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Abstract—We propose Secure-Turtle, a secure nested virtual 
system based on Turtles system, which provides a secure 
execution environment for the L2 guest VM. In particular, 
Secure-Turtles system builds a trust chain from L0 host 
hypervisor, L1 guest hypervisor, qemu-kvm daemon to L2 
guest VM. Through this security chain, Secure-Turtles can 
protect L2 guest VM against attacks form the L1 user mode, 
even when the attacker has the root privilege of the L1 guest 
hypervisor. 

Our goal is to make Secure-Turtles possible to rule out 
known class of vulnerabilities from the L1 user. We 
proposed four general requirements for Secure-Turtles to 
satisfy to achieve our goal and list sixteen basic properties 
for the Secure-Turtles system to achieve. With these 
properties, the proposed four requirements can be 
guaranteed. We rely on the memory virtualization to build 
Secure-Turtles and implement a prototype based on Turtles. 
We evaluate its prototype using two metrics: security and 
performance. The security evaluation result shows that 
Secure-Turtles can protect L2 guest VM from attacks from 
the L1 user mode. The performance result shows that 
Secure-Turtles introduces little performance overhead to 
the L2 guest VM compared with the Turtles system. 

 
Index Terms—Security, Nested virtualization 
 

I.  INTRODUCTION 

System virtualization has been a standard technique in 
many commercial usage scenarios such as server 
consolidation, multi-tenant cloud and virtual appliances. 
Commodity hypervisors or operating systems 
increasingly make use of the virtualization capabilities to 
run virtual machines (VM). Window 7 supports a 
backward compatible Windows XP mode by running the 
XP operating system as a VM. Linux runs VMs using its 
build-in KVM [1] hypervisor. Xen hypervisor [2] runs its 
VMs with the help of its privileged VM.  

However, these systems are still vulnerable to security 
attacks. The trust base of these commodity systems (e.g., 
the host operating system of Window 7 and KVM or the 
privileged VM in Xen) are large and complex, and 
consequently, frequently prone to compromise. When it is 
compromised, guest VMs running on it are under great 
danger. As the host hypervisor has the full control of the 
underlying hardware resources and provide virtual 
resources for the guest VM, it can easily obtain the secure 
sensitive data from the guest VMs lunched by it. For 
example, it can get the disk I/O data from a guest VM 

through its virtual disk device emulator. Furthermore, 
guest VMs are unaware of the existing of the underlying 
hypervisor. This makes them more vulnerable to the 
attacks on their hypervisor as they may still processing 
sensitive data when the hypervisor has been compromised. 

In this paper, we make use of nested virtualization to 
enhance the security of such virtual environments based 
on the Turtles project [3], which proposes a nested 
virtualization architecture based on KVM through multi-
dimensional paging for MMU virtualization and multi-
level device assignment for I/O virtualization. It provides 
a flexible virtual functionality to host virtualization 
capable operating system or hypervisor. In this 
architecture, the bare-metal hypervisor running on the 
hardware, which is called L0, emulates a virtual hardware 
environment. The guest hypervisor running on L1 will 
execute on such virtual environment. The guest VMs of 
the guest hypervisor will run on L2.  

We proposed Secure-Turtles, a secure nested virtual 
system based on Turtles system, which can run L2 guest 
VMs securely. In this system, we build a trust chain from 
the L0 host hypervisor, the L1 guest hypervisor kernel, 
qemu-kvm daemon to the L2 guest VM, we figure out 
four requirements to satisfy inside the Secure-Turtles 
system: 1) lifetime kernel code integrity of the L1 guest 
hypervisor should be provided; 2) the code and data 
integrity of qemu-kvm daemons should be provided; 3) 
the data integrity of the L2 guest VM should be provided; 
and 4) the guest VM should be aware of any violation of 
the above three requirements. We prove these four 
requirements are necessary and sufficient to build a 
secure environment for an L2 guest VM. In order to 
realize these four requirements, we list sixteen properties 
for the Secure-Turtles system to achieve and prove that 
with these properties the above requirements can be 
guaranteed.  

Here, we assume that the L0 host hypervisor is 
insulated from the outside world to avoid being attacked. 
Thus it can be trusted in the Secure-Turtles system. Based 
on the trusted L0 host hypervisor, we build a trusted L1 
hypervisor’s kernel by ensuring the kernel code integrity 
of the L1 guest hypervisor, who hosts the L2 guest VMs, 
and let L1 hypervisor to ensure its own kernel data 
integrity. Then based on the trusted L1 hypervisor kernel, 
we build a secure execution environment for the L2 guest 
VMs by ensuring the code and data integrity of the qemu-
kvm daemon who lunches L2 guest VMs as well as the 
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Figure1: Architecture of Nested Virtualization. 

