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Abstract—In this paper, an automatic system is designed to 
classify the ultrasonic flaw signals from carbon fiber 
reinforced polymer (CFRP) specimens with void, 
delamination and debonding. In such system, different 
methods based on discrete wavelet transform (DWT) and 
wavelet packet transform (WPT) are first utilized for 
feature extraction. After that, the linear mapping is applied 
for dimensionality reduction. Artificial neural networks 
(ANNs) and support vector machines (SVMs) are trained to 
validate the effectiveness of different wavelet transform 
based features for flaw signal classification. Experimental 
results show that the normalized energy of WPT coefficients 
coupled with the statistical parameters of WPT 
representation of original signals can be taken as the 
reliable features to effectively classify different ultrasonic 
flaw signals with lower training elapsed time. 
 
Index Terms—discrete wavelet transform, wavelet packet 
transform, feature extraction, ultrasonic flaw signal 
classification 
 

I.  INTRODUCTION 

Considerable advancement and development in the last 
few decades have enabled ultrasonic nondestructive 
testing to change from a Black-Smith profession to an 
advanced multidisciplinary engineering profession. 
Modern signal processing techniques and artificial 
intelligence tools can be integrated as automatic 
ultrasonic signal classification systems, which are 
increasingly applied in many applications for the 
recognition of flaws in engineering materials. The overall 
classification process often consists of three major steps, 
preprocessing of the original signal, feature extraction by 
using various digital signal processing methods, and 
pattern classification. One of the most important 
techniques of the system is feature extraction, which 
directly affects the accuracy and reliability of flaw 
classification. The potential of different signal processing 
analysis techniques in ultrasonic testing has been 
investigated by many researchers. 

Anastassopoulos et al. [1] conducted an extensive 
discrimination study on ultrasonic signals very similar to 
each other obtained from artificial inserts in a carbon 
fiber reinforced polymer (CFRP) plate. The performance 
of fifteen classification schemes composed of non-
parametric pattern recognition and artificial neural 
network (ANN) algorithms was assessed, and a upper 
bound for the classification error expected with similar 

ultrasonic signals was defined. Moreover, the Wilk’s Λ 
criterion was proved efficient for feature selection in their 
experiments. 

Simone et al. [2] presented discrete Gabor transform 
(DGT), discrete wavelet transform (DWT) and clustered 
DWT methods for the classification of ultrasonic signals 
from inspection regions with weld flaw. The results from 
trained ANN demonstrated the effectiveness of the 
clustered DWT method for feature extraction.  

Matz et al. [3] used the DWT based method for 
filtering of ultrasonic signal to suppress the echoes from 
grains. Support vector machine (SVM) was applied to 
automatically classify ultrasonic signals in the form of 
different fault echoes from materials used for 
constructing airplane engines. 

Schulz et al. [4] focused on the automatic evaluation of 
the backscattered signals received from the ultrasonic 
sensors. The evaluation system was based on a statistical 
classifier using most discriminative features extracted 
from the backscattered echo signals according to their 
amplitudes, contour, correlation and region. By this 
means they implemented reliable defect detection for the 
CFRP materials. 

Lee [5][6][7] critically reviewed popular feature 
extraction techniques in ultrasonic flaw signal 
classification, including fast Fourier transform (FFT) and 
DWT, identified the critical issues, and compared the 
reported approaches to point out their strengths and 
weaknesses. 

Cacciola et al. [8][9] proposed an heuristic approach 
for classifying the ultrasonic echoes measured on 
defective CFRP specimen. The proposed method was 
based on the use of DWT and PCA for feature extraction 
and selection. Experimental results assured good 
performances of the SVM classifier trained by these 
features. 

