
Secure-Turtles: Building a Secure Execution
Environment for Guest VMs on Turtles System

Fei Liu, Lanfang Ren, Hongtao Bai
Institute of Security China Mobile, China

Abstract—We propose Secure-Turtle, a secure nested virtual
system based on Turtles system, which provides a secure
execution environment for the L2 guest VM. In particular,
Secure-Turtles system builds a trust chain from L0 host
hypervisor, L1 guest hypervisor, qemu-kvm daemon to L2
guest VM. Through this security chain, Secure-Turtles can
protect L2 guest VM against attacks form the L1 user mode,
even when the attacker has the root privilege of the L1 guest
hypervisor.

Our goal is to make Secure-Turtles possible to rule out
known class of vulnerabilities from the L1 user. We
proposed four general requirements for Secure-Turtles to
satisfy to achieve our goal and list sixteen basic properties
for the Secure-Turtles system to achieve. With these
properties, the proposed four requirements can be
guaranteed. We rely on the memory virtualization to build
Secure-Turtles and implement a prototype based on Turtles.
We evaluate its prototype using two metrics: security and
performance. The security evaluation result shows that
Secure-Turtles can protect L2 guest VM from attacks from
the L1 user mode. The performance result shows that
Secure-Turtles introduces little performance overhead to
the L2 guest VM compared with the Turtles system.

Index Terms—Security, Nested virtualization

I. INTRODUCTION

System virtualization has been a standard technique in
many commercial usage scenarios such as server
consolidation, multi-tenant cloud and virtual appliances.
Commodity hypervisors or operating systems
increasingly make use of the virtualization capabilities to
run virtual machines (VM). Window 7 supports a
backward compatible Windows XP mode by running the
XP operating system as a VM. Linux runs VMs using its
build-in KVM [1] hypervisor. Xen hypervisor [2] runs its
VMs with the help of its privileged VM.

However, these systems are still vulnerable to security
attacks. The trust base of these commodity systems (e.g.,
the host operating system of Window 7 and KVM or the
privileged VM in Xen) are large and complex, and
consequently, frequently prone to compromise. When it is
compromised, guest VMs running on it are under great
danger. As the host hypervisor has the full control of the
underlying hardware resources and provide virtual
resources for the guest VM, it can easily obtain the secure
sensitive data from the guest VMs lunched by it. For
example, it can get the disk I/O data from a guest VM

through its virtual disk device emulator. Furthermore,
guest VMs are unaware of the existing of the underlying
hypervisor. This makes them more vulnerable to the
attacks on their hypervisor as they may still processing
sensitive data when the hypervisor has been compromised.

In this paper, we make use of nested virtualization to
enhance the security of such virtual environments based
on the Turtles project [3], which proposes a nested
virtualization architecture based on KVM through multi-
dimensional paging for MMU virtualization and multi-
level device assignment for I/O virtualization. It provides
a flexible virtual functionality to host virtualization
capable operating system or hypervisor. In this
architecture, the bare-metal hypervisor running on the
hardware, which is called L0, emulates a virtual hardware
environment. The guest hypervisor running on L1 will
execute on such virtual environment. The guest VMs of
the guest hypervisor will run on L2.

We proposed Secure-Turtles, a secure nested virtual
system based on Turtles system, which can run L2 guest
VMs securely. In this system, we build a trust chain from
the L0 host hypervisor, the L1 guest hypervisor kernel,
qemu-kvm daemon to the L2 guest VM, we figure out
four requirements to satisfy inside the Secure-Turtles
system: 1) lifetime kernel code integrity of the L1 guest
hypervisor should be provided; 2) the code and data
integrity of qemu-kvm daemons should be provided; 3)
the data integrity of the L2 guest VM should be provided;
and 4) the guest VM should be aware of any violation of
the above three requirements. We prove these four
requirements are necessary and sufficient to build a
secure environment for an L2 guest VM. In order to
realize these four requirements, we list sixteen properties
for the Secure-Turtles system to achieve and prove that
with these properties the above requirements can be
guaranteed.

Here, we assume that the L0 host hypervisor is
insulated from the outside world to avoid being attacked.
Thus it can be trusted in the Secure-Turtles system. Based
on the trusted L0 host hypervisor, we build a trusted L1
hypervisor’s kernel by ensuring the kernel code integrity
of the L1 guest hypervisor, who hosts the L2 guest VMs,
and let L1 hypervisor to ensure its own kernel data
integrity. Then based on the trusted L1 hypervisor kernel,
we build a secure execution environment for the L2 guest
VMs by ensuring the code and data integrity of the qemu-
kvm daemon who lunches L2 guest VMs as well as the

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 741

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.3.741-749

Figure1: Architecture of Nested Virtualization.