Figure2: Architecture of Nested Virtualization. 

memory and disk data integrity of L2 guest VM. When an 
attack hijacks the user mode of the L1 hypervisor through 
some vulnerability of some user processes such as /bin 
utilities and acquires the root privilege, Secure-Turtles 
can still prevent it from attacking the L2 guest VMs. 

In this paper, we use Trusted Platform Module (TPM) 
[4] to approve the booting process of L1 guest hypervisor, 
the lunching process of qemu-kvm VM and the booting 
process of L2 guest VM. (The TPM enables remote 
attestation by digitally signing cryptographic hashes of 
specific software components. The attestation will affirm 
that the software is genuine and correct.) We use W⊕X 
protection to provide code integrity and monitor the L1 
kernel entries and qemu-kvm entries to enhance code 
integrity. We also disable all memory access interfaces 
that provide user processes the ability to access arbitrary 
memory in L1 to provide memory data integrity and use 
disk access protection to provide disk data integrity for 
L2 guest VMs. And we let L0 and L1 to inform L2 guest 
VMs the potential threats. 

We have built a prototype of Secure-Turtles based on 
the Turtles system and evaluate its prototype with two 
metrics: security and performance on an Intel machine 
with 16GByte memory. The security evaluation result 
shows that Secure-Turtles can protect L2 guest VM 
against attacks from the L1 user mode, which try to either 
modify its execution environment such as L1 hypervisor 
or the qemu-kvm daemon or modify its data directly. The 
performance evaluation on an L2 guest VM with 1 virtual 
CPU (VCPU) and 2 GByte memory using the SPECINT 
benchmark suite shows that Secure-Turtles introduces 
nearly no performance overhead to the L2 guest VM 
compared with the Turtles system.  

The rest of this paper is organized as follows: The next 
section describes the background of Turtles system and 
TPM devices. Section III discusses our assumptions and 
the treat mode. Section IV lists the four requirements to 
build the trust chain inside Secure-Turtles and proves that 
with these requirements, it can provide a secure 
environment for L2 guest VMs. Section V provides the 
design of Secure-Turtles system and Section VI shows 
the evaluation result of the Secure-Turtles prototype. 
Section VII concludes our work. 

II.  BACKGROUND 

A. Nested Virtualization 
Turtles project [3] investigates the design and 

implementation of nested virtualization to support multi-
level virtualization in KVM [1] on x86 hardware with 
virtualization extensions, VMX [5] and SVM [6]. Figure 
1 gives an overall architecture of nested virtualization. 
The host hypervisor runs on bare-metal hardware 
emulates VMX/SVM for L1 and L2 with the highest 
privilege level. Since L0 provides a full emulation of the 
VMX/SVM hardware any time there is a trap on 
VMX/SVM instruction, the guest hypervisor on L1 will 
not know it is not running on the hardware and can run 
guest VMs on L2 just as it has the VMX/SVM support. 

As the x86 hardware has only a single hypervisor 
mode, a trap at any level is handled by the most 

privileged hypervisor on L0 first. Figure 2 shows how 
traps are handled in Turtles system. When a trap occurs 
on L2, it will first be trapped by L0. Here L0 will decide 
whether the trap can be handled by L0 directly or should 
be sent to L1 to handle it. If it should be sent to L1, the 
host hypervisor will inject a virtual trap event on L1. 
Otherwise it will return the execution back to L2 directly. 
Further when a trap occurs on L1, the execution will also 
return to L0 and then back. 

When guest hypervisor on L1 wishes to run a VM, it 
will launch it via VMX/SVM commands. This will cause 
a trap to L0, as it does not have the privilege to issue 
these commands. At this time, the host hypervisor on L0 
can verify the genuine of the execution environment of 
the guest VM including the guest hypervisor on L1 as 
well as its booting process. 

B.  The Trusted Platform Module 
The TPM is a security specification defined by the 

trusted computing group [4]. It implementation is usually 
available as a chip attached to a platform’s motherboard. 
S. Berger et.al has proposed a software based TPM 
implementation [7] to make TPM functions available to 
VMs. The TPM provides cryptographic operations 
including asymmetric key generation, 
encryption/decryption digital signing and migration of 
keys and random number generation and hashing. It also 
provides a small amount of storage to save secure 
sensitive information such as cryptographic keys. It 
enables remote attestation of specific software 
components to affirm that the target software is genuine 
and correct. 