Zhang et al. [10] proposed empirical mode 
decomposition (EMD) based feature extraction method 
for ultrasonic flaw signals classification. The original 
ultrasonic flaw signals were first decomposed into a finite 
number of stationary intrinsic mode functions (IMFs) by 
EMD. After that, Fourier transform was used for 
analyzing and constructing the feature vector on 
frequency domain. Finally, BP neural network was made 
as decision-making classifier. Experimental results 
showed that the method had better performance for 
detecting ultrasonic flaw signals. 
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Sambath et al. [11] improved the sensibility of defect 
detection in ultrasonic testing by using ANN and wavelet 
based signal processing techniques. Wavelet transform 
(WT) was used to derive feature vectors which contain 
two-dimensional information on four types of defects, 
namely porosity, lack of fusion, tungsten inclusion and 
non defect. These vectors were then utilized to train the 
BP neural network. By using the wavelet features and 
ANN, accurate rate with 94% for defect classification 
was obtained 

Yadav et al. [12] used six time-frequency 
representation techniques, i.e., short time Fourier 
transform, continuous wavelet transform, Wigner-Ville 
spectrum, Hilbert-Huang transform, Williams-Choi 
transform and Stransform to extract features out of time 
domain based signals obtained from a plate with and 
without cracks. A comparison study was carried out to 
assess their ability for describing the characteristic of 
different cracks. 

Iyer et al. [13] presented an automatic classification 
system, which includes preprocessing of the signal, multi-
resolution analysis for feature extraction, and neural 
network classification, to process A-scan signals acquired 
with the ultrasonic transducer from a pipe region of 
interest (ROI). By taking into consideration some priori 
knowledge of the problem, the system can classify the 
ROI into an appropriate flaw class. 

Similar work can refer to [14][15][16]. As mentioned 
above, wavelet transform based methods are mostly 
adopted for feature extraction due to the non-stationary 
characteristics of ultrasonic flaw signals. The objective of 
this contribution is to show the advantages and 
disadvantages of different wavelet transform based 
feature extraction technique in ultrasonic flaw signal 
automatic classification application. The rest of this paper 
is organized as follows. Section 2 describes the 
methodologies of WT, including DWT and wavelet 
packet transform (WPT). Section 3 presents the 
experimental setting and section 4 analyzes the 
experimental results. Section 5 addresses the conclusions. 

II.  WAVELET TRANSFORM METHODS 

Once the ultrasonic flaw signals acquired in the form 
of digitized data are preprocessed, various digital 
processing techniques can be used for feature extraction 
from these signals. Note that ultrasonic signals contain 
numerous non-stationary or transitory characteristics, 
which are often the most important part of signal. Fourier 
analysis is not suitable to describe such characteristics 
since it can be processed only in frequency domain. To 
overcome these deficiencies, WT based techniques are 
developed for processing signals simultaneously in time 
and frequency domains. WT adopts a windowing 
technique with variable-sized regions, in which long time 
intervals are used where more precise low-frequency 
information is required, while shorter regions are used 
where high-frequency information is required. In 
mathematics, WT refers to the representation of a signal 
in terms of a finite length or fast decaying oscillating 
waveform, which is scaled and translated to match the 

input signal. In this way, it is possible to split local and 
global dynamics for a signal by a multi-resolution 
analysis (MRA) in a wavelet domain, proving less 
sensitive to noise than Fourier transform [8]. 

Especially, DWT has been widely used in the 
ultrasonic signal analysis as a fast algorithm to obtain the 
wavelet transform of signals sampled in discrete time. 
The DWT analyzes the signal by decomposing it into its 
coarse approximation and detailed information, which is 
accomplished by using successive high-pass and low-pass 
filtering operations in the frequency domain.  

Given signal 2( ) ( )v t L∈ ℜ , the DWT approximation 
coefficients and detail coefficients are evaluated as 

1( ) ( 2 ) ( )j j
m

cA k h m k cA m−= −∑ and 1( ) ( 2 ) ( )j j
m

cD k g m k cA m−= −∑ , 

where j is the level of decomposition, k is the time 
location, m is the number of samples, h(.) and g(.) are the 
half-band low-pass filter and high-pass filter respectively. 
Note that at each level j, only the approximation 
coefficients are filtered leaving the detail coefficients 
unaltered. The DWT decomposition tree with three level 
for signal v(t) is shown in figure 1. 