Figure2: Architecture of Nested Virtualization.

memory and disk data integrity of L2 guest VM. When an
attack hijacks the user mode of the L1 hypervisor through
some vulnerability of some user processes such as /bin
utilities and acquires the root privilege, Secure-Turtles
can still prevent it from attacking the L2 guest VMs.

In this paper, we use Trusted Platform Module (TPM)
[4] to approve the booting process of L1 guest hypervisor,
the lunching process of qemu-kvm VM and the booting
process of L2 guest VM. (The TPM enables remote
attestation by digitally signing cryptographic hashes of
specific software components. The attestation will affirm
that the software is genuine and correct.) We use W⊕X
protection to provide code integrity and monitor the L1
kernel entries and qemu-kvm entries to enhance code
integrity. We also disable all memory access interfaces
that provide user processes the ability to access arbitrary
memory in L1 to provide memory data integrity and use
disk access protection to provide disk data integrity for
L2 guest VMs. And we let L0 and L1 to inform L2 guest
VMs the potential threats.

We have built a prototype of Secure-Turtles based on
the Turtles system and evaluate its prototype with two
metrics: security and performance on an Intel machine
with 16GByte memory. The security evaluation result
shows that Secure-Turtles can protect L2 guest VM
against attacks from the L1 user mode, which try to either
modify its execution environment such as L1 hypervisor
or the qemu-kvm daemon or modify its data directly. The
performance evaluation on an L2 guest VM with 1 virtual
CPU (VCPU) and 2 GByte memory using the SPECINT
benchmark suite shows that Secure-Turtles introduces
nearly no performance overhead to the L2 guest VM
compared with the Turtles system.

The rest of this paper is organized as follows: The next
section describes the background of Turtles system and
TPM devices. Section III discusses our assumptions and
the treat mode. Section IV lists the four requirements to
build the trust chain inside Secure-Turtles and proves that
with these requirements, it can provide a secure
environment for L2 guest VMs. Section V provides the
design of Secure-Turtles system and Section VI shows
the evaluation result of the Secure-Turtles prototype.
Section VII concludes our work.

II. BACKGROUND

A. Nested Virtualization
Turtles project [3] investigates the design and

implementation of nested virtualization to support multi-
level virtualization in KVM [1] on x86 hardware with
virtualization extensions, VMX [5] and SVM [6]. Figure
1 gives an overall architecture of nested virtualization.
The host hypervisor runs on bare-metal hardware
emulates VMX/SVM for L1 and L2 with the highest
privilege level. Since L0 provides a full emulation of the
VMX/SVM hardware any time there is a trap on
VMX/SVM instruction, the guest hypervisor on L1 will
not know it is not running on the hardware and can run
guest VMs on L2 just as it has the VMX/SVM support.

As the x86 hardware has only a single hypervisor
mode, a trap at any level is handled by the most

privileged hypervisor on L0 first. Figure 2 shows how
traps are handled in Turtles system. When a trap occurs
on L2, it will first be trapped by L0. Here L0 will decide
whether the trap can be handled by L0 directly or should
be sent to L1 to handle it. If it should be sent to L1, the
host hypervisor will inject a virtual trap event on L1.
Otherwise it will return the execution back to L2 directly.
Further when a trap occurs on L1, the execution will also
return to L0 and then back.

When guest hypervisor on L1 wishes to run a VM, it
will launch it via VMX/SVM commands. This will cause
a trap to L0, as it does not have the privilege to issue
these commands. At this time, the host hypervisor on L0
can verify the genuine of the execution environment of
the guest VM including the guest hypervisor on L1 as
well as its booting process.

B. The Trusted Platform Module
The TPM is a security specification defined by the

trusted computing group [4]. It implementation is usually
available as a chip attached to a platform’s motherboard.
S. Berger et.al has proposed a software based TPM
implementation [7] to make TPM functions available to
VMs. The TPM provides cryptographic operations
including asymmetric key generation,
encryption/decryption digital signing and migration of
keys and random number generation and hashing. It also
provides a small amount of storage to save secure
sensitive information such as cryptographic keys. It
enables remote attestation of specific software
components to affirm that the target software is genuine
and correct.

One important operation of TPM is Platform
Configuration Register (PCR) extension operation. The
PCRs are initialized at power up and extended
cryptographically during the execution using the
following equation:

742 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

)||(1

),(1

valuePCRSHA

valuePCRExtendPCR

N

NN ==+ . (1)

The N+1th extend value of PCR is calculated through
Extend (PCRN, value). SHA1 refers to the secure hash
algorithm and the || operation represents a concatenation
of two byte arrays, PCRN and value.

