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Abstract— Electroencephalogram (EEG) recordings provide 

an important means of brain-computer communication, but 

their classification accuracy and transfer rate are limited by 

unexpected signal variations due to artifacts and noises. In 

this paper, a nonlinear independent component analysis 

(NICA) extraction method for brain signal based EEG-P300 

are proposed. The performance of the proposed method is 

investigated through a comparison of well known extraction 

methods (i.e., AAR, JADE, and SOBI algorithms). Finally, 

the promising results reported here reflect the considerable 

potential of EEG for the continuous classification of mental 

states.  

Index Terms— Brain computer interface (BCI), 

Classification accuracy, Transfer rate, Nonlinear, ICA,  

Electroencephalogram (EEG). 

I.  INTRODUCTION 

The human brain consists of approximately 10
10

 to 

10
11

 neurons [1]. Signals between neurons are transmitted 

by means of action potentials, which are very short bursts 

of electrical activity. The total electric current produced 

in such a cluster is large enough to be detected by 

measuring the potential distribution on the scalp, which is 

the method used in electroencephalographic (EEG). EEG 

is used extensively for monitoring the electrical activity 

within the human brain, both for research and clinical 

purposes. EEG is used both for the measurement of 

spontaneous activity and for the study of evoked 

potentials. In particular the P300 evoked potential [2] is a 

positive peak that is evoked 300 ms stimulus onset. The 

presence, magnitude, topography, and time of the 

response signal are often used as metrics of cognitive 

function in decision making processes. In general, the 

detection of a P300 is made difficult by its low signal-to-

noise (SNR) ratio compared to the ongoing background 

EEG.Human scalp EEG recording has the advantage of 

being noninvasive, inexpensive, and portable, which 

make it a very popular technique among the Brain 

computer interface (BCI) community [3-6]. 

Most EEG research seeks to understand the brain’s 

dynamic processes that are the basis of physical and 

mental activities. In addition to this, EEG signals are 

being investigated as a new mode of human-computer 

communication. If the information in a mental task is 

accurately obtained from EEG signals, a user can 

compose the sequence of the task to indicate commands 

that can operate a computer display or other devices. 

Successful operation of a BCI entails the user’s encoding 

of those commands in the EEG signals and the BCI’s 

subsequent derivation of the commands from the signals. 

Thus, a user and a BCI system need to be adapted to each 

other both initially and continually so as to ensure stable 

performance.  

By extracting specific components from human brain 

activity and linking this brain activity to specifically 

developed algorithms, an interface between a computer 

and the users’ brain is created. Current BCI designs 

typically incorporate five main stages as shown in Fig. 

1.Signals from the brain are processed to extract specific 

features that reflect the user’s intentions. Today there 

exist various techniques by which to accomplish this [7-

12]. The user’s brain is now coupled to a computer or 

external device, which allow communication or 

controlling devices directly, without implementing any 

motor action. In this paper, a nonlinear independent 

component analysis (NICA) extraction method entailing 

time-series EEG signals is proposed. In order to examine 

the performance (i.e., accuracy and transfer rate) 

improvements of the proposed method, a classification 

using Fisher’s Linear Discriminant Analysis (FLDA) 

which has been well developed in the field of speech 

 

Fig. 1.Basic design and operation of any BCI system. 
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recognition is applied. 

The contributions of this study are as follows.  

(i) Enhancement and strengthening of artifacts-

contaminated and stochastic EEG signals utilizing 

the small-amplitude of the EEG-P300.  

(ii) Driving of the tracking error to a small value around 

zero while guaranteeing the closed-loop stability. 

(iii) Improvement of the classification accuracy and 

transfer rate of a BCI by application of the proposed 

NICA method, even when subjects are in a fatigued 

condition. 

The structure of the paper is as follows. Section II 

discusses the EEG data set and its preprocessing. Section 

III explains feature extraction and classification by the 

NICA method and the FLDA, respectively. Results are 

discussed in Section IV, and conclusions are drawn in 

Section V.  