One important operation of TPM is Platform 
Configuration Register (PCR) extension operation. The 
PCRs are initialized at power up and extended 
cryptographically during the execution using the 
following equation:  
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The N+1th extend value of PCR is calculated through 
Extend (PCRN, value). SHA1 refers to the secure hash 
algorithm and the || operation represents a concatenation 
of two byte arrays, PCRN and value. 

The PCR extensions can be used during the platform 
boot to verify the whole boot process. The hash values of 
byte arrays representing code or configuration data are 
calculated or measured. And PCR values are extended 
with these values. The final PCR value represents the 
accumulation of a unique sequence of measurement. Such 
sequential list of measurements can be used to decide 
whether the system can be trusted. 

In Secure-Turtles, we depend on the TPM to verity the 
genuine of the execution environment of the guest VM. 

III.  ASSUMPTIONS AND THREAT MODEL 

In this section, we state our assumptions of the 
software and hardware environment and describe out 
threat model. 

A. Assumptions 
We assume the CPU on which Secure-Turtles runs 

provides support for hardware-assisted virtualization 
support like Intel’s VMX and AMD’s SVM. We also 
assume the L1 kernel protected by Secure-Turtles does 
not use self-modifying code. We also assume that the L0 
host hypervisor of Secure-Turtles are insulated from the 
outside world to avoid being attacked. 

B. Threat Model 
We consider an attacker who attacks the L1 guest 

hypervisor and compromises its kernel that the attacker 
can take control of the L1 guest hypervisor. Example 
attacks include modification of memory contents, 
injection of malicious code, and malicious DMA writes to 
memory using peripherals. After hijacking the L1 kernel, 
the attacker might easily take control of all L2 guest VMs 
lunched by the L1 through KVM module inside the 
kernel. 

Further, even when the attacker can’t hijack the L1 
kernel, but hijacking the L1 user space, it can still take 
control of the L2 guest VM by lunching the VM with a 
modified qemu-kvm daemon with injected malicious 
code or uses ptrace interface to control the qemu-kvm 
daemon. 

Here, we do not consider an attacker that attacks the 
L2 guest VM directly by compromising it or using denial 
of service attacks. Several works [8, 9] have been 
proposed to handle such threats in the cloud 
environments. 

IV. DESIGN REQUIREMENTS OF SECURE-TURTLES  

In this section, we discuss the design requirements of 
building the Secure-Turtles system. We start by 
describing the design goal of Secure-Turtles followed by 

a serial of properties that need to be achieved in order to 
guarantee the goal.  

A. Design Goal of Secure-Turtles 
The general goal of Secure-Turtles is to provide a 

secure execution environment for L2 guest VMs even 
when the L1 guest hypervisor is compromised by an 
attacker. To achieve this, following requirements should 
be achieved by Secure-Turtles: 

 Requirement1: The Secure-Turtles system 
should provide lifetime kernel code integrity for 
the L1 guest hypervisor.  

 Requirement2: The Secure-Turtles system 
should provide the code and data integrity of the 
corresponding qemu-kvm daemon of a guest VM 
during its lifetime.  

 Requirement3: The data integrity of the L2 guest 
VM should be guaranteed. 

 Requirement4: The guest VM should be aware 
of any violation of the above three requirements. 

Theorem1: With Requirement1 to Requirement4, 
Secure-Turtles can provide a secure execution 
environment for L2 guest VM. 

Proof: With Requirement1 and Requirement2, the 
code integrity of the L1 kernel and qemu-kvm daemon is 
guaranteed so that no attacker can alter the virtual 
environment emulation functionality. Further the data 
integrity of qemu-kvm daemon is guaranteed so that no 
attacker can alter the execution flow of the qemu-kvm 
daemon by changing the stack or heap of qemu-kvm 
daemon. Thus, the virtual environment emulated by the 
L1 kernel and the qemu-kvm daemon cannot be altered 
by the attacker. With Requirement3, as the data integrity 
of the guest VM is also guaranteed by Secure-Turtles, no 
attacker can eavesdrop or modify the guest VM’s data. 
Finally, with requirement4, as Secure-Turtles will notify 
the L2 guest VM the danger of any violation of the above 
three requirements which will threaten the security of L2. 

