v  

located in .S D∪  Note that 0 0 0( ; , ) 0tf t u v′ ≠  (otherwise, 
it contradicts 0 0( , )u v C∈ ) when 0 0( , )u v ∈ .S D∪  
Therefore, from the Taylor expansion 

0 0 0 0 0 0 0( ; , ) ( ; , )( ) ( )tf t u v f t u v t t o t t′= − + − , 
we know that 0 0( ; , )f t u v  changes sign at 0t t= , 
consequently, the point 0( )tr  is an inflection point. 

Furthermore, when 0 0( , )u v S∈ , the curve ( )tr  has a 
single inflection point because there exists a unique 
tangent line of the curve C passing through the point 

0 0( , )u v ; when 0 0( , )u v D∈ , the curve ( )tr  has two 
inflection points due to  two tangent lines of the curve C  
passing through the point 0 0( , )u v  (see Fig. 1). 

C.  The Case of Loops 
From Definition 4, the sufficient and necessary 

condition that the curve segment (4) has a loop is that 
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there exists 1 20 1t t≤ < ≤  such that 1 2( ) ( ) 0t t− =r r . It is 
equivalent to u , v , 1t  and 2t  satisfy the system of 
equations: 

0 2 0 1

2 2 3 2 2 1 3 1
1 2

3 1 3 2

2 2 3 2 2 1 3 1

( ) ( )
,

( ) ( ) ( ) ( )
( , )

( ) ( )
,

( ) ( ) ( ) ( )

b t b t
u

b t b t b t b t
t t

b t b t
v

b t b t b t b t

−⎧ =⎪ + − −⎪ ∈ Δ⎨ −⎪ =
⎪ + − −⎩

,      (11) 

where 2
1 2 1 2{( , ) | 0 1}t t t tΔ = ∈ ≤ < ≤R . The map :F  

( )FΔ → Δ  defined as (11) is a topological mapping. 
Therefore, the image ( )L F= Δ  is a simply connected 
region in uv -plane, its three boundary curves C , 1L  and 

2L  correspond to the three boundary segments of Δ : 

1 2t t= , 1 0t =  and 2 1t = , respectively. It follows that the 
curve C  does not belong to the region L  while the 
curves 1L  and 2L  belong to, and the parametric equations 
of 1L  and 2L  are determined by (6) and (7), respectively. 

Thus, we have proved that the curve segment (4) has a 
loop if and only if ( , )u v L∈ . 

Both the curves 1L  and 2L  are monotonically 
decreasing and strictly convex continuous curves. the 
curve 1L  intersects the curve 2L  at the point * *( , )u v , 
where * * ( sin ) /[2(sin cos )]u v α α α α α= = − − − . It can be 
easily checked that the curve 1L  is tangent to  u -axis at 
( 1,0)−  when t tends to 0 , and the curve 2L  is tangent to 
v -axis at (0, 1)−  when t tends to 1 . 

D.  The Case of Convexity 
It is clear that the curve segment (4) has none of 

inflection points and singular points if the point ( , )u v  
lies in complementary region 2 \( )N C S D L= ∪ ∪ ∪R . As is 
shown in Fig. 1, the region N  can be divided into 0N , 

1N  and 2N , where the region 1N  is bounded by the 
curve 1L  and the line segment 2l determined by the two 
points ( 1,0)−  and * *( , )u v , the region 2N  is bounded by 
the curve 2L  and the line segment 1l  determined by the 
two points (0, 1)−  and * *( , )u v . The line segment 

( 1, 2)il i =  is the tangent line of the curve ( 1, 2)iL i =  at 
the point * *( , )u v . 

To distinguish a local convex curve from a global one, 
as mentioned in Definition 5, we need to consider ( )tγ , 

( )m t  and ( )n t . By direct computation from (4), we have 

1 3( ) ( ; , )m t t u vϕ= ×a a  and 1 3( ) ( ; , )n t t u vψ= ×a a , where 

2 3 2 1( ; , ) (0){(1 ) ( ) [1 2 (0) ( )]}t u v b u b t v b b tϕ ′= + + − − ,           (12) 

2 0 3 2 3 2 3

0 3 2 3 3

2 0 2 3 2

0 2 3

(0) ( ) ( ) ( ) ( ) (0) ( )
( ; , )

( ) ( ) ( ) ( ) ( )

(0) ( ) ( ) ( ) (0)
.