 

Fig.1. Three level DWT decomposition tree 

Since the DWT coefficients are not time invariant, an 
extension method of DWT, i.e., wavelet packet transform 
(WPT), has been proposed to overcome the problem. The 
WPT analysis has the same frequency bandwidths in each 
resolution since it can simultaneously break up detail and 
approximation versions. WPT decomposition does not 
increase or lose the information within the original 
signals, and the middle as well as high frequency signals 
can also offer superior time-frequency analysis [17]. At 
each level j in WPT decomposition, there is no difference 
between approximation and detail coefficients because 
the detail coefficients are also filtered. In this case, the 
WPT coefficients are uniformly indicated with , ( )j id k , 
where j is the scale level and i is their corresponding 
position in the decomposition tree at that level. The WPT 
decomposition tree with three level for signal v(t) is 
shown in figure 2. 

Note that there are exist different WPT decompositions 
for the given signal v(t), classical entropy based criteria 
can be used to efficiently search the best decomposition 
tree. The entropy associated to signal v(t) is defined as 
follow. 

,
1

( ( )) ( )
L

j i
j i

Epy v t Epy d
=

= −∑∑   (1) 

v(t) 

cA1 cD1

cA2 cD2

cA3 cD3
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where 2 2
, , ,( ) ( ) log ( )j i j i j i

k
Epy d d k d k= −∑ , , ( )j id k  is the 

WPT coefficients and L is the maximal decomposition 
level. The decomposition tree whose corresponding 

( ( ))Epy v t  is minimum will be taken as the best one. 

 

Fig.2. Three level WPT decomposation tree 

III.  EXPERIMENTS  

A.  Signal Acquisition 
In this study, two carbon fiber reinforced polymer 

(CFRP) specimens are used for experiment. CFRPs are 
manufactured by mixing carbon fibers and plastic resin 
under prescribed conditions. Because of their excellent 
mechanical properties, CFRP materials have been widely 
used for critical components and structures. Under 
complex environments and loading states, damage in the 
form of void, debonding, delamination and/or transverse 
cracking may occur in these materials during manufacture 
process and service. The flaw identification of CFRP 
components plays a key role in the service function and 
safety of the systems [18]. A PXU T227 digital detector 
was used to send ultrasonic waves into CFRP specimens 
with different flaws through a transducer operating at the 
central frequency of 5 MHz. An echo was reflected back 
each time when the ultrasonic wave encountered a 
discontinuity in the propagation medium. The A-scan 
signal was digitized at a sampling frequency of 100 MHz 
and sample length of 512 using a Sonotek STR 8100 A/D 
board, and then stored in a personal computer. We 
collected the following 100 ultrasonic signals for our 
classification experiments. The typical signal samples 
with different flaw are shown in figure 3. 
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Fig.3. Time domain based ultrasonic signals with different flaws 
(a) No flaw (b) Delamination (c) Debonding (d) Void 

B.  Features Extraction 
If there are flaws appearing within the in-study 

specimen, the amplitude and frequency of its 
corresponding ultrasonic echo signal will change with 
different degree. The signal energy in some frequency 
sub-band can be enhanced and that in other frequency 
sub-band will be reduced. Therefore, the signal energy of 
different frequency components contains much 
information about flaws, i.e., the energy change of some 
frequency component may represent a kind of flaw. By 
using WPT decomposition, we can extract such energy 
features for ultrasonic flaw signals. 

Let , ( )j id k  be the WPT coefficients of the ith position 
at the jth level of the decomposition tree, its 
corresponding signal energy can be calculated as follow. 