B. Required Properties for Secure L2 Guest Virtual 
Machine Execution 

We start designing Secure-Turtles by converting the 
requirements into properties. Our first requirement is to 
provide kernel code integrity for the L1 guest hypervisor. 
Thus, Secure-Turtles must provide the following six 
properties for L1 guest hypervisor: 

 Property1: The booting process of L1 guest 
hypervisor should be approved. 

 Property2: The whole kernel code of L1 must be 
approved to be unmodified. 

 Property3: Memory containing the kernel code 
should not be modified or extend by any time. 

 Property4: Every entry into kernel mode should 
set the CPU’s Instruction Pointer (IP) to an 
instruction within the kernel code approved by 
Secure-Turtles in Property1. 

 Property5: After entering kernel mode, the IP 
should continue to point to the approved kernel 
code until the CPU exits kernel mode. 

 Property6: Every exit from kernel mode should 
set the execution privilege into user mode. 
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Theorem2: With Property1 to Property6, 
Requirement1 can be achieved. 

Proof: Property1 guarantees the L1 guest hypervisor 
boots correctly and the kernel code loaded during the 
boot process are secure. Property2 together with 
Property3 guarantee that the loaded kernel code will 
neither be extended nor be modified. Property4 to 
Property6 guarantee that when the control flow enters the 
kernel mode, the CPU can only execute the kernel code 
that is approved according to Property2 and Property3 as 
the CPU’s IP can only point to the approved kernel code 
when the L1 is running in the kernel mode.  Thus, with 
Property1 to Property6, Secure-Turtles can provide 
lifetime kernel code integrity for L1 guest hypervisor. 

The second requirement is to provide code integrity of 
the qemu-kvm daemon of a guest VM. Thus, Secure-
Turtles must provide the following six properties: 

 Property7: The lunching process of qemu-kvm 
should be approved. 

 Property8: The qemu-kvm lunching the L2 guest 
VM must be approved to be unmodified. 

 Property9: Memory containing the qemu-kvm 
code should not be modified by any time. 

 Property10: Every entry into the qemu-kvm 
daemon should set the CPU’s Instruction Pointer 
(IP) to an instruction within the qemu-kvm code. 

 Property11: During its execution, the IP should 
continue to point at approved qemu-kvm code. 

 Property12: Memory containing the qemu-kvm 
data should not be accessed by other processes. 

Theorem3: With Property7 to Property12, 
Requirement2 can be achieved. 

Proof: Property7 guarantees the qemu-kvm daemon is 
created correctly and its code is safe. Property8 together 
with Property9 make sure that the loaded code of the 
qemu-kvm daemon is not changed at its setup time 
(Property8) and will not be changed during the daemon’s 
lifetime (Property9). Propert10 guarantees that whenever 
qemu-kvm daemon is scheduled, it will start at a valid 
instruction address within its code base. Further, 
Property11 guarantees that the daemon can only execute 
the code approved according to Property8 and Property9. 
Thus, Property8 to Property11 provide code integrity of 
the qemu-kvm daemon. While Property12 forbids any 
access to the memory used by the qemu-kvm daemon 
from other processes, which provides data integrity of the 
daemon. Thus, Requirement2 can be achieved with 
Property7 to Property12. 

The third requirement is to guarantee the data integrity 
of the guest VM. Thus, Secure-Turtles must provide the 
following two properties. 

 Property13: Memory containing the guest VM’s 
memory should not be accessed by other 
processes except the qemu-kvm daemon in L1. 

 Property14: The disk image of the guest VM 
should not be accessed by other processes except 
the qemu-kvm daemon in L1. 

Theorem4: With Property13 to Property 14, 
Requirement3 can be achieved. 

Proof: Property13 guarantees the guest VM’s memory 
is not accessible to any processes except the qemu-kvm 
daemon in L1 so that even the attacker can control the L1, 
it cannot access the L2 guest VM’s memory to alter its 
state or steal secure sensitive data. Property14 guarantees 
that the disk data is only accessible to the qemu-kvm 
daemon that the attacker cannot access it through the disk 
file (e.g. mounting the disk image). With Property13 and 
Property14, we can provide both memory data integrity 
and disk data integrity for the L2 guest VM. 

The forth requirement is let the guest VM be aware of 
any violation of the first two requirements. Thus, Secure-
Turtles must provide the following two properties: 

 Property15: The booting process of L2 guest 
VM should be approved. 