( ) ( ) ( )

b b t b t b t b t b b t
t u v u

b t b t b t b t b t

b b t b t b t b
v

b t b t b t

ψ
− + −

= +
′ ′ ′ ′ ′− +

− + −
+

′ ′ ′− +

 (13) 

The equation (12) determines a family of straight lines, 
which always pass through ( 1,0)−  in uv -plane, and the 
slop coefficient of these lines is 3 1 2( ) /[ ( ) 2 (0) 1]k b t b t b= + − . 
It can be deduced that * */(1 ) 0v u k+ < <  holds for 0 1t< < , 
so the region determined by ( ; , ) 0t u vϕ =  with ( , )u v N∈  
is 1N . Therefore 0 0( ; , )t u vϕ  changes sign at 0t  when 

0 0 1( , )u v N∈ . In fact, the region 1N is just the part of the 
region N , which covered by the tangent lines of the 
curve 2L  (see Fig.1). 

Parametric Equations (6) can be obtained by solving 
the simultaneous equations  

( ; , ) 0,
( ; , ) 0,t

t u v
t u v

ψ
ψ

=⎧
⎨ ′ =⎩

 

for the unknown parameters u  and v . This implies that 
the region 2N  is covered by the tangent lines of the curve 

1L . If the point 0 0( , )u v  lies in the region 2N , then the 
curve 1L  has a tangent line 0( ; , ) 0t u vψ =  passing through 
it, and 0 0 0( ; , ) 0t t u vψ ′ ≠  holds. Thus, according to the 
Taylor expansion 0 0 0 0 0 0 0( ; , ) ( ; , )( ) ( )tt u v t u v t t o t tψ ψ ′= − + − , 
we know that 0 0( ; , )t u vψ  changes sign at 0t . 

In summary, ( )tγ , ( )m t  and ( )n t  do not change sign 
for all (0,1)t ∈  when 0 0 0 1 2( , )u v N N N∈ ∪ ∪ , while there 
exits 0 (0,1)t ∈  such that ( )m t  (or ( )n t ) changes sign at 

0t  when 0 0 1( , )u v N∈  (or 2N ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Shape diagram of planar C-B-spline segment with 1 2 0× ≠a a . 

Figure 3:  Shape diagram of planar C-B-spline segment with 2 3 0× ≠a a . 
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It follows that the curve segment (4) is globally (or 
locally) convex if and only if 0( , )u v N∈  (or 1 2N N∪ ). 

The proof is finished. 
Finally, excluding the four control points are collinear, 

there exist still two cases: (A) 1 2 0× ≠a a , (B) 2 3 0× ≠a a . 
If 1 2 0× ≠a a , then 3 1 2u v+a = a a , where 3 2( , ) ( ,u v = ×a a  

1 3 1 2) /( )× ×a a a a , so the curve (3) can be rewritten as: 

0 0 3 1 2 3 3 2( ) [1 ( ) ( )] [ ( ) ( ) ( )] .t b t ub t b t b t vb t= + − + + + +r d a a (14) 
If 2 3 0× ≠a a , then 1 2 3u v+a = a a , where 1 3( , ) ( ,u v = ×a a  

2 1 2 3) /( )× ×a a a a , so the curve (3) can be rewritten as: 

0 2 3 0 2

3 0 3

( ) { ( ) ( ) [1 ( )]}
{ ( ) [1 ( )]} .

t b t b t u b t
b t v b t

= + + + −
+ + −

r d a
a

              (15) 

The shape features of the curve segment (14) and (15) 
are analogous to those of curve segment (4), the 
associated shape diagrams are shown in Fig. 2 and Fig. 3 
respectively. 

