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Abstract— In this paper, a novel variational model with strict
convexity for removing multiplicative noise from images
is proposed and studied. Firstly, by applying maximum
likelihood estimation method and the Bayesian formulation,
the variational model is derived. Then, we use an alternating
minimization algorithm to find out the minimizer of the
objective function, and prove the existence of the minimizer
for the underlying variational problem in theory. Finally,
Our experimental results show that the quality of images
denoised by the proposed method is quite good, and the
proposed model is superior to the existing key models in
preventing the images from stair-casing, and in restoring
more texture details of the denoised image.

Index Terms— Image Denosing, Multiplicative Noise, Partial
Differential Equation, Convex Function,Variational method

I. INTRODUCTION

DUE to the imperfection of image acquisition sys-
tems and transmission channels, images are often

corrupted by noise. This degradation leads to a significant
reduction of image quality and then makes more difficult
to perform high level vision tasks such as recognition,
3-D reconstruction, or scene interpretation [1]. Image
denoising plays an important role in the areas of image
processing. A variety of methods have been proposed
for removing noises from images over the last decades
[2]–[4]. The additive noise is the most widely considered
noise in the literature, which has been extensively studied
over the last decades, and tends to be quite comprehensive
and mature [5]–[7]. In many real world image processing
applications, multiplicative noises are commonly found,
for example in laser images, microscope images, synthet-
ic aperture radar (SAR) images and medical ultrasonic
images [8], [9]. How to remove the multiplicative noise
in the corrupted images is becoming the hot research issue
in recent years [10]–[13].
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In a multiplicative noise model, a recorded image g,
defined on ⊂ R2, is the multiplication of an original
image u and a noise n [14]:

g = un

Several variational approaches for multiplicative noise
removal problems are available in the literature [8-12].
The variational approach dealing with multiplicative noise
was firstly proposed by Rudin, Lions and Osher in [15]
(called the RLO model). The RLO model is written as
follows:

min J(u) : = min

{∫
Ω

|Du|dxdy + λ1

∫
Ω

g

u
dxdy

+ λ2

∫
Ω

(
g

u
− 1)2dxdy

}
,

(1)

where the first term is a regularizer, the latter two terms
are data fitting terms, λ1 and λ2 are the weighted param-
eters.

When the multiplicative noise is out of the Gauss
distribution, the above RLO model is no longer available.
In the past few years, many researchers have developed
various denoising models by using PDE methods versus
the Gamma noise which is more complex.

Under the assumption that the multiplicative noise
follows the Gamma distribution with mean one, Aubert
and Aujol used the maximum a posteriori (MAP) regular-
ization approach and derived the denoising model in [11]
(called the AA model) with Bayesian rules and variational
method as follows:

minE(u)

:=min

{∫
Ω

|Du|dxdy + λ

∫
Ω

(
g

u
+ log u)dxdy

}
,

(2)

where λ is the weighted parameter and the last term is
the fitting term. Obviously, the energy functional is not
convex for all u. Furthermore, for the logarithm function
appears in the last term, we must force each entry of u
to be positive in the optimization process, Therefore, in
practice, some special processing is used to overcome the

626 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.3.626-635



difficulty. However, the efficiency of numerical methods
for solving (2) is low and the computed solutions by
some optimization methods are not necessary to be a
global optimal solution of (2). Therefore, the quality of
the restored image may not be good, for example, some
texture details will be blurred because the “stair-casing
effect” appears in the recovered image.

Based on the AA model, the authors applied a logarith-
mic transformation method to propose a new denoising
model (called the JY model) for multiplicative noise in
[13] and it eased the “stair-casing effect” to some extent;
Motivated by the works of the JY model. Wang, Feng
and Huo presented an anisotropy TV denoising model in
[16] (called the WFH model) with iterative heavy weights.
Despite the protection from losing edge information of the
image, the WFH model generates some artificial trace that
will blur the observed image.

In [12], Huang, Ng and Wen considered a logarithmic
transformation z = log u in the fitting term of the AA
model (2), added a fitting term and proposed the following
model (the HNW model):

minE(u) := min

{∫
Ω

(z + ge−z)dxdy+

λ1

∫
Ω

(z − w)2dxdy + λ2

∫
Ω

|Dw|dxdy
}
,

(3)

where λ1 and λ2 are positive regularization parameters. It
is clear that when u contains an edge, z also contains an
edge at the same location. Moreover, because the second
derivative with respect to z of (3) is constantly positive,
the function is strictly convex for all z. The process
tactfully solved the ill-posed situation of the AA model,
and also proved theoretically that the iterative sequence
derived from the alternating minimization algorithm con-
verges to the optimal solution of (3). The experimental
results also show the quality of the denoised images is
quite good.