 Property16: Any violation of any properties 
listed above should be informed to L2. 

Theorem5: With Property13 to 14, Requirement4 can 
be achieved. 

Proof: Property15 guarantees the L2 guest VM boots 
correctly according to the user’s requirements. If it is not 
boot correctly, the booting process may be hijacked that 
the guest VM may not be secure. Property16 ensures that 
the L2 guest VM will know whether it is running on a 
secure environment. If any property from Property1 to 
Property14 is violated, the running environment of the L2 
guest VM is not secure ever. The guest VM must stop 
processing any secure sensitive data. With Property15 
and Property16, the guest VM will be securely running 
and be aware of any kinds of secure threats from L1 guest 
hypervisor. 

V.  DESIGN OF SECURE-TURTLES 

In this section, we show how each property is achieved 
based on Turtles system in Secure-Turtles. 

A. Approving BootingProcess  through TPM 
Every time an L1 guest hypervisor is booted, a qemu-

kvm daemon is created or an L2 guest VM is lunched, the 
booting/setup process should be approved. Secure-Turtles 
use the TPM to verify the correctness of these processes.  

Here L0 host hypervisor will approve the booting 
process of L1 guest hypervisor using the hardware TPM 
device [4] through a chain of measurements using the 
“equation (1)”. In order to satisfy Property2, the kernel 
code loading process is also added into the measurement 
chain of the boot process so that only predefined code is 
loaded into memory. Here, the predefined code is decided 
at the time the L1 hypervisor is installed, when it is 
disconnected with the outside world. Thus, it is insulated 
against the attackers from the Internet and is safe. After 
adding the predefined code into the measurement chain, 
the whole kernel code of L1 after the boot is approved to 
be secure. Here the L0 will make an attestation of the 
approved booting process using the equation: 

):?( 11

1

noyesKeyPCR
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L
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−
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PCRfinal-L1 refers to the accumulation of the sequence 
of measurements of the L1 booting process. The KeyL1 is 
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Figure4:  How EPT/NPT table is built for L1 guest hypervisor in guest 
model and kernel mode. 

 
Figure3: Memory protections in the protection page table for user mode 

and kernel mode 

a predefined hash value representing that the L1 is booted 
securely, the result of the equation shows whether L1 
boots securely or not. 

With the approved booting process of L1 guest 
hypervisor, both Property1 and Property2 are guaranteed. 

When starting a L2 guest VM, the L1 guest hypervisor 
will approve the lunching process of the qemu-kvm 
daemon as well as the booting process of the L2 guest 
VM. The L1 guest hypervisor uses a virtual TPM device, 
proposed by S. Berger et.al. [7], to measure the lunching 
process of qemu-kvm daemon and the booting process of 
the L2 guest VM. In order to satisfy Property8, the code 
loading process is also added into the measurement chain 
of the lunching process of qemu-kvm daemon. Here, we 
use “equation 3” to generate the attestation of the 
approved lunching process of the qemu-kvm daemon and 
“equation 4” to generate the attestation of the approved 
booting process of L2 guest VM. 

):?( noyesKeyPCR
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PCRfinal-qemu refers to the accumulation of the sequence 
of measurements of the qemu-kvm lunching process. The 
Keyqemu is a predefined hash value representing that the 
qemu-kvm daemon is lunched securely. PCRfinal-L2 refers 
to the accumulation of the sequence of measurements of 
the L2 booting process. The KeyL2 is a predefined hash 
value representing that the L2 guest VM is booted 
securely.  

With the approved lunching process of the qemu-kvm 
daemon as well as the L2 guest VM, Property7, Property8 
and Property15 are guaranteed. 

B. W⊕X Protection 
On each entry L1 falls into kernel mode, Secure-

Turtles sets execution permissions in the protection page 
table so that only approved L1 kernel code can execute. 
For the kernel code, this can be simply achieved by 

setting the execution permission of pages containing 
kernel code and clean such permission for any other 
kernel pages. However, as the user code is also 
executable in kernel, Secure-Turtles also need to clean 
the execution permission of all user pages. Figure 3 
shows the memory protections in the protection page 
tables for user and kernel mode. It can be seen that, in 
kernel mode, only the pages of kernel code will be 
executable but not writable. This type of memory 
protection is referred to as W⊕X protection.  