In case (A) the parametric equations of the curves C , 
iL  and il  are determined by:  

cos( ) 1,
1 cos( )

: 0 1,
2cos cos( ) cos( ) ,

1 cos( )

tu
t

C t
t tv

t

α α
α

α α α α
α

− −⎧ =⎪ −⎪ < <⎨ − − −⎪ =
⎪ −⎩

      (16) 

1

sin sin( ) ,
sin( )

: 0 1,
2 cos sin( ) sin( ) sin ,

sin( )

t tu
t t

L t
t t tv

t t

α α α α
α α

α α α α α α
α α

− − −⎧ =⎪ −⎪ < ≤⎨ − + − −⎪ =
⎪ −⎩

(17) 

2

sin( ) ,
sin sin( )

: 0 1,
sin 2( )cos sin( ) sin( ) ,

sin sin( )

t tu
t t

L t
t t tv

t t

α α α α
α α α α
α α α α α α α

α α α α

− − −⎧ =⎪ − − +⎪ ≤ <⎨ − − + − −⎪ =
⎪ − − +⎩

    (18) 

*
1 : (1 ) 1 0, 1 0,l v v u u+ + + = − ≤ <                                  (19) 

*
2 : (1 ) 0, 1,l v u v u− − + = −∞ < ≤ −                               (20) 

where * 2(sin cos ) /( sin )v α α α α α= − − − . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  The influence on the shape diagrams by shape parameter α . (a) 
24
πα = , (b) 2

3
πα = , (c) 23

24
πα = . 

(b) (c) (a) 

(b) (c) (a) 

(b) (c) (a) 
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In case (B) the parametric equations of the curves C , 
iL  and il  are determined by: 

2cos cos( ) cos( ) ,
1 cos( )

: 0 1,
cos( ) 1 ,

1 cos( )

t tu
t

C t
tv

t

α α α α
α α

α
α α

− − −⎧ =⎪ − −⎪ < <⎨ −⎪ =
⎪ − −⎩

      (21) 

1

sin sin( ) 2 cos sin( ) ,
sin sin( )

: 0 1,
sin( ) ,

sin sin( )

t t tu
t t

L t
t tv

t t

α α α α α α
α α α α

α α
α α α α

+ − − −⎧ =⎪ − − −⎪ < ≤⎨ −⎪ =
⎪ − − −⎩

(22) 

2

sin( ) 2( )cos sin( ) sin ,
sin( )

: 0 1,
sin( ) sin ,

sin( )

t t tu
t t

L t
t tv

t t

α α α α α α α
α α α α

α α α α
α α α α

+ − − − −⎧ =⎪ − − −⎪ ≤ <⎨ − − +⎪ =
⎪ − − −⎩

 (23) 

* *
1 : (1 ) 1 0, 1,l u v u u u+ + + = ≤ < −                                (24) 

* *
2 : ( 1) 0, ,l v u u u u− + + = −∞ < ≤                                (25) 

where * 2(sin cos ) /( sin )u α α α α α= − − − . 

IV.  EFFECT OF SHAPE PARAMETER ON THE DISTRIBUTION 
REGIONS 

From the properties of curves C , iL  and il , we can 
deduce that when α  tends to zero the limit of shape 
diagrams approach the distribution of shape conditions 
for planar uniform cubic B-spline segment. As the value 
of α  increasing, the region D is being enlarged and the 
regions L , 0N , 1N  and 2N  are diminishing, while the 
region S  is fixed. These changes are shown in Fig. 4. 

Note that 2(sin cos ) /( sin )α α α α α− − −  approaches 
4−  and 2−  as α  tends to 0 and π  respectively, we 

have the following corollary: 
Corollary 1:  When there is only a single inflection 

point on the planar C-B-spline segment ( )tr , we cannot 
remove it by altering the shape parameter α . When ( )tr  
is globally convex, it remains global convexity regardless 
of the changes of shape parameter α . 