To the best of our knowledge, however, multiplicative
noise removal is still a challenging problem. This is
because the noise arises in important applications but
up to now, there is no entirely satisfactory methods for
handling it. Most of the existing models are effective in
denoising, but the problem of reducing or avoiding stair-
casing effect has not yet been well solved as the TV
regularization yields images containing numerous regions
with constant values and consequently the textures and
fine details are removed.

How to alleviate or even eliminate the “stair-casing
effect” while keeping the advantage of the existing models
is one of the problems needing to be solved urgently.
And the key is to explore a new regularization term
and construct new variational models. Motivated by the
thoughts of [12] and [17], in this paper we employ a
new regularization term to construct a modified variational
model. It is able to remove the Gamma noise effectively
and avoid the image blurring. In addition, the proposed
model can preserve the edge features and texture details
better, which smoothes and improves the visual effect.

The rest of this paper is organized as follows. Sec-
tion II presents some preliminaries to be used in this
paper; In section III, the new model is derived by using
Bayesian rules through the analysis of the mathematical
characteristics of Gamma noise; Section IV gives the
numerical minimization method by the alternating opti-
mization algorithm; Section V proves that the iteration
sequence converges to the optimal solution; Section VI
shows experimental results to demonstrate the quality of
the denoised images and the efficiency of our proposed
method; In final section, a brief conclusion is given.

II. PRELIMINARIES

In order to facilitate the mathematical study later in
this paper and for convenience of readers, we present here
some definitions, and give two important theorems to be
used in this paper. Throughout this paper, we will use the
following classical notations and distributional spaces. For
more details we refer the reader to the references [20]–
[22], [24].

Definition 2.1. If for all functions φ = (φ1, φ2) ∈
C1

0 (Ω)
2, ∥φ∥L∞(Ω) ≤ 1, the formula∫

Ω

udivφdx = −
∫
Ω

Du · φdx,

holds, then Du = (D1u,D2u) is called the distribution
gradient of u, and u is called a bounded variation function.
Also, the total variation of Du on Ω is defined as follows∫

Ω

|Du|dx : = sup
{∫

Ω

udivφdx : φ = (φ1, φ2)

∈ C1
0 (Ω)

2, |φ|L∞(Ω)| ≤ 1
}
.

Remark 1. From Green’s formula, we have∫
Ω
udivφdx = −

∫
Ω
∇u·φdx, for any u ∈ C1(Ω). There-

fore,
∫
Ω
|Du|dx =

∫
Ω
|∇u|dx. That is, if the classical

derivative of u exists, the distribution gradient of u is its
classical gradient.

Definition 2.2(see [20]) Assume that X is a closed set,
Γ0(X) is the set of all the convex lower semicontinuous
functions. For any φ ∈ Γ0(X), its proximal operator is
defined by

proxφ(y) = argmin
x

1

2
∥ y − x ∥22 +φ(x).

Definition 2.3(see [20]) The operator P defined in R2

is called nonexpansive if the following inequality

∥P (x1)− P (x2)∥2 ≤ ∥x1 − x2∥.

holds for any x1,x2 ⊂ Rn2

, where ∥ · ∥2 is the Euclidean
norm in Rn2

.
Definition 2.4(see [22]) If there exists some nonex-

pansive operator A and some α ∈ (0, 1) such that P =
(1−α)I+αA, then P is called α-averaged nonexpansive.

Definition 2.5(see [24]) For any sequence {xk} in X , if
there exists limk→∞ φ(xk) =∞ when limk→∞ ∥xk∥2 =
∞, then we call the φ is coercive in X .
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Let W 1,p(Ω) be the standard notation for the Sobolev
space. Finally, we give two important theorems to be used
later.

Theorem 2.1(see [21]) Assume that f(x, u,Du) is
coercive, and let

F (u) =

∫
Ω

f(x, u,Du)dxdy.