The PCR extensions can be used during the platform
boot to verify the whole boot process. The hash values of
byte arrays representing code or configuration data are
calculated or measured. And PCR values are extended
with these values. The final PCR value represents the
accumulation of a unique sequence of measurement. Such
sequential list of measurements can be used to decide
whether the system can be trusted.

In Secure-Turtles, we depend on the TPM to verity the
genuine of the execution environment of the guest VM.

III. ASSUMPTIONS AND THREAT MODEL

In this section, we state our assumptions of the
software and hardware environment and describe out
threat model.

A. Assumptions
We assume the CPU on which Secure-Turtles runs

provides support for hardware-assisted virtualization
support like Intel’s VMX and AMD’s SVM. We also
assume the L1 kernel protected by Secure-Turtles does
not use self-modifying code. We also assume that the L0
host hypervisor of Secure-Turtles are insulated from the
outside world to avoid being attacked.

B. Threat Model
We consider an attacker who attacks the L1 guest

hypervisor and compromises its kernel that the attacker
can take control of the L1 guest hypervisor. Example
attacks include modification of memory contents,
injection of malicious code, and malicious DMA writes to
memory using peripherals. After hijacking the L1 kernel,
the attacker might easily take control of all L2 guest VMs
lunched by the L1 through KVM module inside the
kernel.

Further, even when the attacker can’t hijack the L1
kernel, but hijacking the L1 user space, it can still take
control of the L2 guest VM by lunching the VM with a
modified qemu-kvm daemon with injected malicious
code or uses ptrace interface to control the qemu-kvm
daemon.

Here, we do not consider an attacker that attacks the
L2 guest VM directly by compromising it or using denial
of service attacks. Several works [8, 9] have been
proposed to handle such threats in the cloud
environments.

IV. DESIGN REQUIREMENTS OF SECURE-TURTLES

In this section, we discuss the design requirements of
building the Secure-Turtles system. We start by
describing the design goal of Secure-Turtles followed by

a serial of properties that need to be achieved in order to
guarantee the goal.

A. Design Goal of Secure-Turtles
The general goal of Secure-Turtles is to provide a

secure execution environment for L2 guest VMs even
when the L1 guest hypervisor is compromised by an
attacker. To achieve this, following requirements should
be achieved by Secure-Turtles:

 Requirement1: The Secure-Turtles system
should provide lifetime kernel code integrity for
the L1 guest hypervisor.

 Requirement2: The Secure-Turtles system
should provide the code and data integrity of the
corresponding qemu-kvm daemon of a guest VM
during its lifetime.

 Requirement3: The data integrity of the L2 guest
VM should be guaranteed.

 Requirement4: The guest VM should be aware
of any violation of the above three requirements.

Theorem1: With Requirement1 to Requirement4,
Secure-Turtles can provide a secure execution
environment for L2 guest VM.

Proof: With Requirement1 and Requirement2, the
code integrity of the L1 kernel and qemu-kvm daemon is
guaranteed so that no attacker can alter the virtual
environment emulation functionality. Further the data
integrity of qemu-kvm daemon is guaranteed so that no
attacker can alter the execution flow of the qemu-kvm
daemon by changing the stack or heap of qemu-kvm
daemon. Thus, the virtual environment emulated by the
L1 kernel and the qemu-kvm daemon cannot be altered
by the attacker. With Requirement3, as the data integrity
of the guest VM is also guaranteed by Secure-Turtles, no
attacker can eavesdrop or modify the guest VM’s data.
Finally, with requirement4, as Secure-Turtles will notify
the L2 guest VM the danger of any violation of the above
three requirements which will threaten the security of L2.

B. Required Properties for Secure L2 Guest Virtual
Machine Execution

We start designing Secure-Turtles by converting the
requirements into properties. Our first requirement is to
provide kernel code integrity for the L1 guest hypervisor.
Thus, Secure-Turtles must provide the following six
properties for L1 guest hypervisor:

 Property1: The booting process of L1 guest
hypervisor should be approved.

 Property2: The whole kernel code of L1 must be
approved to be unmodified.

 Property3: Memory containing the kernel code
should not be modified or extend by any time.

 Property4: Every entry into kernel mode should
set the CPU’s Instruction Pointer (IP) to an
instruction within the kernel code approved by
Secure-Turtles in Property1.

 Property5: After entering kernel mode, the IP
should continue to point to the approved kernel
code until the CPU exits kernel mode.

 Property6: Every exit from kernel mode should
set the execution privilege into user mode.

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 743

© 2014 ACADEMY PUBLISHER

Theorem2: With Property1 to Property6,
Requirement1 can be achieved.