In order to provide the separate page tables for user 
mode and kernel mode, Secure-Turtles rely on the 
hardware virtualization extensions as Intel VMX [10] and 
AMD SVM [11], which provide nested page table 
support. The extend page table (the EPT) for Intel or the 
nested page table (the NPT) for AMD is used to translate 
guest physical address to system physical address. In 
Turtles, L0 use EPT/NPT to translate L1’s guest physical 
address to the system physical address. Thus, to realize W
⊕X protection for L1 kernel code in Secure-Turtles, L0 
host hypervisor will maintains two EPT/NPT tables for 
the L1 guest hypervisor, one for user mode and one for 
kernel mode. Figure 4 shows how these two tables are 
built. Both EPT/NPT tables for user mode and kernel 
mode use the same mapping for the kernel data (RW). 
The EPT/NPT table takes R page table entries to map the 
kernel code for the user mode and it takes RX page table 
entries for the kernel mode. Finally, the EPT/NPT table 
takes RWX page table entries to map the user memory 
for user mode and takes RW page table entries for kernel 
mode. With these two tables, when L1 falls into kernel 
mode, only the kernel code part is executable. When the 
IP point to an address outside the kernel code range, an 
exception will be caught by L0 indicating the property 
violation of Property5. 

To achieve Property2, the mapping of the kernel code 
must be established following the kernel code loading 
process of the L1 guest hypervisor. In Secure-Turtles, L0 
will forbid further modification of this mapping area 
inside the EPT/NPT table after the code loading process. 
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Figure5: Memory protections in the protection page table 

for qemu-kvm daemon 

For example, any kernel module loaded after the 
establishment of this mapping will not have the execution 
permission. 

With W⊕X protection for the kernel code as well as 
the restricted kernel code mapping mechanism Property5 
is guaranteed. Other than that Property3 is partially 
guaranteed, as it is impossible to modify the kernel code 
in kernel mode. 

The same memory protection methodology is also used 
to protect the qemu-kvm code from modification. Figure5 
shows the memory protection layout in the protection 
page table for qemu-kvm daemon. It can be seen that only 
the qemu-kvm code is set to executable. Any data area 
such as stack and heap are none-executable. With this 
protection page table, when qemu-kvm daemon is 
running, only the code part is executable. When the IP 
point to an address outside the code range, an exception 
will be caught by L1 indicating the property violation of 
Property11. 

To achieve Property9, the mapping of the qemu-kvm 
daemon code must be established following the qemu-
kvm lunching process. In Secure-Turtles, L1 will forbid 
further modification of this mapping area after the code is 
loaded. 

With W⊕X protection for the qemu-kvm code as well 
as the restricted code mapping mechanism and 
Property11 are guaranteed. Other than that, Property9 is 
partially guaranteed, as it is impossible to modify the 
qemu-kvm code in its daemon’s context. 

C. Disabing Physical Memory Mapping from Root 
Security sensitive data should not be accessible to user 

processes even when the process has the root privilege so 
that none process in L1 can read or modify the kernel 
code and only the qemu-kvm daemon process can access 
and modify its own code and data as well as the L2 guest 
VM’s memory (guest VM takes the same context with the 
qemu-kvm daemon in KVM). To do so, L1 hypervisor 
disables the /dev/mem and /dev/kmem device. The 
/dev/mem and /dev/kmem are special files that provide 
access to pseudo device drivers which allows read and 
write accesses to system memory. High privilege users 
such as root can use these two devices to read and write 
any memory of the L1 hypervisor. By disabling these two 
devices, L1 hypervisor closes all interfaces to access 
arbitrary memory of L1 in the user mode.  Thus, together 
with W⊕X protection  Property3 is guaranteed. 

Although, user processes can only access memory 
belonging to its context. Attackers can use another way to 
take control of qemu-kvm daemon through the ptrace 
interface. The ptrace system call provides a way for a 
process (tracer) to observe or take control of another 
process (tracee) and examine and change the tracee’s 
memory and registers. High privilege users such as root 
can use this interface to take control of the qemu-kvm 
daemon and alter its memory and control flow. After 
disabling this interface in the L1 hypervisor, qemu-kvm 
daemons are free from being observed or controlled. Thus, 
together with W⊕X protection, Property9, Property12 
and Property13 are guaranteed. 

D. Managing L1 kernel Entries and Exits and Qemu-
kvm Entries 

Secure-Turtles ensures that kernel mode entries and 
exits satisfy Property4 and Property6. Also it will ensure 
that the qemu-kvm daemon entries satisfy Property10. 