Corollary 2:  The planar C-B-spline segment ( )tr  
either has an inflection point or is globally convex 
regardless of the changes of shape parameter α , when 
one of the following three conditions holds: 

A:  1 3 0× ≠a a , ( , ) {( , ) | 1 0, 1 0}u v u v u v u∈ − − < < − < < . 
B:  1 2 0× ≠a a , ( , ) {( , ) |1 0, 1}u v u v v u v∈ + < < < − . 
C:  2 3 0× ≠a a , ( , ) {( , ) |1 0, 1}u v u v u v u∈ + < < < − . 
Corollary 3:  The planar C-B-spline segment ( )tr  has 

either a singularity or two inflection points regardless of 
the changes of shape parameter α , when one of the 
following three conditions holds: 

A:  1 3 0× ≠a a , 1 2 3( , )u v T T T∈ ∪ ∪ , 
where  

1
1{( , ) | , 0}
4

T u v u v= − ≤ < , 

2
1 1 1{( , ) | , 0}

4 4 4
vT u v u v+= − ≤ < − − < < , 

3
1 1 1{( , ) | , 0}

4 4 4
uT u v v u+= − ≤ < − − < < . 

B:  1 2 0× ≠a a , 1 2 3( , )u v T T T∈ ∪ ∪ ,  
where  

1 {( , ) | 1 0, 4}T u v u v= − ≤ < ≤ − , 

2
1{( , ) | 1, 4}

3
vT u v u v+= < < − < − , 

3 {( , ) | 4 3, 1 0}T u v v u u= − < < − − < < . 
C:  2 3 0× ≠a a , 1 2 3( , )u v T T T∈ ∪ ∪ , 

where  
1 {( , ) | 1 0, 4}T u v v u= − ≤ < ≤ − , 

2
1{( , ) | 1, 4}

3
uT u v v u+= < < − < − , 

3 {( , ) | 4 3, 1 0}T u v u v v= − < < − − < < . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Corollary 4:  If it is possible to change the value of 
shape parameter α such that the point ( , )u v  belongs to 
the region 0 1 2N N N∪ ∪ , then the unwanted singularities 
or inflection points of the planar C-B-spline segment 

( )tr can be avoided (see Fig. 5). 
In Fig. 5, T T T T

0 0 0 0[0,0] [3,3] [1,3] [4,0]= = = =d d d d , 
( , ) ( 1/ 3, 1/ 3)u v = − − ; 2α = , 2.4 , 2.6362  and 2.7  
correspond to the shape features of global convexity, a 
loop, a cusp, and  two inflection points, respectively. 

V.  SHAPE ANALYSIS OF SPATIAL C-B-SPLINE SEGMENTS 

When ( 0,1, 2,3)i i =d  are not coplanar, the C-B-spline 
segment ( )tr  is a spatial curve. Without loss of 
generality, in this section we suppose that the control 
points ( 0,1, 2,3)i i =d  are denoted by three dimensional 
column vectors. 

Figure 5:  The unwanted shape features is avoided by 
changing shape parameter. 
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A.  The Case of Cusps  
If 0 0( )(0 1)t t< <r  is a cusp of curve (1), then 0( ) 0t′ =r . 

From (1) we have 
0 0 1 2 0 3 0 2 3 0 3( ) [ ( ) ( )] ( ) 0.b t b t b t b t′ ′ ′ ′+ + + =a a a            (26) 

Since ( 0,1,2,3)i i =d  are not coplanar, i.e. ( 1,2,3)i i =a  
are linearly independent, so from (26) we have 0 0( ) 0b t′ =  
and 3 0( ) 0b t′ = . But the fact that 0 0( ) 0b t′ =  implies 0 1t =  
contradicts that 3 0( ) 0b t′ =  implies 0 0t = . 

Hence there is no cusps on ( )tr . 

B.  The Case of Generalized Inflection Points 
Definition 7:  A point where the torsion  

( )
2

det ( ), ( ), ( )
( )

( ) ( )

t t t
t

t t
τ

′ ′′ ′′′
=

′ ′′×

r r r

r r
 

of a spatial curve changes sign is called a generalized 
inflection point (see [18]). 