Proof: Property1 guarantees the L1 guest hypervisor
boots correctly and the kernel code loaded during the
boot process are secure. Property2 together with
Property3 guarantee that the loaded kernel code will
neither be extended nor be modified. Property4 to
Property6 guarantee that when the control flow enters the
kernel mode, the CPU can only execute the kernel code
that is approved according to Property2 and Property3 as
the CPU’s IP can only point to the approved kernel code
when the L1 is running in the kernel mode. Thus, with
Property1 to Property6, Secure-Turtles can provide
lifetime kernel code integrity for L1 guest hypervisor.

The second requirement is to provide code integrity of
the qemu-kvm daemon of a guest VM. Thus, Secure-
Turtles must provide the following six properties:

 Property7: The lunching process of qemu-kvm
should be approved.

 Property8: The qemu-kvm lunching the L2 guest
VM must be approved to be unmodified.

 Property9: Memory containing the qemu-kvm
code should not be modified by any time.

 Property10: Every entry into the qemu-kvm
daemon should set the CPU’s Instruction Pointer
(IP) to an instruction within the qemu-kvm code.

 Property11: During its execution, the IP should
continue to point at approved qemu-kvm code.

 Property12: Memory containing the qemu-kvm
data should not be accessed by other processes.

Theorem3: With Property7 to Property12,
Requirement2 can be achieved.

Proof: Property7 guarantees the qemu-kvm daemon is
created correctly and its code is safe. Property8 together
with Property9 make sure that the loaded code of the
qemu-kvm daemon is not changed at its setup time
(Property8) and will not be changed during the daemon’s
lifetime (Property9). Propert10 guarantees that whenever
qemu-kvm daemon is scheduled, it will start at a valid
instruction address within its code base. Further,
Property11 guarantees that the daemon can only execute
the code approved according to Property8 and Property9.
Thus, Property8 to Property11 provide code integrity of
the qemu-kvm daemon. While Property12 forbids any
access to the memory used by the qemu-kvm daemon
from other processes, which provides data integrity of the
daemon. Thus, Requirement2 can be achieved with
Property7 to Property12.

The third requirement is to guarantee the data integrity
of the guest VM. Thus, Secure-Turtles must provide the
following two properties.

 Property13: Memory containing the guest VM’s
memory should not be accessed by other
processes except the qemu-kvm daemon in L1.

 Property14: The disk image of the guest VM
should not be accessed by other processes except
the qemu-kvm daemon in L1.

Theorem4: With Property13 to Property 14,
Requirement3 can be achieved.

Proof: Property13 guarantees the guest VM’s memory
is not accessible to any processes except the qemu-kvm
daemon in L1 so that even the attacker can control the L1,
it cannot access the L2 guest VM’s memory to alter its
state or steal secure sensitive data. Property14 guarantees
that the disk data is only accessible to the qemu-kvm
daemon that the attacker cannot access it through the disk
file (e.g. mounting the disk image). With Property13 and
Property14, we can provide both memory data integrity
and disk data integrity for the L2 guest VM.

The forth requirement is let the guest VM be aware of
any violation of the first two requirements. Thus, Secure-
Turtles must provide the following two properties:

 Property15: The booting process of L2 guest
VM should be approved.

 Property16: Any violation of any properties
listed above should be informed to L2.

Theorem5: With Property13 to 14, Requirement4 can
be achieved.

Proof: Property15 guarantees the L2 guest VM boots
correctly according to the user’s requirements. If it is not
boot correctly, the booting process may be hijacked that
the guest VM may not be secure. Property16 ensures that
the L2 guest VM will know whether it is running on a
secure environment. If any property from Property1 to
Property14 is violated, the running environment of the L2
guest VM is not secure ever. The guest VM must stop
processing any secure sensitive data. With Property15
and Property16, the guest VM will be securely running
and be aware of any kinds of secure threats from L1 guest
hypervisor.

V. DESIGN OF SECURE-TURTLES

In this section, we show how each property is achieved
based on Turtles system in Secure-Turtles.

A. Approving BootingProcess through TPM
Every time an L1 guest hypervisor is booted, a qemu-

kvm daemon is created or an L2 guest VM is lunched, the
booting/setup process should be approved. Secure-Turtles
use the TPM to verify the correctness of these processes.

Here L0 host hypervisor will approve the booting
process of L1 guest hypervisor using the hardware TPM
device [4] through a chain of measurements using the
“equation (1)”. In order to satisfy Property2, the kernel
code loading process is also added into the measurement
chain of the boot process so that only predefined code is
loaded into memory. Here, the predefined code is decided
at the time the L1 hypervisor is installed, when it is
disconnected with the outside world. Thus, it is insulated
against the attackers from the Internet and is safe. After
adding the predefined code into the measurement chain,
the whole kernel code of L1 after the boot is approved to
be secure. Here the L0 will make an attestation of the
approved booting process using the equation:

):?(11

1

noyesKeyPCR

Attes

LLfinal

L

==
=

−

. (2)

PCRfinal-L1 refers to the accumulation of the sequence
of measurements of the L1 booting process. The KeyL1 is

744 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

Figure4: How EPT/NPT table is built for L1 guest hypervisor in guest
model and kernel mode.