Then f is convex for Du if and only if
(1) the functional F (u) is lower semicontinuous in

W 1,p(Ω) (p ≥ 1);
(2) the problem infΩ F (u) has solutions. Moreover,

there exists a unique solution when f is strictly convex
for both Du and u.

Theorem 2.2(see [21]) For any φ ∈ Γ0(X), if there
exist its proximal operators, proxφx and proxφy , then

∥proxφx− proxφy∥ ≤ ⟨proxφx− proxφy, x− y⟩.

III. A NEW VARIATIONAL MODEL FOR REMOVAL OF
MULTIPLICATIVE NOISE

Consider the gamma distribution with density function

p(x) =

{
KKxK−1

(K−1)! , x ≥ 0,

0, x < 0.
(4)

where K is an integer. Obviously, the mean value and the
variance of the Gamma distribution are 1 and 1/K, re-
spectively. We are applying the Bayesian rule to establish
a proper fidelity term. The aim of this paper is to find the
best approximation of the original image u, we denote it
by û. According to the maximum likelihood estimation
and Bayesian rule, we have

û = argmax
u

Pr(u|g) = argmax
u

Pr(g|u)Pr(u)
Pr(g)

= argmax
u

(Pr(g)Pr(u)).
(5)

Noticing − log(Pr(g|u)Pr(u)) = −(logPr(g|u) +
logPr(u)) , and combining with Gamma density function
and Gibbs formula, we have derived

− logPr(g|u) =
n∑

i,j=1

{
K

(
log u(i, j) +

g(i, j)

u(i, j)

)}
.

Thus, Eq.(5) is equivalent to

û =argmin
u

n∑
i,j=1

{(
log u(i, j) +

g(i, j)

u(i, j)

)
+ λϕ(i, j)

}
,

(6)

where λ is the regularization parameter, ϕ is a given
function. The continuous form of (6) provides the fi-
delity term

∫
Ω

(
log u+ g

u

)
, regularizing term

∫
Ω
ϕ(|Du|).

Referring to [14], the fidelity term is transformed to be∫
Ω
(z + ge−z).
In the variational model (3),

∫
Ω
|Dw| is the regular-

ization term,
∫
Ω
(z + ge−z) and

∫
Ω
(z − w)2 are fitting

terms. The general form of the regularization terms in
the TV denoising models is

∫
Ω
|Dw|p. It can be proved

that the model is ensured to be well-posed when p ≥ 1. In

general, larger the value of p, stronger the edge penalty;
The variational model is ill-posed when 0 < p < 1,
but the edge is preserved well. p is equal to 1 in the
regularization terms of the main variational models at
present, such as the AA model and the HNW model, etc.

In order to inherit the advantages of the HNW model,
and overcome its drawbacks as much as possible, inspired
by [18], this paper uses the new regularization term∫
Ω
|Dw| log(e+ |Dw|) to propose the unconstrained TV

denoising functional as follows:

min
z,w

J(z, w)

=min
z,w

{∫
Ω

(z + ge−z) + λ1

∫
Ω

(z − w)2

+λ2

∫
Ω

|Dw| log(e+ |Dw|)
}
.

(7)

The first term on the right hand side of our model
(7) is called the loyalty term which ensures recovering
image u to retain the main features from the virtual
image log g. The second term is the coordination term
which measures the influence between the fitting term
and the regularization term to the model. The final term is
the regularization term which ensures the smooth of the
denoising image w, and removes the noise frequently.

IV. THE ITERATIVE ALGORITHM

Inspired from the thought of [14], this paper uses an
alternating minimization algorithm to solve the problem
(7). Starting from the initial data w(0), we solve the
following optimization problem

z(m) = R(w(m−1)) := argminz
{∫

Ω
(z + ge−z)

+ λ1
∫
Ω
(z − w(m−1))2

}
,

w(m) = S(z(m)) := argminw
{
λ1

∫
Ω
(z(m) − w)2

+ λ2
∫
Ω
|Dw| log(e+ |Dw|)

}
.

(8)
and get z(1) and w(1). In the same way, repeating the
alternating iteration, we obtain the following sequence :
w(0), z(1), w(1), z(2), w(2), · · · , z(m), w(m), · · · · · ·

Firstly, in order to solve the first minimization problem
of (8), we need to solve its discretization:

argmin
z


n∑

i,j=1

(z(i, j) + g(i, j)e−z(i,j))

+ λ1

n∑
i,j=1

(z(i, j)− w(m−1)(i, j))2

 .