II.  DATA SET AND EEG PREPROCESSING 

The acquired signals are preprocessed to reduce 

external noises and detected artifacts. The filtered signals 

are then sent to the feature extraction and classification 

module, respectively. Since the purpose of this chapter is 

to demonstrate the performance of the compared 

extraction method, the present study utilizes the same raw 

data used in the work of Hoffmann et al., 2008 [13]. Also, 

only the data of 8 out of 32 channels (i.e., Fz, Cz, Pz, Oz, 

P7, P3, P4, and P8) placed at the standard positions 

described in the 10-20 International System [14] are used, 

which is claimed to be sufficient, in that a good 

compromise between the sufficiency of accuracy and the 

computational complexity in handling multiple channels 

is achieved. 

The EEG signals were recorded at 2048 Hz sampling 

rate. The duration of each image flash (Fig. 2) was 100 

ms, followed by a 300ms blank screen (i.e., the inter-

stimulus interval was 400 ms). One trial takes about 400 

ms; six trials make one segment; about 20~25 segments 

make one run; six runs make one session and four 

sessions are designed for individual subject. Therefore, 

one session involves 810 trials, and the entire data for one 

subject, therefore, was taken from an average of 3240 

trials. Prior to feature extraction, several preprocessing 

operations including filtering and down-sampling were 

carried out. To filter the data, a 6th-order band-pass filter 

(BPF) with cutoff frequencies of 1 Hz (i.e., to remove the 

trend from low frequency bands) and 12 Hz (i.e., to 

remove unimportant information in high frequency 

bands) was used. 

It is difficult to compare the performances of the BCI 

systems, because the pertinent studies present the results 

in different ways. However, in the present study, the 

comparison was made based on the accuracy and the 

transfer rate. Accuracy is perhaps the most important 

aspect in any BCI. Besides accuracy, the transfer rate is 

also very important. The speed of a particular BCI is 

affected by the trial length, that is, the time needed for 

one selection. Thistime should be shortened in order to 

enhance a BCI’s effectiveness in communication. The bit 

rate (bits/trial) of eachselection can then be expressed as 

[15, 16].  
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Where N is a number of possible selections of the target 

and P denotes the probability that the desired choice is 

actually selected. The transfer rate (bits per minute) is 

equal to b multiplied by the average speed of selection S 

(trial per minute, which is equal to the reciprocal of the 

average time required for one selection). Therefore, based 

on the data sets information, the desired output signal is 

developed.    

III. FEATURE EXTRACTION AND CLASSIFICATION 

A. Nonlinear Independent Component Analysis  

The goal of feature extraction is to find data 

representations that can be used to simplify the 

subsequent brain pattern classification or detection.The 

extracted signals should encode the commands made by 

the subject but should not containnoises or other 

interfering patterns (or at least should reduce their level) 

that can impede classification or increase the difficulty of 

analyzing EEG signals. For this reason, it is necessary to 

design a specific extraction method that can reduce such 

artifacts in EEG records. Thus, the compared extractor 

are given to help the user for further research.  

The M nonlinear mixed signals Mxx ,,1   are related 

to N independent source signals Nss ,,1   through: 
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which can be written in general form of 

 
)(sfx  , (3) 

Where x is the observed M-dimensional data (mixture) 

vector, f is an unknown real-valued M-component mixing 

function, and s is an N-vector whose elements are the N 

unknown independent components. Assume now for 

simplicity that the number of independent components N 

 

Fig. 2. The display used for evoking EEG-P300 

signals [13]. 