Figure3: Memory protections in the protection page table for user mode

and kernel mode

a predefined hash value representing that the L1 is booted
securely, the result of the equation shows whether L1
boots securely or not.

With the approved booting process of L1 guest
hypervisor, both Property1 and Property2 are guaranteed.

When starting a L2 guest VM, the L1 guest hypervisor
will approve the lunching process of the qemu-kvm
daemon as well as the booting process of the L2 guest
VM. The L1 guest hypervisor uses a virtual TPM device,
proposed by S. Berger et.al. [7], to measure the lunching
process of qemu-kvm daemon and the booting process of
the L2 guest VM. In order to satisfy Property8, the code
loading process is also added into the measurement chain
of the lunching process of qemu-kvm daemon. Here, we
use “equation 3” to generate the attestation of the
approved lunching process of the qemu-kvm daemon and
“equation 4” to generate the attestation of the approved
booting process of L2 guest VM.

):?(noyesKeyPCR

Attes

qemuqemufinal

kvmqemu

==

=

−

−
. (3)

):?(22

2

noyesKeyPCR

Attes

LLfinal

L

==
=

−

. (4)

PCRfinal-qemu refers to the accumulation of the sequence
of measurements of the qemu-kvm lunching process. The
Keyqemu is a predefined hash value representing that the
qemu-kvm daemon is lunched securely. PCRfinal-L2 refers
to the accumulation of the sequence of measurements of
the L2 booting process. The KeyL2 is a predefined hash
value representing that the L2 guest VM is booted
securely.

With the approved lunching process of the qemu-kvm
daemon as well as the L2 guest VM, Property7, Property8
and Property15 are guaranteed.

B. W⊕X Protection
On each entry L1 falls into kernel mode, Secure-

Turtles sets execution permissions in the protection page
table so that only approved L1 kernel code can execute.
For the kernel code, this can be simply achieved by

setting the execution permission of pages containing
kernel code and clean such permission for any other
kernel pages. However, as the user code is also
executable in kernel, Secure-Turtles also need to clean
the execution permission of all user pages. Figure 3
shows the memory protections in the protection page
tables for user and kernel mode. It can be seen that, in
kernel mode, only the pages of kernel code will be
executable but not writable. This type of memory
protection is referred to as W⊕X protection.

In order to provide the separate page tables for user
mode and kernel mode, Secure-Turtles rely on the
hardware virtualization extensions as Intel VMX [10] and
AMD SVM [11], which provide nested page table
support. The extend page table (the EPT) for Intel or the
nested page table (the NPT) for AMD is used to translate
guest physical address to system physical address. In
Turtles, L0 use EPT/NPT to translate L1’s guest physical
address to the system physical address. Thus, to realize W
⊕X protection for L1 kernel code in Secure-Turtles, L0
host hypervisor will maintains two EPT/NPT tables for
the L1 guest hypervisor, one for user mode and one for
kernel mode. Figure 4 shows how these two tables are
built. Both EPT/NPT tables for user mode and kernel
mode use the same mapping for the kernel data (RW).
The EPT/NPT table takes R page table entries to map the
kernel code for the user mode and it takes RX page table
entries for the kernel mode. Finally, the EPT/NPT table
takes RWX page table entries to map the user memory
for user mode and takes RW page table entries for kernel
mode. With these two tables, when L1 falls into kernel
mode, only the kernel code part is executable. When the
IP point to an address outside the kernel code range, an
exception will be caught by L0 indicating the property
violation of Property5.

To achieve Property2, the mapping of the kernel code
must be established following the kernel code loading
process of the L1 guest hypervisor. In Secure-Turtles, L0
will forbid further modification of this mapping area
inside the EPT/NPT table after the code loading process.

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 745

© 2014 ACADEMY PUBLISHER

Figure5: Memory protections in the protection page table

for qemu-kvm daemon

For example, any kernel module loaded after the
establishment of this mapping will not have the execution
permission.

With W⊕X protection for the kernel code as well as
the restricted kernel code mapping mechanism Property5
is guaranteed. Other than that Property3 is partially
guaranteed, as it is impossible to modify the kernel code
in kernel mode.