2
, , ( )j i j i

k

E d k=∑    (2) 

For ultrasonic signals with different flaws, the energy 
distributions at given scales are always varied. Therefore, 

,j iE  can be considered as an important feature for 
classification. In consideration of the inconvenience of 

v(t)

d1,0 d1,1 

d2,0 d2,1 d2,2 d2,3

d3,0 d3,7d3,6d3,5 d3,1 d3,4 
d

d3,3 d3,2 
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numerical analysis due to large value of ,j iE , a 
normalization should be taken. 

As is shown in figure 4, since the 64 WPT coefficients 
at the low frequency sub-band can completely describe 
the macro-trend of each signal, the following eight 
statistical parameters [11] of representation of signal by 
the WPT can also be taken as useful features for 
classification. 
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Fig.4. Ultrasonic signal of d3,0 coefficients representation for different 
flaws (a) No flaw (b) Delamination (c) Debonding (d) Void 

(1) Mean value: 
1

1 N

i
i

AVG x
N =

= ∑  

(2) Standard deviation: 2

1

1 ( )
1

N

i
i

STD x AVG
N =

= −
− ∑  

(3) Maximum amplitude: MAX=
1
Max( )ii N

x
≤ ≤
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1
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(5) Maximum energy: Max2(|MAX|, |MIN|) 
(6) Average frequency 
(7) Frequency of minimum energy samples 
(8) Half point (HaPo): the frequency that divides up the 

spectrum into two parts of same area. 
In this study, the best WPT decomposition was at level 

3 by applying the entropy minimization criterion, and 
Daubechies’s wavelet of order 5 was used for filtering. 
As mentioned above, E3,0, E3,1, E3,2, E3,3, E3,4, E3,5, E3,6, 
E3,7, could be taken as the energy features. However, only 
E3,0, E3,1, E3,2, E3,3 were selected since they accounted for 
more than 97.4% of the total energy of signal v(t). Finally, 
four normalized energy features E3,0/E, E3,1/E, E3,2/E, 
E3,3/E where E=E3,0+E3,1+E3,2+E3,3, and eight statistical 
parameters of 3,0 ( )d k  coefficients representation, called 
WPT_Egy features below, were stored as a 12 
dimensional feature vector.  

To further reduce the feature space, the principal 
components analysis (PCA) method was exploited. PCA 
is a quantitatively rigorous method for dimension 
reduction. The method generates a new set of variables, 
called principal components (PCs). Each PC is a linear 
combination of the original variables. All the PCs are 
orthogonal to each other, so there is no redundant 
information. The PCs as a whole form an orthogonal 
basis for the space of the data. The full set of PCs is as 
large as the original set of variables. But it is 
commonplace for the sum of the variances of the first few 
PCs to approximate the total variances of the original data. 
In this study, we only select the PCs whose contributions 
to total variation of the whole set of PCs are greater than 
1%. Figure 5 shows that about 99% of the variances are 
explained by the first 6 PCs. In this way, the 
dimensionality of input feature vector for classification 
can be reduced from 12 to 6. 
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PCs  
Fig. 5. Variances of the PCs 

The main purpose of this study is to investigate the 
effectiveness of extracted WPT_Egy features for 
ultrasonic flaw signals classification. For comparison, 
other three kinds of features extracted by different 
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strategy are also applied to the classification experiments, 
which are listed as follows. 

(1) WPT_Coe features 
Transform the original time domain signal into the 

WPT coefficients with 3 level decomposition by using 
Daubechies5 wavelet. The 256 coefficients, i.e., d3,0 to 
d3,3, are stored as features while discarding d3,4 to d3,7, 
which do not contain much information but mainly noise. 
After PCA processing, 117 PCs will be selected as the 
final inputs for classification.  