(9)

Here we denote
f(z(i, j))

:=z(i, j) + g(i, j)e−z(i,j) + λ1(z(i, j)− w(m−1)(i, j))2.

Obviously, the solution of (9) is the minimum of the
function f . Since f is continuous and derivable within
the specified range, this problem is equivalent to solving
the regular system with n2 equations:

1− g(i, j)e−z(i,j) + 2λ1(z(i, j)− w(m−1)(i, j)) = 0,

i, j = 1, 2, · · · , n. (10)
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The function f is strictly convex for every z(i, j), so the
corresponding nonlinear equation has a unique solution
and we use the Newton iteration method to find it. The
iterative formula of (10) is as follows

z(m)(i, j) = z(m−1)(i, j) +
f ′(z1(i, j))

f ′′(z1(i, j))
. (11)

Secondly, Using the image z(m) generated by (11) in
the previous step, we try to get w(m). Letting

F (x, y, w,wx, wy)

=λ1

∫
Ω

(z − w)2 + λ2

∫
Ω

|Dw| log(e+ |Dw|),

we get the corresponding Euler-Lagrange equation as
follows

∂

∂x
(
∂F

∂wx
) +

∂

∂y
(
∂F

∂wy
)− ∂F

∂w
= 0, (12)

That is,

λ2div(
|Dw|+ (e+ |Dw|) log(e+ |Dw|)

(e+ |Dw|)|Dw|
Dw)

+ 2λ1(z − w) = 0.

(13)

Let t(x) = [x + (e + x) log(e + x)]/[(e + x)x], (13) is
simplified as

λ2div(t(|Dw|)Dw) + 2λ1(z − w) = 0. (14)

In this paper, Dw is the derivative of w in distribution
sense. If the derivative is continuous, then the gradient at
the location (i, j) is Dw(i, j) = (w(i, j)x, w(i, j)y), and
|Dw(i, j)| =

√
w(i, j)2x + w(i, j)2y , i, j = 1, 2, . . . , n,

where

w(i, j)x =

{
w(i+ 1, j)− w(i, j), i < n,
0, i = n.

and

w(i, j)y =

{
w(i, j + 1)− w(i, j), j < n,
0, j = n.

Now we use the finite differential method to obtain the
approximate solution of the equation (14).

Step 1. Let step size h = 1, and take samples with
constant interval. The pixel value at (i, j) is w(i, j), which
is marked as the target pixel. Let w, e, s, n denote its four
adjacent pixels as in Figure 1, write Λ = {(i− 1, j), (i+
1, j), (i, j − 1), (i, j + 1)}.

Figure 1. A target pixel and its neighbors.

Step 2. Complete the discretization processing of
div(t(|Dw|)Dw). A small number ε is considered to

avoid a zero divisor, (e+ |Dw|)|Dw| in smooth regions,
so |Dw| =

√
w2

x + w2
y + ε, and t(|Dw|) = t(|Dw|ε).

ε is too small to affect the denoising quality. Let v =
(v1, v2) = t(|Dw|ε)Dw, then the curl of t(|Dw|) can be
described as

div(t(|Dw|ε)Dw) =
∂v1

∂x
+
∂v2

∂y
≈ (v1e−v2w)+(v2n−v2s).

(15)
where

v1e = t(|Dwe|ε)[
∂w

∂x
]e ≈ t(|Dwe|ε)[w(i+1, j)−w(i, j)],

(16)

v1w = t(|Dww|ε)[
∂w

∂x
]w ≈ t(|Dww|ε)[w(i+1, j)−w(i, j)],

(17)

v2n = t(|Dwn|ε)[
∂w

∂x
]n ≈ t(|Dwn|ε)[w(i+1, j)−w(i, j)],

(18)

v2s = t(|Dws|ε)[
∂w

∂x
]s ≈ t(|Dws|ε)[w(i+1, j)−w(i, j)],

(19)
here

t(|Dwe|ε) =
|Dwe|ε + (e+ |Dwe|ε) log(e+ |Dwe|ε)

(e+ |Dwe|ε)|Dwe|ε
,

and
|Dwe|ε ≈

√
ε+ (we)2x + (we)2y.