Kernel mode entries: Secure-Turtles needs to ensure 
that all control transfers from user mode into kernel mode 
in L1 guest hypervisor will set the IP to an address within 
the kernel code approved at the L1 booting process.  

In the x86 architecture, control transfer to kernel mode 
is only allowed through the entry points designated by 
kernel. The kernel informs the CPU of the permitted 
entry points by writing the address of these points in CPU 
registers and data structures. All entry points exist in the 
global description table (GDT), local description table 
(LDT), interrupt description table (IDT) and some model 
specific registers (MSRs). Thus, Secure-Turtles should 
protect the entry points inside this tables or registers. 
Fortunately, all these entry points can only be modified 
by L1 within the kernel mode so that they will point to 
the approved kernel code after L1 hypervisor has booted 
according to Property1 and Property2. Further, according 
to Property3, the attacker cannot change these entry 
points even with the root privilege. Thus with Property1, 
Property2 and Property3, Property4 will be guaranteed.   

Further, in order to enforce the W⊕X protection, L0 
need to switch the EPT/NPT table for the L1 from user 
mode to kernel mode. As shown in Figure3, when control 
transfers from user mode to kernel mode, the EPT/NPT 
table used is the one for the user mode, thus when the 
kernel code is executed, an EPT/NPT violation will be 
caught by L0 as the kernel code pages are none-
executable. At this point L0 will switch EPT/NPT table 
into the one for the kernel mode. 

Kernel mode exits: Secure-Turtles also needs to ensure 
that every exit from kernel mode will set the execution 
privilege into user mode. As shown in Figure3, the user 
memory mapping in the kernel mode EPT/NPT table is 
none executable, when there is an exit from kernel mode 
to user mode, the execution of the first user instruction 
will cause an EPT/NTP violation which will be caught by 
L0. At this point, L0 will switch EPT/NPT table into the 
one for the user mode. Also L0 will set the CPL field of 
the VMCB to 3, thus, ensuring that when user process 
resumes execution has switch to user mode. Here 
Property6 will be guaranteed. 
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Qemu-kvm entries: Secure-Turtles needs to ensure that 
when control transfers to qemu-kvm daemon in L1, it will 
set the IP to an address within the qemu-kvm code 
approved at qemu-kvm daemon lunch process.  

At every time, there is a context switch to the qemu-
kvm daemon, the page table shown in Figure 5 is loaded 
and the CPL will be set to 3 according to Property6. Thus, 
if the entry points to the IP outside the qemu-kvm code, a 
page fault will be caught by L1, which means any 
violation of Property10 will be detected directly by 
Secure-Turtles.  

After managing L1 kernel entries and exits as well as 
qemu-kvm entries, Property4, Property6 and Property10 
are guaranteed. 

E. Protecting Disk Accesses 
L2 disk images exist as local files in L1 hypervisor. 

Processes with root privilege can access these files 
directly. To protect L2 images from malicious accesses 
from arbitrary processes, we propose two solutions: 1) 
Store encrypted L2 disk images in L1. L1 needs to 
decrypt the disk blocks when they are loaded into the L2 
guest VM’s memory and encrypt the data when it is 
written into the disk; and 2) Take access control over L2 
disk images. Only the approved qemu-kvm daemon has 
the right to access it. As disk encryption and decryption 
waste lots of computing resources, we choose the second 
solution in Secure-Turtles. 

The opening an L2 disk image is only allowed within 
the context of an approved qemu-kvm daemon. Before 
opening the image, L1 will first check the Attesqemu-kvm of 
the requesting qemu-kvm daemon to ensure that it is 
lunched correctly. Only the approved qemu-kvm daemon 
has the right to access the L2 disk images. However, as 
no process other than the qemu-kvm daemons can access 
the images, who create these images? The answer is L0. 
The disk images are copy into L1 guest hypervisor by the 
L0 host hypervisor who will also mark these files as L2 
images that L1 should apply special access control over 
them. 

With the disk access control mechanism, Property14 is 
guaranteed. 

F. Informing Property Violation 
In Secure-Turtles, L2 guest VM will be aware of 

potential security threats. After booting the L2 guest VM, 
the user of guest VM can verify its execution 
environment by verifying the value of  AttesL1, Attesqemu-

kvm and AttesL2. Only when all these three values are true 
the execution environment is secure. 

During L2 guest VM’s lifetime, any violation of 
properties from Property1 to Property15 will be 
propagated to the L2 guest VM and trigger a signal to all 
user processes. Any user process requiring a secure 
execution environment should register a signal handler to 
handle this signal. Here, Property16 is guaranteed. 