 

Fig. 2. The display used for evoking EEG-P300 signals [13]. 
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equals the number of mixtures M. The general nonlinear 

ICA problem then consists of finding a mapping 
NNh :  that gives components. To reconstruct the 

original signals, another nonlinear transformation is 

applied to Nxx ,,1  to get Nyy ,,1  through: 
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or equivalently to 

 
)(xhy  , (5) 

that are statistically independent. A fundamental 

characteristic of the nonlinear ICA problem is that in the 

general case, solutions always exist, and they are highly 

non-unique. One reason for this is that if x and y are two 

independent random variables, any of their functions 

)(xf  and )(yg  are also independent. An even more 

serious problem is that in the nonlinear case, x and y can 

be mixed and still statistically independent. In the 

respective nonlinear ICA problem, one should find the 

original source signals s that has generated the observed 

data. An important special case of the general nonlinear 

mixing model (5) consists of so-called post-nonlinear 

mixtures. There each mixture has the form 
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Thus the sources njs j ,,1,   are first mixed linearly 

according to the following basic ICA model 
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but after that a nonlinear function if  is applied to them to 

get the final observations ix . The goal is to find a 

specific model that explains how the observations were 

generated. In this study, the amounts to estimating both 

the source signals s and the unknown mixing mapping 

)(f  that have generated the observed data x through the 

general mapping (3).  

Given m independent variables ),,( 1 myyy   and a 

variable x, a new variable ),(1 xygym   is constructed 

so that the set 11 ,, myy   is mutually independent. The 

construction is defined recursively as follows. Assume 

that we have already independent random variables 

myy ,,1  which are jointly uniformly distributed in 

m]1,0[ .  Here it is not a restriction to assume that the 

distributions of the iy  are uniform, since this follows 

directly from the recursion, as will be seen below; for a 

single variable, uniformity can be attained by the 

probability integral transformation. Denote by x  any 

random variable, and by baa m,,,1    some nonrandom 

scalars. Define 
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where )(yp  and )(, xyp  are the marginal probability 

densities of y  and ),( xy , respectively, and   |P  denotes 

the conditional probability. The xyp ,  in the argument of 

g is to remind that g depends on the joint probability 

distribution of y and x. For ,0m g is simply the 

cumulative distribution function of x. Now, g as defined 

above gives a nonlinear decomposition. 

A separation method for the post-nonlinear mixtures 

(5) should generally consist of two subsequent parts or 

stages: a nonlinear stage, which should cancel the 

nonlinear distortions nifi ,,1,  . This part consists of 

nonlinear functions  ug ii , . The parameters i of each 

nonlinearity ig  are adjusted so that cancellation is 

achieved. Alinear stage that separates the approximately 

linear mixtures v obtained after the nonlinear stage. This 

is done as usual by learning a nnx  separating matrix B 

for which the components of the output vector Bvy   of 

the separating system are statistically independent. 

Taleb and Jutten [17] use the mutual information 

)(yI between the components nyy ,,1   of the output 

vector as the cost function and independence criterion in 

both stages. For the linear part, minimization of the 

mutual information leads to the familiar Bell-Sejnowski 

algorithm [18] 
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where components i  of the vector   are score 

functions of the components iy  of the output vector y : 
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Here )(upi is the probability density function of iy  

and )(' upi  its derivative.  For the nonlinear stage, one 

can derive the gradient learning rule [17] 
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Here kx  is the kth component of the input vector, bik is 

the element ik of the matrix B, and 
'
kg  is the derivative 

of the kth nonlinear function gk. The exact computation 
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algorithm depends naturally on the specific parametric 

form of the chosen nonlinear mapping ),( kkk xg  . In 

[17], multilayer perceptron network (MLPN) is used for 

modeling the functions nkxg kkk ,,1),,(  . 

In order to measure the performance of algorithms, we 

use the performance index (PI) as in [19, 20] defined by 

  
  














































n

i

n

k jij

ki
n

k ijj

ik

g

g

g

g

nn
PI

1 11

1
max

1
max1

1

  

(12) 

where G is the global transformation matrix from s to y, 

gij is the (i,j) -element of the global system matrix G=HW 

and maxjgijrepresents the maximum value among the 

elements in the ith row vector of G, maxjgij does the 

maximum value among the elements in the ith column 

vector of G. When the perfect separation is achieved, the 

performance index is zero. In practice, the values of 

performance index around 10
-2

 gives quite a good 

performance. 