(2) DWT_Sta features 
Transform the original time domain signal into the 

DWT coefficients with 3 level decomposition by using 
Daubechies5 wavelet. As is shown in figure 6, since the 
64 cA3 coefficients completely describe the macro-trend 
of each signal, the same eight statistical parameters 
mentioned above of such coefficients representation are 
stored as features. After PCA processing, 3 PCs will be 
selected as the final inputs for classification. 

(3) DWT_Coe features 
Transform the original time domain signal into the 

DWT coefficients with 3 level decomposition by using 
Daubechies5 wavelet. The 256 coefficients, i.e., cA3, cD3, 
and cD2, are stored as features while discarding cD1, 
which do not contain much information but mainly noise. 
After PCA processing, 106 PCs will be selected as the 
final inputs for classification. 

C.  ANN Classification 
In this study, feed-forward neural networks with one 

hidden layer were trained by using the back-propagation 
algorithm in batch mode for classifying the ultrasonic 
signals into no flaw, delamination (at the top, middle or 
bottom of the in-study specimen), void or debonding. To 
compare the four kinds of features, i.e., WPT_Egy, 
WPT_Coe, DWT_Sta and DWT_Coe features, four ANN 
architectures respectively having 6, 117, 3 and 106 input 
nodes were designed. Kolmogorov’s theorem was used 
for determining the number of neurons at hidden layer. 
The learning rate was set to 0.2 and the topological order 
was applied as the update mode of the networks. The 5-
fold cross-validation was carried out for assessing 
classification performance of all ANNs. The 100 
ultrasonic signals were shuffled and randomly divided up 
into 5 subsets. In turn, 4 of these subsets were used to 
train the network, and the remaining subset was used to 
validate the network. The process did not terminate until 
every subset was taken as training set and test set. 
Moreover, we got a average of the network training 
ability by assigning 10 different initial weights to the 
network. The classification performance with the four 
kinds of features extracted by different strategies could be 
compared using the result of each cross-validation test. 
The mean square error (MSE) limit was set to 0.001 for 
stopping the training process, and the epoch limit was set 
to 200,000 for those occasional cases where training 
failed to converge. The values of main parameters for 
training ANNs are resumed in table I. 
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Fig.6. Ultrasonic signal of cA3 coefficients representation for different 
flaws  (a) No flaw  (b) Delamination  (c) Debonding  (d) Void 

TABLE I.   

THE PARAMETERS OF ANNS 
Parameter Value 

No. of neurons at input layer 6/117/3/106
No. of neurons at output layer 6 
No. of neurons at hidden layer 13/235/7/213
Activation function at hidden layer tansig 
Activation function at output layer tansig 
Training algorithm trainlm 
Performance goal 0.001 
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D.  SVM Classification 
While using SVMs for classifying the ultrasonic flaw 

signals, the one-against-one method was adopted to solve 
the multi-class problem (6 kinds of flaws). Such method 
constructs all possible pairwise hyperplanes, where each 
hyperplane is constructed using the training samples from 
two classes chosen out of k classes [19]. The decision 
function for class pair ij can be defined by 

( ) ( ) ij ij
ijf x x w bφ= ⋅ + , and there exist k(k-1)/2 different 

decision functions for a k-class problem. In this study, 
each SVM classifier casts one vote for its preferred class, 
and the final result is the class with the most votes. 
Sample x will be assigned to class i if we have 

, 1

arg max ( ( ))
k

iji j i j

sign f x
≠ =
∑   (3) 

where sign(fij) is the sign function, whose value is 1 when 
fij is positive and 0 otherwise. 

The corresponding 6, 117, 3 and 106 PCs of WPT_Egy, 
WPT_Coe, DWT_Sta and DWT_Coe features described 
in section 3.2 were taken as input vectors of SVMs. 
Linear, polynomial, and RBF kernels were used to train 
the SVMs with the best performances by a convenient 
variation of the training parameters. In all cases, the 
penalty parameter C was varied from 0.001 to 100. 
Polynomial kernel was evaluated by varying the degree d 
of the polynomial between 2 and 5. RBF kernel was 
evaluated by varying the value of σ between 0.01 and 100. 
The value sets of different parameters for training SVMs 
are resumed in table II. Analogously, the 5-fold cross-
validation was also carried out for assessing classification 
performance of SVMs, and different feature extraction 
strategies could be compared using the result of each 
cross-validation test. 