The same memory protection methodology is also used
to protect the qemu-kvm code from modification. Figure5
shows the memory protection layout in the protection
page table for qemu-kvm daemon. It can be seen that only
the qemu-kvm code is set to executable. Any data area
such as stack and heap are none-executable. With this
protection page table, when qemu-kvm daemon is
running, only the code part is executable. When the IP
point to an address outside the code range, an exception
will be caught by L1 indicating the property violation of
Property11.

To achieve Property9, the mapping of the qemu-kvm
daemon code must be established following the qemu-
kvm lunching process. In Secure-Turtles, L1 will forbid
further modification of this mapping area after the code is
loaded.

With W⊕X protection for the qemu-kvm code as well
as the restricted code mapping mechanism and
Property11 are guaranteed. Other than that, Property9 is
partially guaranteed, as it is impossible to modify the
qemu-kvm code in its daemon’s context.

C. Disabing Physical Memory Mapping from Root
Security sensitive data should not be accessible to user

processes even when the process has the root privilege so
that none process in L1 can read or modify the kernel
code and only the qemu-kvm daemon process can access
and modify its own code and data as well as the L2 guest
VM’s memory (guest VM takes the same context with the
qemu-kvm daemon in KVM). To do so, L1 hypervisor
disables the /dev/mem and /dev/kmem device. The
/dev/mem and /dev/kmem are special files that provide
access to pseudo device drivers which allows read and
write accesses to system memory. High privilege users
such as root can use these two devices to read and write
any memory of the L1 hypervisor. By disabling these two
devices, L1 hypervisor closes all interfaces to access
arbitrary memory of L1 in the user mode. Thus, together
with W⊕X protection Property3 is guaranteed.

Although, user processes can only access memory
belonging to its context. Attackers can use another way to
take control of qemu-kvm daemon through the ptrace
interface. The ptrace system call provides a way for a
process (tracer) to observe or take control of another
process (tracee) and examine and change the tracee’s
memory and registers. High privilege users such as root
can use this interface to take control of the qemu-kvm
daemon and alter its memory and control flow. After
disabling this interface in the L1 hypervisor, qemu-kvm
daemons are free from being observed or controlled. Thus,
together with W⊕X protection, Property9, Property12
and Property13 are guaranteed.

D. Managing L1 kernel Entries and Exits and Qemu-
kvm Entries

Secure-Turtles ensures that kernel mode entries and
exits satisfy Property4 and Property6. Also it will ensure
that the qemu-kvm daemon entries satisfy Property10.

Kernel mode entries: Secure-Turtles needs to ensure
that all control transfers from user mode into kernel mode
in L1 guest hypervisor will set the IP to an address within
the kernel code approved at the L1 booting process.

In the x86 architecture, control transfer to kernel mode
is only allowed through the entry points designated by
kernel. The kernel informs the CPU of the permitted
entry points by writing the address of these points in CPU
registers and data structures. All entry points exist in the
global description table (GDT), local description table
(LDT), interrupt description table (IDT) and some model
specific registers (MSRs). Thus, Secure-Turtles should
protect the entry points inside this tables or registers.
Fortunately, all these entry points can only be modified
by L1 within the kernel mode so that they will point to
the approved kernel code after L1 hypervisor has booted
according to Property1 and Property2. Further, according
to Property3, the attacker cannot change these entry
points even with the root privilege. Thus with Property1,
Property2 and Property3, Property4 will be guaranteed.

Further, in order to enforce the W⊕X protection, L0
need to switch the EPT/NPT table for the L1 from user
mode to kernel mode. As shown in Figure3, when control
transfers from user mode to kernel mode, the EPT/NPT
table used is the one for the user mode, thus when the
kernel code is executed, an EPT/NPT violation will be
caught by L0 as the kernel code pages are none-
executable. At this point L0 will switch EPT/NPT table
into the one for the kernel mode.

Kernel mode exits: Secure-Turtles also needs to ensure
that every exit from kernel mode will set the execution
privilege into user mode. As shown in Figure3, the user
memory mapping in the kernel mode EPT/NPT table is
none executable, when there is an exit from kernel mode
to user mode, the execution of the first user instruction
will cause an EPT/NTP violation which will be caught by
L0. At this point, L0 will switch EPT/NPT table into the
one for the user mode. Also L0 will set the CPL field of
the VMCB to 3, thus, ensuring that when user process
resumes execution has switch to user mode. Here
Property6 will be guaranteed.

746 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

Qemu-kvm entries: Secure-Turtles needs to ensure that
when control transfers to qemu-kvm daemon in L1, it will
set the IP to an address within the qemu-kvm code
approved at qemu-kvm daemon lunch process.

At every time, there is a context switch to the qemu-
kvm daemon, the page table shown in Figure 5 is loaded
and the CPL will be set to 3 according to Property6. Thus,
if the entry points to the IP outside the qemu-kvm code, a
page fault will be caught by L1, which means any
violation of Property10 will be detected directly by
Secure-Turtles.