VI.  EVALUATION 

In this section, we evaluate our Secure-Turtles 
prototype using two metrics: security and performance. 

A. Security Measurements 
We evaluate Secure-Turtles’ security on an Intel 

machine with 4 cores and 16 GByte memory. The L0 host 
hypervisor is Debian 6.0 with kernel version 3.10.2. The 
L1 host hypervisor is booted with 4 VCPU and 8 GByte 
memory. The L1 host hypervisor is Debian 6.0 with 
kernel version 3.8.4. The L2 guest VM is booted with 1 
VCPU and 2 GByte memory.  In this evaluation, we 
assume the attacker has taken control over the root 
privilege of L1 guest hypervisor, and we takes following 
three tests: 

 The L1 guest hypervisor’s kernel image is 
changed by the attacker. 

 The attacker tries to control qemu-kvm daemon 
through ptrace. 

 The attacker tries to modify the L2 disk image. 
Test One: After modifying the L1 guest hypervisor’s 

kernel image, the booting process of L1 guest hypervisor 
generates a wrong attestation as the hash of the loaded 
code altered with the predefined one. Here, the AttesL1 is 
set to false. Under this condition, L2 does not execute 
after booting, as it finds out that its execution 
environment is insecure as shown in section V.F. 

Test Two: The attacker tries to attack the L2 guest VM 
through the qemu-kvm daemon. When it tries to use 
ptrace to take control of the daemon, it finds that this 
interface is closed by the L1 hypervisor. Thus, the 
attacker cannot take control of the daemon. 

Test Three: The attacker tries to access the L2 disk 
image by mounting it into a directory (e.g. /mnt) and 
access it. However, it fails as Secure-Turtles forbids any 
process other than the qemu-kvm daemon to access the 
L2 disk images.  

It can be seen that Secure-Turtles can successfully 
defense attacks from the L1 user mode even when the 
attacker has the root privilege. 

B. Performance Measurements 
We evaluate Secure-Turtles’ performance on the same 

Intel machine as we evaluate its security. We use the 
same software environment and L1 guest hypervisor and 
L2 guest VM configurations.  

We use five applications (Bzip2, GCC, MCF, Hummer 
and H264ref) from SPECINT benchmark test suite. Bzip2, 
GCC and MCF have a modest memory footprint while 
Hummer and H264ref have a small memory footprint. 
Each application is run with three times and we list the 
result of each run.  

Figure 6 shows the performance of Bzip2, GCC and 
MCF on Turtles and Secure-Turtles. It can be seen that 
for each run, Secure-Turtles incurs small performance 
overhead over Turtles system. The average performance 
overhead for these three applications is 2.67%. Figure 7 
shows the performance of Hummer and H264ref on 
Turtles and Secure-Turtles. It can be seen that for each 
run, Secure-Turtles incurs little performance overhead 
over Turtles system. The average performance overhead 
for these two applications is 0.85%. The performance 
overhead here is mainly due to the additional cost in the 
page fault handling routine that L1 has to build the EPT 
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Figure6: Performance of Bzip2, GCC and MCF on Turtles and Secure-Turtles

Figure7: Performance of Hummer and H264ref on Turtles and Secure-
Turtles 

for the L2 guest VM during which the W⊕X protection 
mechanism is activated to protect the L1 hypervisor and 
qemu-kvm daemon.  As Hummer and H264ref have 
much less memory footprint, the performance overhead 
of them is less than Bzip2, GCC and MCF. 

VII.  CONCLUSION 

The trust bases of most hypervisors (KVM or Xen) are 
large and complex, and consequently, frequently prone to 
compromised. When the hypervisor is compromised, 
guest VMs running on it are under great danger. In this 
paper, we proposed Secure-Turtles, a secure nested 
virtual system based on Turtles system, which can run L2 

guest VMs securely. In Secure-Turtles, even when the 
user space of the L1 guest hypervisor is compromised by 
an attacker, L2 guest VMs can still execute securely. We 
have built a prototype of Secure-Turtles based on the 
Turtles system and evaluate its prototype with two 
metrics: security and performance on an Intel machine. 

The evaluation result shows that Secure-Turtles can 
protect L2 guest VM against attacks from the L1 user 
mode and it introduces nearly no performance overhead 
to the L2 guest VM compared with the Turtles system. 
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