Substituting (16), (17),(18) and (19) into (15), we get

div(t(|Dw|ε)Dw) =
∑
p∈Λ

[t(|Dwp|ε)(w(p)− w(i, j))].

(20)
Based on (20), the Euler-Lagrange equation (14)can be
viewed as

λ2
∑
p∈Λ

[t(|Dwp|ε)(w(p)−w(i, j))]+2λ1(w− z(m)) = 0.

(21)
Here we quote the gradient descent method to find w(m).
Letting

w t = λ2
∑
p∈Λ

[t(|Dwp|ε)(w(p)−w(i, j))]+2λ1(w−z(m)).

(22)
we obtain the iterative formula

w(m) = w(m−1) + dt× w t, (23)

where dt is a constant, we take dt = 0.12 in this paper.
Step 3. The iterative process of the proposed method

stops when the relative difference between w(m) and
w(m+1) satisfies the following inequality:

∥w(m+1) − w(m)∥
∥w(m)∥

≤ 10−4.

V. CONVERGENCE ANALYSIS

From (8), we can obtain the following relationship:

w(m) = S(R(w(m−1))) = T (w(m−1)), (24)

which generates the sequence {w(m)}. The main aim of
this section is to show the convergence of the sequence
{w(m)}.
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Theorem 5.1 From any initial value w(0), the iterative
sequence {w(m)} converges to the optimal solution of the
model (7).

Proof. 1) The operator R is nonexpansive, S is 1/2-
averaged nonexpansive, and T is also nonexpansive.

By [15], R is nonexpansive. Letting M = 2S − I , we
have

∥M(z1)−M(z2)∥22
=∥(2S − I)(z1)− (2S − I)(z2)∥22
=∥2(S(z1)− S(z2))− (z1 − z2)∥22
=4∥S(z1)− S(z2)∥22 + ∥z1 − z2∥22
− 4⟨S(z1)− S(z2), z1 − z2⟩.

Utilizing the second problem of (8), we get

S(z(m)) = argmin 2λ1

[
1

2
∥z − w(m−1)∥22

+
λ2
2λ1

∫
Ω

|Dw| log(e+ |Dw|)
]
.

(25)

Let φ = λ2

2λ1

∫
Ω
|Dw| log(e+ |Dw|). Through Definition

2.2, S is the proximal operator of φ, and φ ∈ Γ0(X).
Thus, we can obtain the following inequality by Theorem
2.2:

∥S(z1)− S(z2)∥22 ≤ ⟨S(z1)− S(z2), z1 − z2⟩. (26)

Noticing (5.2) and (26), we have

∥M(z1)−M(z2)∥22 ≤ ∥z1 − z2∥22. (27)

So the operator M = 2S − I is nonexpansive. Since the
operator S satisfied the equation S = (1−1/2)I+1/2M ,
it is obvious that S is 1/2-averaged nonexpansive. Simi-
larly, we also can get that the operator T is nonexpansive.

2) The series
∑∞

m=1 ∥w(m−1) − w(m)∥22 converges.
Letting

J1(z, w) =

∫
Ω

∥z − w∥22,

and

J2(w) =

∫
Ω

|Dw| log(e+ |Dw|),

we obtain from (7)

J(z(m), w(m))− J(z(m), w(m+1))

=λ1

[
J1(z

(m), w(m))− J1(z(m), w(m+1))
]

+ λ2

[
J2(w

(m))− J2(w(m+1))
]
.

(28)

The Taylor series expansion in the second variable of
J1(z, w) is given

J1(z
(m), w(m))

=J1(z
(m), w(m+1)) + (w(m) − w(m+1))t

∂J1
∂w

(z(m), w(m+1))

+
1

2
(w(m+1) − w(m))t

∂2J1
∂w2

(z(m), w(m+1))(w(m+1) − w(m)).

(29)

Here we note that J1 is quadratic in w and xt denotes
a transpose of x. While J2 is a convex function, so we
have

J2(w
(m))

≥J2(w(m+1)) + (w(m) − w(m+1))t
∂J2
∂w

(w(m+1)).
(30)

Combining (28), (29) and (30), we get

J(z(m), w(m))− J(z(m), w(m+1))

≥(w(m+1) − w(m))t
[
λ1
∂J1
∂w

(z(m), w(m+1))

+ λ2
∂J2
∂w

(w(m+1))

]
+
λ1
2
∥w(m+1) − w(m)∥22.