After managing L1 kernel entries and exits as well as
qemu-kvm entries, Property4, Property6 and Property10
are guaranteed.

E. Protecting Disk Accesses
L2 disk images exist as local files in L1 hypervisor.

Processes with root privilege can access these files
directly. To protect L2 images from malicious accesses
from arbitrary processes, we propose two solutions: 1)
Store encrypted L2 disk images in L1. L1 needs to
decrypt the disk blocks when they are loaded into the L2
guest VM’s memory and encrypt the data when it is
written into the disk; and 2) Take access control over L2
disk images. Only the approved qemu-kvm daemon has
the right to access it. As disk encryption and decryption
waste lots of computing resources, we choose the second
solution in Secure-Turtles.

The opening an L2 disk image is only allowed within
the context of an approved qemu-kvm daemon. Before
opening the image, L1 will first check the Attesqemu-kvm of
the requesting qemu-kvm daemon to ensure that it is
lunched correctly. Only the approved qemu-kvm daemon
has the right to access the L2 disk images. However, as
no process other than the qemu-kvm daemons can access
the images, who create these images? The answer is L0.
The disk images are copy into L1 guest hypervisor by the
L0 host hypervisor who will also mark these files as L2
images that L1 should apply special access control over
them.

With the disk access control mechanism, Property14 is
guaranteed.

F. Informing Property Violation
In Secure-Turtles, L2 guest VM will be aware of

potential security threats. After booting the L2 guest VM,
the user of guest VM can verify its execution
environment by verifying the value of AttesL1, Attesqemu-

kvm and AttesL2. Only when all these three values are true
the execution environment is secure.

During L2 guest VM’s lifetime, any violation of
properties from Property1 to Property15 will be
propagated to the L2 guest VM and trigger a signal to all
user processes. Any user process requiring a secure
execution environment should register a signal handler to
handle this signal. Here, Property16 is guaranteed.

VI. EVALUATION

In this section, we evaluate our Secure-Turtles
prototype using two metrics: security and performance.

A. Security Measurements
We evaluate Secure-Turtles’ security on an Intel

machine with 4 cores and 16 GByte memory. The L0 host
hypervisor is Debian 6.0 with kernel version 3.10.2. The
L1 host hypervisor is booted with 4 VCPU and 8 GByte
memory. The L1 host hypervisor is Debian 6.0 with
kernel version 3.8.4. The L2 guest VM is booted with 1
VCPU and 2 GByte memory. In this evaluation, we
assume the attacker has taken control over the root
privilege of L1 guest hypervisor, and we takes following
three tests:

 The L1 guest hypervisor’s kernel image is
changed by the attacker.

 The attacker tries to control qemu-kvm daemon
through ptrace.

 The attacker tries to modify the L2 disk image.
Test One: After modifying the L1 guest hypervisor’s

kernel image, the booting process of L1 guest hypervisor
generates a wrong attestation as the hash of the loaded
code altered with the predefined one. Here, the AttesL1 is
set to false. Under this condition, L2 does not execute
after booting, as it finds out that its execution
environment is insecure as shown in section V.F.

Test Two: The attacker tries to attack the L2 guest VM
through the qemu-kvm daemon. When it tries to use
ptrace to take control of the daemon, it finds that this
interface is closed by the L1 hypervisor. Thus, the
attacker cannot take control of the daemon.

Test Three: The attacker tries to access the L2 disk
image by mounting it into a directory (e.g. /mnt) and
access it. However, it fails as Secure-Turtles forbids any
process other than the qemu-kvm daemon to access the
L2 disk images.

It can be seen that Secure-Turtles can successfully
defense attacks from the L1 user mode even when the
attacker has the root privilege.

B. Performance Measurements
We evaluate Secure-Turtles’ performance on the same

Intel machine as we evaluate its security. We use the
same software environment and L1 guest hypervisor and
L2 guest VM configurations.

We use five applications (Bzip2, GCC, MCF, Hummer
and H264ref) from SPECINT benchmark test suite. Bzip2,
GCC and MCF have a modest memory footprint while
Hummer and H264ref have a small memory footprint.
Each application is run with three times and we list the
result of each run.