TABLE II.  

THE PARAMETERS OF SVMS 
Kernel 

function Parameter C Parameter d Parameter σ

Linear {0.001, 0.01, 0.1, 1, 10 
100} - - 

Polynomial {0.001, 0.01, 0.1, 1, 10 
100} {2, 3, 4, 5} - 

RBF {0.001, 0.01, 0.1, 1, 10 
100} - {0.01, 0.1, 1, 

10, 100} 

IV.  RESULTS AND ANALYSIS 

The classification accuracy in percentage and training 
elapsed time of ANN classifiers by using different 
features (their corresponding PCs are taken as the inputs 
for ANN) are summarized in table III. Moreover, the 
confusion matrices are shown in table IV to VII, 
where the class1 to class6 stands for top delamination, 
middle delamination, bottom delamination, void, 
debonding and no flaw respectively. Among the four 
kinds of features, DWT_Sta shows the worst performance, 
whose classification accuracy is only 90%, although it 
needs the least training elapsed time (31.06s). Obviously 
the statistical features of DWT coefficients representation 
can not effectively describe the characteristics of different 
ultrasonic flaw signals because it is hard to select the 

features with the best discrimination power. Furthermore, 
the time-variance problem of DWT coefficients also 
degrades the classification performance. In contrast, the 
comparatively high performance of WPT_Egy and 
WPT_Coe (their classification accuracy are 96.25% and 
98.75% respectively) indicates that applying WPT 
decomposition for ultrasonic flaw signals can effectively 
overcome the time-variance problem, and hence 
increasing the classification accuracy. The relatively low 
performance of DWT_Coe (91.25% classification 
accuracy with 100.1 second for training) implies that 
DWT coefficients are somewhat meaningless features 
due to their time-variance and high dimensionality.  

TABLE III.  

THE CLASSIFICATION RESULTS OF ANN BY USING DIFFERENT FEATURES  
Features Classification accuracy Training elapsed time 

WPT_Egy 96.25 56.8s 
WPT_Coe 98.75 107.18s 
DWT_Sta 90 31.06s 
DWT_Coe 91.25 100.1s 
 

TABLE IV.  

CONFUSION MATRIX USING WPT_EGY FEATURES FOR CLASSIFICATION 
 Class1 Class2 Class3 Class4 Class5 Class6

Class1 7 0 2 0 0 0 
Class2 0 8 0 0 0 0 
Class3 1 0 5 0 0 0 
Class4 0 0 0 16 0 0 
Class5 0 0 0 0 17 0 
Class6 0 0 0 0 0 24 
 

TABLE V. 

CONFUSION MATRIX USING WPT_COE FEATURES FOR CLASSIFICATION 
 Class1 Class2 Class3 Class4 Class5 Class6

Class 1 8 0 1 0 0 0 
Class 2 0 8 0 0 0 0 
Class 3 0 0 6 0 0 0 
Class 4 0 0 0 16 0 0 
Class 5 0 0 0 0 17 0 
Class 6 0 0 0 0 0 24 
 

TABLE VI. 

 CONFUSION MATRIX USING DWT_STA FEATURES FOR CLASSIFICATION 
 Class1 Class 2 Class 3 Class 4 Class 5 Class 6
Class1 5 0 4 0 0 0 
Class2 0 8 0 0 0 0 
Class3 2 0 4 0 0 0 
Class4 0 0 0 15 0 1 
Class5 0 0 0 0 17 0 
Class6 0 0 0 1 0 23 

 
TABLE VII.  