B. Fisher’s Linear Discriminant Analysis 

The goal in Fisher’s linear discriminant analysis 

(FLDA) is to compute a discriminant vector that 

separates two or more classes as well as possible. Here, 

we consider only the two-class case.We are given a set of 

input vectors  Nix D
i ,,1,   and corresponding 

class-labels  1,1iy  Denoting by N1 the number of 

training examples for which yi =1, by C1 the set of indices 

i for which yi= 1, and using analogous definitions for N2, 

C2, the objective function for computing a discriminant 

vector w [21] 
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This means that one is searching for discriminant zectors 

that result in a large distance between the projected 

means and small variance around the projected means 

(small within-class variance). To compute directly the 

optimal discriminant vector for a training data set, matrix 

equations for the quantities  221    and 
2
2

2
1    can 

be used. First, the class means of km  is defined 
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Now we can define the between-class scatter matrix SB 

and the within-class scatter matrix SW. 
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With the help of these two matrices the objective 

function for FLDA can be written as a Rayleigh quotient. 
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By computing the derivative of J and setting it to zero, 

one can show that the optimal solution for w satisfies the 

following equation: 

 
 21

1
WS mmw   . (18) 

A potential problem in FLDA is that the within-class 

scatter matrix SW can become singular, and the inverse of 

SW can become ill-defined. In particular, this happens 

when the number of features D becomes larger than the 

number of training examples N. A simple solution for this 

problem is to replace the inverse 1
WS  by the Moore–

Penrose pseudo-inverse 
WS [22]. The output of FLDA 

given an input vector x̂  is simply the product xwT ˆ . In 

the P300-based BCI described in the present study, the 

output of FLDA was summed over trials and the image 

corresponding to the maximum of the summed output 

values was then selected. 

IV. RESULTS AND DISCUSSION 

In this paper, a new method using nonlinear 

independent component analysis for extraxtion of EEG-

P300 signals is proposed. The EEG signals were first 

preprocessed using a sixth-order band-pass filter (BPF) 

with cut-off frequencies of 1 Hz and 12 Hz, respectively, 

see Fig. 3. It can be seen that the signals were corrupted 

by noises. The feature extraction of the pre-processed 

signals of the eight electrodes (Fz, Cz, Pz, Oz, P7, P3, P4, 

and P8) can be compared with the extraction using NICA 

method in Fig. 4. The features were extracted every 400 

ms interval (one trial) for about 120 target trials. From the 

results in Fig. 4, although the signals were still corrupted 

by noises (i.e., marked with high amplitude of non-target 

at some trials), the behaviors of the extracted signals 

clearly represent the EEG-based P300 evoked potentials 

(i.e., marked with higher amplitude of the target). 
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Fig. 3 EEG signals preprocessed using the BPF. 
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Fig.4 Feature extraction using NICA algorithm. 

 

Plots showing the tracking error with and without 

application of the NICA approach aredrawn in Fig. 5. The 

curves indicate that with the NICA method, a level of 

accuracy is attained after about 240 

iterations.Contrastingly, when the proposed feature 

extraction method is not used, the same level of accuracy 

is attained only after 1800 iterations.These results show 

clearly that introduction of the NICA methods accelerates 

the training processes. The tracking error converges to a 

small value around zero,and the closed-loop stability is 

guaranteed. Furthermore, with the NICA algorithm, the 

convergence is faster. 