Figure 6 shows the performance of Bzip2, GCC and
MCF on Turtles and Secure-Turtles. It can be seen that
for each run, Secure-Turtles incurs small performance
overhead over Turtles system. The average performance
overhead for these three applications is 2.67%. Figure 7
shows the performance of Hummer and H264ref on
Turtles and Secure-Turtles. It can be seen that for each
run, Secure-Turtles incurs little performance overhead
over Turtles system. The average performance overhead
for these two applications is 0.85%. The performance
overhead here is mainly due to the additional cost in the
page fault handling routine that L1 has to build the EPT

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 747

© 2014 ACADEMY PUBLISHER

Figure6: Performance of Bzip2, GCC and MCF on Turtles and Secure-Turtles

Figure7: Performance of Hummer and H264ref on Turtles and Secure-
Turtles

for the L2 guest VM during which the W⊕X protection
mechanism is activated to protect the L1 hypervisor and
qemu-kvm daemon. As Hummer and H264ref have
much less memory footprint, the performance overhead
of them is less than Bzip2, GCC and MCF.

VII. CONCLUSION

The trust bases of most hypervisors (KVM or Xen) are
large and complex, and consequently, frequently prone to
compromised. When the hypervisor is compromised,
guest VMs running on it are under great danger. In this
paper, we proposed Secure-Turtles, a secure nested
virtual system based on Turtles system, which can run L2

guest VMs securely. In Secure-Turtles, even when the
user space of the L1 guest hypervisor is compromised by
an attacker, L2 guest VMs can still execute securely. We
have built a prototype of Secure-Turtles based on the
Turtles system and evaluate its prototype with two
metrics: security and performance on an Intel machine.

The evaluation result shows that Secure-Turtles can
protect L2 guest VM against attacks from the L1 user
mode and it introduces nearly no performance overhead
to the L2 guest VM compared with the Turtles system.

ACKNOWLEDGMENT

This work was supported in part by a grant from
National Science Special Program “New wireless mobile
communication network” named “Study of security of
mobile network under cloud computing”.
(No.2012ZX03002002)

REFERENCES
[1] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,

“kvm: the linux virtual machine monitor,” in Proceedings
of the Linux Symposium, vol. 1,2007, pp. 225–230.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
art of virtualization,” in Proc. SOSP. ACM, 2003, pp. 164–
177.

[3] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N.
HarEl, A. Gordon,A. Liguori, O. Wasserman, and B.-A.
Yassour, “The turtles project: Design and implementation

748 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

of nested virtualization,” in Proceedings of the 9th
USENIX conference on Operating systems design and
implementation. USENIX Association, 2010, pp. 1–6

[4] Trusted Computing Group.
http://www.trustedcomputinggroup.org.

[5] Uhlig, Rich and Neiger, Gil and Rodgers, Dion and
Santoni, Amy L and Martins, Fernando CM and Anderson,
Andrew V and Bennett, Steven M and Kagi, Alain and
Leung, Felix H and Smith, Larry. Intel virtualization
technology. Computer 38,5 (2005), 49-56

[6] AMD. Secure virtual machine architecture reference
manual.

[7] S. Berger, R. C´aceres, K. A. Goldman, R. Perez, R. Sailer,
and L. van Doorn. vTPM: virtualizing the trusted platform
module. In Proceeding of USENIX-Security’06, Berkeley,
CA, USA, 2006.

[8] Lin, Guoyuan and Bie, Yuyu and Lei, Min. Trust Based
Access Control Policy in Multi-domain of Cloud
Computing. Journal of Computers 8,5 (2013), 1357--1365

[9] Meng, Bo and Huang, Wei and Li, Zimao. Automated
Proof of Resistance of Denial of Service Attacks Using
Event with Theorem Prover. Journal of Computers 8,7
(2013), 1728--1741

[10] Uhlig, Rich and Neiger, Gil and Rodgers, Dion and
Santoni, Amy L and Martins, Fernando CM and Anderson,
Andrew V and Bennett, Steven M and Kagi, Alain and
Leung, Felix H and Smith, Larry. Intel virtualization
technology. Computer 38,5 (2005), 48-56

[11] AMD. Secure virtual machine architecture reference
manual.

Fei Liu Beijing China, October, 1972.

She is the deputy head of the security research institute of
China Mobile Research Institute. She works on security
infrastructure, terminals and smart card/business/network
security.

Ms. Liu is the deputy head of the security group of China
Communication Standards Association (CCSA-TC5). Ms. Liu
was awarded with the second place of National Institute of
Communications Science and Technology Progress Award once,
the first place of China Moble and Technological Progress
Award once, and the second place of China Moble and
Technological Progress Award multiple times.

Langfang Ren Beijing China, July, 1982. Master of
Engineering, Beijing Jiaotong University, March, 2007.

She is an imtermediate engineer of the security research
institute of China Mobile Research Institute. She works on
cloud security and network security area

Hongtao Bai Beijing China, December, 1982. Master of
Engineering. Peking University, January, 2008

He is the technical manager, intermediate engineer of the
security research institute of China Mobile Research Institute.
He works on security protocol, cloud security, mobile security
and web security area.

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 749

© 2014 ACADEMY PUBLISHER