(31)

w(m+1) is the minimizer of J(z(m), w), so

∂J

∂w
(z(m), w(m+1)) = 0,

and

∂J1
∂w

(z(m), w(m+1)) +
∂J2
∂w

(w(m+1)) = 0,

which can be substituted into (31), we obtain

J(z(m), w(m))− J(z(m), w(m+1))

≥λ1
2
∥w(m+1) − w(m)∥.

The energy in the iteration is decreasing, that is to say,
J(z(m+1), w(m+1)) ≤ J(z(m), w(m+1)) , so the following
inequality

J(z(m), w(m))− J(z(m+1), w(m+1))

≥λ1
2
∥w(m+1) − w(m)∥22.

holds. Hence, the series
∑∞

m=1 ∥w(m−1) − w(m)∥22 is
bounded and convergent.

3) The function J(z, w) in (7) is coercive.
Denote Lh, Lv as the one-sided difference matrix

on the horizontal direction and the vertical direction,
respectively:

L =

(
Lh

Lv

)
,

it is easy to prove that the matrix L is not a full-rank
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matrix. The lower bound of the discrete TV is given by∫
Ω

|Dw| log(e+ |Dw|)

=
∑

1≤j,k≤n

|∇w| log(e+ |∇w|j,k)

=
∑

1≤j,k≤n

√
[(∇w)xj,k]2 + [(∇w)yj,k]2

log(e+
√

[(∇w)xj,k]2 + [(∇w)yj,k]2)

≥
∑

1≤j,k≤n

√
[(∇w)xj,k]2 + [(∇w)yj,k]2

≥
√
2

2

∑
1≤j,k≤n

(|(∇w)xj,k|+ |(∇w)
y
j,k|)

=

√
2

2
∥Lw∥1.

Referring to Lemma 3.8 in [14] and Definition 2.5, we
can get that J(z, w) is coercive.

4) The set of fixed points of T is nonempty.
The third step have showed that J(z, w) is coercive,

which assures that the set of the minimizers of J(z, w)
is nonempty. If (z, w) is the minimizer of J(z, w), then
we have the following equation

w = S(z) = S(R(w)) = T (w). (32)

(32) shows that w is the fixed point of the function T .
Namely, the set of fixed points of T is nonempty.

5) From any initial value w(0), the iterative sequence
{w(m)} converges to the optimal solution of the model
(7).

Since the fidelity term in (7) is strictly convex, the
proposed objective function is also strictly convex. It is
obvious that J(z, w) is differential with regard to its first
variable z, so the set of fixed points are just minimizers of
J(z, w). The fixed point set of T is nonempty. Moreover,
from Theorem 2.1, the strict convexity of the function J
assures T has a unique fixed point. If we denote the fixed
point as w0, then w(m) = T (m)(w0).

We have proved T is nonexpansive in the first step,
consequently, both T (m)(w0) and ∥T (m)(w) − w0∥2 are
also nonexpansive. By Definition 2.4, we obtain

∥T (m+1)(w)− w0∥2
=∥T (T (m)(w))− T (w0)∥2 ≤ ∥T (m)(w)− w0∥2,
m = 0, 1, 2, · · ·

Hence, there exists a nonnegative limit d(w0) =
limm→∞ ∥T (m)(w) − w0∥. As long as we prove that
d(w0) is equal to zero, the conclusion is gotten. Here
we apply contradiction method to prove it. Suppose there
is a subsequence {T (mi)(w)} in {T (m)(w)} , whose limit
is w′, and w′ ̸= w0. Because of the asymptotic regularity
of T , we get limmi→∞[(I − T )(T (mi)(w))] = 0, then
(I − T )(w) = 0, i.e., T (w′) = w′, w′ is also the fixed
point of T , which is apparently a contradiction. As a
result, the unique limit of {T (m)(w)} is w0.

Letting w = limm→∞ w(m), we have R(w) =
limm→∞R(w(m)). Since the operator R is nonexpansive,
we have

∥z(m) −R(w)∥2
=∥R(w(m−1))−R(w)∥2 ≤ ∥w(m−1) − w∥2.

It implies that limm→∞(w(m−1) − w) = 0, and,
limm→∞ z(m) = R(w) , the sequence {z(m)} also
converges to a unique fixed point, so finishes up the proof.