In the present study, the performance of the proposed 

extraction method is tested using a FLDA classifier. In 

order to cope with nonlinearly separable problems, 

additional layers of neurons placed between the input 

layer and the output neuron are needed, leading to the 

multilayer perceptron architecture. At the outset, the 

structure of the network is chosen, after which the 

validation pattern appears in the graph window, and the 

network initialization values are introduced. Each 

subsequent layer has a weight coming from the previous 

layer. Performance is measured according to the specified 

performance function such as iteration speed and signal 

noise to ratio (SNR) criteria [23, 24]. The robustness of 

the proposedextraction algorithm was evaluated by 

comparing its separation performance with well-known 

algorithms (i.e., adaptive autoregressive model (AAR), 

jointapproximatediagonalization of eigenmatrices 

(JADE), and second-order blind identification(SOBI)) as 

shown in Fig. 6. Until all iteration, the NICA algorithm 

perform better performance index. This values indicate 

that the output of the proposed method gives better results 

for short training time. Fig. 7 shows typical performances 

of the comparative algorithms discussed in this paper. 
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Fig. 5 Network’s performance according to mean square errors (ie., blue 
and red with and without NICA, respectively). 

At high SNR, all tested algorithms perform very well. 

At low SNR, one can observe that the NICA method 

gives better performance than the other algorithms in 

most SNR ranges. In 0 - 4dB range SOBI is worse than 

the others. 

The data sets for subject 5 were not included in the 

simulation since the subject misunderstood the 

instructions given before the experiment. Comparative 

plots ofthe classification accuracies and transfer rates 

(obtained with the others well known extraction method 

and averaged over four sessions based on the eight 

electrode configurations) for thedisable- (S1 - S4) and 

able-bodied subjects (S6 - S9) are depicted in Fig. 8 and 

Fig. 9, respectively. All of the subjects (using NICA 

extraction method), except for subject 9, achieved an 

average classification accuracy of 100% after five blocks 

of stimulus presentations were averaged (i.e., around 14 

s). The reason for the poorer performance of subject 9 

might be fatigue. Moreover, the performance of the 

proposed extraction method also can be seen in Fig. 10 

(i.e., average of the disable subjects), Fig. 11 (i.e., 

average of the able-body subject), and Fig. 12 (i.e., 

average of all subjects). Those figures indicated that the 

proposed extraction method were superior compared to 

others extraction method. Shown alongside the 

classification accuracies for all of the subjects, in Table 1, 

are the corresponding 93%, 94%, 92%, and 96% 

confidence intervals corresponding to extraction methods 

using SOBI, JADE, AAR, and NICA, respectively. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations k

P
I(

k)
 [

dB
]

 

 

NICA

AAR

JADE

SOBI

 

Fig. 6 Evolutions of PI(k) of the NICA, AAR, JADE, and SOBI 

algorithms. 
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Fig. 7.  Comparison of performance index of the NICA, AAR, JADE, 

and SOBI algorithms as a function of signal to noise ratio (SNR). 
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Those values indicated that the results achieved 

through NICA method were highly superior compared to 

others method. If we analyze the results for accuracy (see 

Table 1), the disabled subjects obtained slightly better 

performance both with and without the proposed feature 

extraction method except with SOBI extraction. These 

results reflect the fact that the brain signals of the 

disabled subjects were less noisy and more homogeneous 

than those of the able-bodied subjects. 

The transfer rates corresponding to the FLDA 

classification accuracies for the eight-electrode 

configuration were tested. The results showed that 

significant improvements in both classification accuracy 

and average transfer rate were obtained.The maximum 

average transfer rates, the mean transfer rates, and the 

standard deviations for all combinations of the 

featureextraction algorithm are listed in Table 2. These 

results show that the maximum average transfer rates for 

all of the subjects were much better with the proposed 

feature extraction method. 
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Fig. 8 Comparison of classification accuracy and transfer rate plots 

(averaged over four sessions based on eight electrode configurations) 

for disabled subjects (subjects 1- 4). 
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Fig.9 Comparison of classification accuracy and transfer rate plots 

(averaged over four sessions based on eight electrode configurations) 

for able-bodied subjects (subjects 6- 9). 
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Fig. 10 Average of classification accuracy and transfer rate plots for 

disabled subjects. 
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Fig. 11  Average of classification accuracy and transfer rate plots for 

disabled subjects. 
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Fig. 12 Average of classification accuracy and transfer rate plots for all 

subjects. 