CONFUSION MATRIX USING DWT_COE FEATURES FOR CLASSIFICATION 
 Class1 Class 2 Class 3 Class 4 Class 5 Class 6
Class1 5 0 4 0 0 0 
Class2 0 8 0 0 0 0 
Class3 2 0 4 0 0 0 
Class4 0 0 0 16 0 0 
Class5 0 0 0 0 17 0 
Class6 0 0 0 1 0 23 

 
Note that the comprehensive performance of 

WPT_Egy features for classification is the highest, which 
achieve 96.25% classification accuracy with only 56.8 
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second for training ANN. On one hand, extracting 
features from statistical parameters of representation of 
WPT coefficients can remarkably reduce the 
dimensionality of feature vector. Although the accuracy 
by using WPT_Coe features for classification is slightly 
higher (98.75%), almost doubling time (107.18s) is 
needed for training ANN. On the other hand, energy 
features of WPT_Egy can effectively describe the local 
characteristic of flaw signals by analyzing the same 
frequency sub-bands in each resolution, which does not 
lose any useful information. Compared to DWT_Sta, 
WPT_Egy features are more reliable for classifying 
similar flaw signals due to the additional four energy 
features. Figure 7 shows the energy diagrams by using 
Daubechies5 wavelet to perform the WPT for signals 
with various delamination flaws. The horizontal axis 
stands for the number of frequency sub-bands and 
vertical axis stands for the value of the corresponding 
normalized energy. As is shown in the figure, the 
variation of each subspace is apparent, and the first four 
energy features is particularly useful for distinguishing 
delamination flaws since the related energy distribution is 
very different from the others. While using DWT_Sta 
features for classification, among total 8 misclassified 
signals, 6 misclassifications are between top delamination 
and bottom delamination signals , which is shown in table 
VI. 

The classification accuracy in percentage of SVM 
classifiers by using different features (their PCs are taken 
as the inputs for SVM) are summarized in table VIII. 
Note that for SVMs with different kernel function, only 
the best results and the corresponding parameters are 
recorded in the table. Due to the lack of space, we do not 
list the confusion matrices. Again, the classification 
performance of WPT based features for classification is 
better. Comparing the results of table III and table VIII, 
the SVM with polynomial kernel or RBF kernel function 
outperforms the ANN due to its higher generalization 
capability for classification problem with small sample 
size. 

V.  CONCLUSIONS 

This paper presented a ultrasonic flaw signal 
classification system by using wavelet transform based 
strategies for feature extraction. A digital flaw detector 
was first used to acquire the signals of defective CFRP 
specimens with void, delamination and debonding. After 
that, the time domain based ultrasonic signals could be 
processed by DWT and WPT to extract different features. 
Finally, the feature vectors selected by PCA method were 
taken as inputs to train ANN and SVM classifiers. 
Experimental results showed that the WPT_Egy features, 
constructed by normalized energy of WPT coefficients 
and statistical parameters of WPT representation of 
original signals, were informative features to deal with 
classification for ultrasonic flaw signals.  

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

 

 

En
er

gy

The number of sub frequency bands

 
(a) 

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

En
er

gy

The number of sub frequency bands

 
(b) 

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

En
er

gy

The number of sub frequency bands

 
(c) 

Fig. 7. Energy distribution (a) Top delamination (b) Middle 
delamination (c) Bottom delamination 

TABLE VIII.  

THE CLASSIFICATION RESULTS OF SVM BY USING DIFFERENT FEATURES 

Features 

Classification 
accuracy with 
linear kernel 

(C=1) 

Classification 
accuracy with 

polynomial 
kernel 

(C=0.1, d=3) 

Classification 
accuracy with RBF 

kernel 
(C=1, σ=0.1) 

WPT_Egy 93.75 97.5 98.75 
WPT_Coe 95 98.75 100 
DWT_Sta 86.25 90 91.25 
DWT_Coe 87.5 91.25 92.5 
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