�

VI. NUMERICAL EXPERIMENTS

In this section, numerical results are presented to
demonstrate the performance of our proposed algorithm.
The results are compared with those models , such as the
AA model, the RLO model and the HNW model. For
this purpose, it is sufficient and is also more convenient
to use the synthetical and commonly-used test images.
In our experiments we used two gray original images
and two color original images. The two gray original
images are the the synthetic image (named as “Coin”)and
the Lena image(As shown in Figure 2(a) and Figure
2(b)), respectively. The two color images are the original
flower image and the original Lena image (As shown
in Figure 2(c) and Figure 2(d)), respectively. For the
geometry structure, the gray coin image is very simple,
and the flower image is slightly more complicated. the
Lena images (both gray and color) have nice mixture of
details, flat regions, shading area and texture. The four
images serve the purpose of our experiments.

(a) Gray Coin image (b) Gray Lena image

(c) Color flower image (d) Color Lena image

Figure 2. The four original test images.

In the tests, each pixel of the original image is degraded
by the gamma noise with the mean value of one (see (4)),
and the noise level is controlled by the value of K in the
experiments. Obviously the pictures are more noisy with
the decrease of the parameter K. The original gray coin
image in Figure 2(a) is distorted by the gamma noise with
K = 20 and K = 5 respectively, and the noisy images
are shown in Figure 3(a) and Figure 3(b), respectively.
The original Lena image in Figure 2(b) is distorted by
the gamma noise with K = 20 and K = 5 respectively
and the noisy images are shown in Figure 3(c) and Figure
3(d) respectively.
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(a) Noisy “Coin”(K=20) (b) Noisy “Coin”(K=5)

(c) Noisy “Lena” (k=20) (d) Noisy “Lena”(k=5)

Figure 3. The four noisy images.

The scalar parameters λ1 = 0.004 and λ2 = 0.01 in
our model because our model has the best performance
under this case, while the scalar parameters in the AA
model, the RLO model and the HNW model are chosen
based on [11], [15] and [12], respectively. The solutions of
the three models are also computed by discretizing their
corresponding gradient descent flow equations with finite
difference algorithm respectively. All of the algorithms
were implemented in MATLAB2010.

(a) Our model(K=20) (b) AA model(K=20)

(c) RLO model(k=20) (d) HNW model(k=20)

(e) Our model(K=5) (f) AA model(K=5)

(g) RLO model(k=5) (h) HNW model(k=5)

Figure 4. The restoration of “Cion” by different models.

In Figure 4, we show how our model and the other three
models behave for the degraded coin image with a gamma
noise K = 20 and K = 5 respectively. From Figure 4(a)
to Figure 4(d)( or Figure 4(e) to Figure 4(h)), the images
are respectively the ones restored by our model, the AA
model, the RLO model and the HNW model. The first

four images in Figure 4 are all from the same degraded
coin image in Figure 3(a) with the gamma noise K = 20,
while the other four images in Figure 4 are all restored
from the same degraded coin image in Figure 3(b) with
the gamma noise K = 5. So does Figure 5.

(a) Our model(K=20) (b) AA model(K=20)

(c) RLO model(k=20) (d) HNW model(k=20)

(e) Our model (K=5) (f) AA model(K=5)

(g) RLO model(k=5) (h) HNW model(k=5)

Figure 5. The restoration of “Lena” by different models.

Obviously, the quality of the images restored by our
model is the best in the four models. For the Lena image,
our experimental results have shown that the quality of the
images restored by our model is excellent and our method
has the best performance in noise removal. Especially,
our model is superior to the other three models for
preserving the textures and fine details of the images,
but the images restored by one of the other three models
contain numerous regions with constant values(named as
“stair-casing effect), as shown in Figure 5. In fact, from
Table I to Table IV, we can also get the same conclusion.

In addition to visual examination, we can use a signal-
to-noise ratio (abbreviated SNR), Peak Signal-to-Noise
Ratio(abbreviated PSNR), and a relative Error (abbre-
viated ReErr) of the images to assess the quality of
the restored images. These three indicators are measures
used in science and engineering to quantify how much a
signal has been corrupted by noise. For more details, we
refer readers to [17], [20], [23]. The larger the value of
SNR ( or PSNR), the better the quality of the restored
images. Smaller the value of ReErr, the better the quality
of the restored images. In Table I-III, we compare their
restoration results in SNRs, PSNRs and ReErrs. We
observes from Table I-III that every index of the restored
images by the proposed method is better than that of the
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corresponding restored image by one of the others.