 

These improvements can be seen by comparing the last 

column with with others column in the Table 2. In the 

work of Hoffmann et al. (2008), the maximum average 

transfer rate was about 15.90 bits/min for disabled 

subjects and 29.30 bits/min for able-bodied subjects, 

respectively. In the present study (with the proposed 

method i.e., NICA extraction), improvements in the 

maximum average transfer rates were achieved for the 

same electrode configuration: 34.96 bits/min for the 

disabled and for the able-bodied subjects. This confirmed 
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the BCI-applicability of the proposed extraction method. 

By contrast, the classification accuracies and transfer 

rates obtained using the well known extraction methods 

separately were found to be only marginally superior to 

mere chance, indicating the inadequacy of those methods 

for BCI applications. 

One negative characteristic of P300 detection is that 

the amplitude of the waveform requires the averaging of 

multiple recordings to isolate a signal. In order 

tostreamline the averaging process, the proposed feature 

extraction modules were applied to segments of 

EEGsignals (EEG trials). These modules are integral to 

the classification accuracy and transfer rate of the mental 

activities. A factor relating to the attainment of good 

classification accuracy and transfer rates for disabled 

subjects, both in communication systems and BCI 

systems, is the sequence of a given stimulus. When 

applying the proposed method to extract EEG signal 

features, it was found that any two sequential target 

stimuli excite just one P300 component peak, and are 

extracted in that form. However, in orderthat EEG signals 

be classified with 100% accuracy, such stimuli must 

excite two peaks of amplitude. Therefore, in order to 

obtain a good classification accuracy and transfer rate, the 

given stimulus must be inputted randomly with a 

constraint. In other words, two targets should not be 

flashed sequentially. 

 
TABLE 1.  

AVERAGE CLASSIFICATION ACCURACY (%) 

Subject SOBI JADE AAR NICA 

S1 94.00 93.00 88.75 94.50 

S2 92.25 94.50 90.00 97.30 

S3 94.00 95.50 95.00 97.70 
S4 93.00 94.25 94.50 97.25 

S6 90.50 91.85 90.55 96.50 

S7 94.75 94.00 93.20 96.25 
S8 94.75 96.00 94.50 96.35 

S9 93.70 92.95 90.00 97.50 

Average 
(S1–S4) 

93.30.8 94.31.0 92.13.1 96.71.4 

Average 

(S6-S9) 
93.42.0 93.71.7 91.12.1 96.60.5 

Average 

(all) 
93.41.4 94.01.3 92.12.4 96.61.0 

 

TABLE 2.  

AVERAGE TRANSFER RATE (%) 

Subject SOBI JADE AAR NICA 

S1 17.13 17.13 8.13 17.13 
S2 12.58 17.48 10.60 34.96 

S3 17.48 25.17 25.17 34.96 

S4 11.77 17.13 17.48 34.96 
S6 10.60 17.13 20.95 25.17 

S7 17.13 17.13 17.13 25.17 

S8 25.17 25.17 20.95 19.34 
S9 17.13 17.13 17.13 34.96 

Average 

(S1–S4) 
14.7 2.9 19.2 3.9 15.37.6 30.5 8.9 

Average 

(S6-S9) 
17.5 5.9 19.1 4.0 19.02.2 26.26.4 

Average 
(all) 

16.14.6 19.13.6 17.25.5 28.3 7.5 

V. CONCLUSION 

The results presented in this study show that, 

compared with the well known extraction algorithms, a 

better extraction result can be obtained when using the 

NICA algorithm (i.e., faster training and higher SNR) for 

single-trial ERPs based on the P300 component from 

specific brain regions. With NICA extraction, the data 

indicate that a P300-based BCI system can communicate 

at the rate around34.96 bits/min for the disable- and able-

bodied subjects. The average of 100% classification 

accuracy is achieved after four blocks (average) for 

disabled subjects and after five blocks (average) for able-

bodied subjects. To improve our results, we are currently 

investigating the effect of averaging the output of the 

classifier over the consecutive windows as well as the 

effects of other preprocessing methods in artifact-effect 

reduction. 
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