Let ( )( ) det ( ), ( ), ( ) ,g t t t t′ ′′ ′′′= r r r  by Definition 7, 

0( )tr  is a generalized inflection point if ( )g t changes 

sign at 0t . Using that 
3

0
( ) 1i

i
b t

=

=∑  holds for all [0,1]t ∈ , 

we have  
3 3 3

0 0 0
( ) ( ) ( ) ( )i i i i i i

i i i
g t b t b t b t

= = =

′ ′′ ′′′= ∑ ∑ ∑d d d

3 3 3 3

0 0 0 0
3 3 3 3

0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i
i i i i

i i i i i i i i
i i i i

b t b t b t b t

b t b t b t b t

= = = =

= = = =

′ ′′ ′′′
=

′ ′′ ′′′

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑d d d d

0 0 0 0

1 1 1 1

0 1 2 3 2 2 2 2

3 3 3 3

( ) ( ) ( ) ( )
1 1 1 1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

b t b t b t b t
b t b t b t b t
b t b t b t b t
b t b t b t b t

′ ′′ ′′′⎡ ⎤
⎢ ⎥′ ′′ ′′′⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥′ ′′ ′′′⎣ ⎦ ⎢ ⎥′ ′′ ′′′⎢ ⎥⎣ ⎦

d d d d

0 1 2 3

1 1 1 1
( )D t=

d d d d
 

0 1 2 3

1 0 0 0
( )D t=

d a a a
 

1 2 3( , , ) ( )D t= a a a , 
where 1 2 3( , , )a a a  is the blended product of vectors 1a , 

2a  and 3a , ( )D t is the following determinant: 

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

b t b t b t b t
b t b t b t b t

D t
b t b t b t b t
b t b t b t b t

′ ′′ ′′′
′ ′′ ′′′

=
′ ′′ ′′′
′ ′′ ′′′

. 

It can be easily checked that ( ) 0D t′ = , consequently 
( ) (0)D t D≡ . A direct computation shows that 

3

2

sin(0) 0
4(1 cos )

D α α
α

= >
−

 

holds for (0, )α π∈ . From the linear independence of 

1a , 2a and 3a , we know that 1 2 3( , , ) 0≠a a a . Hence ( )g t  
does not change sign for 0 1t< < , and has the same sign 
as 1 2 3( , , )a a a . It follows that the spatial C-B-spline 
segment ( )tr  has no generalized inflection points and has 
the same rotation direction as its control polygon. 

C.  The Case of Loops  
According to Definition 4, ( )tr has a loop means that 

( )tr intersects itself at 1t t=  and 2t t=  ( 1 20 1t t≤ < ≤ ). 
From (3) we have 

0 2 0 1 1 2 1 3 1 2 2 3 2 2

3 1 3 2 3

[ ( ) ( )] [ ( ) ( ) ( ) ( )]
[ ( ) ( )] 0.

b t b t b t b t b t b t
b t b t

− + + − −
+ − =

a a
a

   (27) 

Since 1a , 2a and 3a  are linearly independent, from (27) 
we have 0 1 0 2( ) ( )b t b t=  and 3 1 3 2( ) ( )b t b t= . Obviously, it 
is in contradiction to the monotonousness of 0 ( )b t and 

3 ( )b t . Hence there is no loops on spatial C-B-spline 
segment.  

Combining the above results we have the following 
theorem. 

Theorem 2:  Spatial C-B-spline segment has no cusps, 
loops or generalized inflection points, and has the same 
rotation direction as its control polygon. It is a twisted 
curve. 

VI.  CONCLUSION 

We investigated the convexity and existence of 
singularities and inflection points of planar C-B-spline 
segment. Three kinds of shape diagrams were obtained in 
terms of the linear independence of the three side vectors. 
Each of shape diagram is composed of regions which 
indicate the planar C-B-spline segment having one or two 
inflection points, or a loop, or a cusp, or be locally or 
globally convex. Its use enables us to place control points 
and choose a shape parameter such that the resulting 
curves have not the undesirable features such as 
singularities and unwanted inflection points. We also 
proved that the spatial C-B-spline segment has neither 
singularities nor generalized inflection points. 
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