TABLE I.
COMPARISON OF THE VALUES OF THE STORED “COIN”

USING THE FOUR METHODS (K = 20).
Our model AA model RLO model HNW model

SNR 22.8184 18.8203 18.8381 19.4729
PSNR 70.5635 62.6710 62.7175 63.8269
ReErr 0.0723 0.1145 0.1143 0.1092

TABLE II.
COMPARISON OF THE VALUES OF THE RESTORED “LENA”

USING THE FOUR METHODS (K = 20).
Our model AA model RLO model HNW model

SNR 22.0574 19.4902 20.2772 21.0580
PSNR 64.5340 59.4585 60.9216 61.4133
ReErr 0.0789 0.1060 0.0969 0.0893

TABLE III.
COMPARISON OF THE VALUES OF THE RESTORED “LENA”

USING THE FOUR METHODS (K = 5).
Our model AA model RLO model HNW model

SNR 13.0624 8.6885 8.0598 11.3559
PSNR 46.6965 39.1902 38.1840 43.6160
ReErr 0.2223 0.3678 0.3954 0.2705

Furthermore, in order to emphasis on the comparison,
we show the 101st-103th lines of the original, noisy, and
restored Lena images by the AA model, the HNW model
and the proposed model in Figure 6-7. In Figure 7, the
blue solid lines are the line in Figure 6(b), i.e., the 101st-
103th lines of the original Lena image, while the red
dotted lines is the 101st-103th lines of the restored Lena
images by the corresponding method. It is clear from the
figures that the performance of the proposed method is
the best in the four models.

In addition to the quality of the restored gray images,
we also find that the proposed algorithm is quite efficient
for color images denoising. For the original flower image
and the color Lena image (shown in Figure 2(c)and
Figure 2(d) respectively), they are distorted by the gamma
noise with K = 20 and K = 10 respectively, and the
noisy images are shown in Figure 8(a) and Figure 9(a),
respectively. The two degraded images are restored by
the HNW model and the proposed model respectively,
shown in Figure 8 and Figure 9. As we expect, there is
little “stair-casing effect” and less blurring in the restored
image by our model, which is smoother and the texture
information is preserved better.

Table IV records the ReErrs of the results by the
HNW model and the proposed model respectively when
the value of K is 200, 100, 50, 20 and 10. More precisely,
the data in Table IV illustrates that whatever the intensity
of the Gamma noise is, all the results of color images
restored by the proposed method turn out to approach
the original color images more closely than those by the
HNW model.

Now, we discuss the denoising efficiency. In [13],
Huang, Ng and Wen had found that the HNW model is
more efficient than the AA model. Here we compare the

(a) Gamma noise (K = 5)

(b) The original Lena images

(c) The noised Lena images

Figure 6. The 101th-103th lines of Gamma noise (K=5), the original
and noised Lena images.

number of iterations and the computational time required
by the proposed method and the HNW model, as showed
in Table V. According to it, we find that the efficiency
of the proposed method, as well as the denoising quality
by the proposed method, also surpasses that of the HNW
model.

VII. CONCLUSIONS

In this paper, we have studied a variational method
for multiplicative noise removal problems. The proposed
method is based on a strictly convexity. The alternating
iterative optimization algorithm is implemented, and we
have proved that the iteration sequence converges to the
optimal solution. Simulation experiments show that the
quality of the images restored by our model is excellent.
Moreover, the proposed method restrains the “stair-casing
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(a) AA model

(b) HNW model

(c) The proposed model

Figure 7. The 101th-103th lines of the restored Lena images by different
models.

TABLE IV.
REERRS OF THE RESTORATION RESULTS.

K 200 100 50 20 10
Flower(HNW) 0.0626 0.0675 0.0810 0.1081 0.1116
Flower(Ours) 0.0545 0.0612 0.0781 0.1048 0.1108
Lena(HNW) 0.0810 0.0817 0.1065 0.1259 0.2132
Lena(Ours) 0.0687 0.0795 0.1013 0.1113 0.1716

effect” of restored images so effectively that the results
are much closer to the original images.
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